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Abstract We consider a simple self-similar sequence of graphs that does not satisfy the symmetry
conditions that imply the existence of a spectral decimation property for the eigenvalues of the graph
Laplacians. We show that, for this particular sequence, a very similar property to spectral decimation
exists, and we obtain a complete description of the spectra of the graphs in the sequence.
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1. Introduction and definitions

1.1. Introduction

Many self-similar graphs, and related fractals, display a property known as spectral deci-
mation: that the spectrum of the Laplacian can be described in terms of the iteration of
a rational function f . Eigenvalues λ of the Laplacian at a given stage of the construction
are related to eigenvalues µ of the Laplacian at the following stage of the construction
by the relationship

λ = f(µ), (1.1)

where f is a rational function on R, unless µ is a member of a small exceptional set, E .
This was first observed for the specific case of the Sierpiński gasket graph in [8], and this
was given a rigorous mathematical treatment in [4,11,12]. In the case of the Sierpiński
gasket, using our definition of the Laplacian (see § 1.3), the function f(µ) = µ(5 − 4µ)
and the exceptional set is { 1

2 , 5
4 , 3

2}.
A generalization of spectral decimation to a much larger class of self-similar graphs,

including the Vicsek set graph, appears in [7], in which a symmetry condition is developed
which, if satisfied, ensures that spectral decimation applies to the graph. Each self-similar
graph in this class has a function f and exceptional set E associated with it.

In this paper we consider a simple asymmetric self-similar graph which does not satisfy
the symmetry condition of [7]. In § 1.2 we define a sequence of graphs (Gn)n∈N, which
can be used to define a self-similar graph G∞ as for the self-similar graphs in [7].
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In § 2 we show that, for this example, a property similar to spectral decimation exists,
in which (1.1) is replaced by

2(1 − λ)2 = f(µ), (1.2)

where f(µ) is a quartic polynomial. Again there is an exceptional set of values of µ for
which the relationship does not necessarily hold. This is proved in Theorems 2.1 and 2.2.

Another common spectral property of self-similar graphs and related fractals is that
there are many eigenvalues of the Laplacian with high multiplicity and Dirichlet–
Neumann eigenfunctions, i.e. eigenfunctions which are zero on the boundary. In [9] it is
shown that the eigenvalues with Dirichlet–Neumann eigenfunctions dominate the spec-
trum in a large class of cases, that of the nested fractals introduced in [5]. In [6] a similar
result is shown for two-point self-similar graphs, a class which includes the example in
this paper.

In § 3 we calculate the number of linearly independent eigenfunctions of the Laplacian
which are Dirichlet–Neumann or non-Dirichlet–Neumann. In § 4, we use the results of
§§ 2 and § 3 to describe the spectra of the graphs in the self-similar sequence of finite
graphs used in the construction of our graph. This is stated in Theorem 4.1, which gives
a complete description of the spectrum, including the multiplicity of the eigenvalues and
which eigenvalues are associated with Dirichlet–Neumann and non-Dirichlet–Neumann
eigenfunctions.

An example of a self-similar graph which does not satisfy the symmetry conditions
of [7], and for which spectral decimation appears not to apply, is associated with the
pentagasket, as described in [1], in which numerical approximations for eigenvalues and
eigenvectors are obtained, and some theoretical results are obtained that show how to
construct eigenspaces of high multiplicity.

A more complicated method, using a rational map on a projective variety rather than
on R, which works for a larger class of self-similar graphs than that in [7] including some
for which spectral decimation does not apply, is described in [10]. However, our graph
does not meet all the conditions described in § 1.1.1 of [10].

1.2. The graph

In this section we define a self-similar sequence of finite graphs (Gn)n∈N.
We label the vertex sets and edge sets of a graph G by V (G) and E(G), respectively,

and, for a vertex i ∈ V (Gn), we define E
(n)
i to be the set of edges of Gn connected to i.

We start with G0, a single edge between two vertices 1 and 2, and proceed induc-
tively, constructing Gn+1 from Gn. Our graphs will be defined in such a way that
V (Gn−1) ⊆ V (Gn).

To construct Gn+1, we assume as an induction hypothesis that, if n � 1, the graph
Gn is bipartite with the two parts being V (Gn−1) and V (Gn) \ V (Gn−1), and hence that
each edge e ∈ E(Gn) can be thought of as connecting two vertices i(e) and j(e), defined
so that i(e) ∈ V (Gn−1) and j(e) ∈ V (Gn) \ V (Gn−1). To deal with the special case G0,
we set i(e0) = 1 and j(e0) = 2 for its single edge e0.

For each e ∈ E(Gn) we introduce a new vertex, which we label k(e), and we let
the vertex set V (Gn+1) of Gn+1 be the union of V (Gn) with the set of new vertices
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Figure 1. The graphs G1 and G2.

Figure 2. A later stage of the construction.

{k(e), e ∈ E(Gn)}. We then define E(Gn+1) to consist of, for each e ∈ E(Gn), two edges
connecting k(e) with i(e) and one edge connecting k(e) with j(e). This ensures that the
new graph Gn+1 is bipartite with the two parts being V (Gn) and V (Gn+1) \ V (Gn−1),
so that we can continue the construction inductively.

Figure 1 shows G1 and G2, and Figure 2 shows a later stage of the construction,
generated using Maple.

The same sequence of graphs can be obtained by using the framework of Definition 5.2
of [7], with the model graph being identical to G1 above, but with conditions on the
orientation to deal with the asymmetry.

It can also be obtained by a variation on the framework of § 1.1.1 of [10]. In that
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framework, the sequence of graphs is obtained from a basic cell F = {1, . . . , N0}, for some
N0, and an equivalence relation R defined on {1, . . . , N} × F , where N is the number
of cells and satisfies N � N0. In our case, N0 = 2 and N = 3, and our model graph G1

can be defined by an equivalence relation R on {1, 2, 3} × {1, 2} with three equivalence
classes {(1, 1), (3, 1)}, {(1, 2), (2, 2), (3, 2)} and the singleton {(2, 1)}. However, in [10]
the equivalence relation R is required to satisfy three conditions, one of which is that
the equivalence class of (i, i) for 1 � i � N0 should be a singleton, and our equivalence
relation does not satisfy this condition, although it does satisfy the other two. As a result
of this, the definitions of the equivalence relations R〈∞〉 and R〈n〉, used in [10] to define
the infinite graph and its subsets, need to be modified to deal with the more complicated
behaviour of the boundary points.

When 1 � m < n, the graph Gn contains 3n−m subgraphs isomorphic to Gm. We will
call these subgraphs m-cells. Using this, we can define a sequence (G̃n)n∈N such that G̃n

is isomorphic to Gn and G̃m is a subgraph of G̃n for m < n. We then define the infinite
graph G∞ =

⋃∞
n=0 G̃n. This is analogous to Definition 5.5 of [7].

We define maps fi : V (Gn−1) → V (Gn), i = 1, 2, 3, mapping each vertex of Gn−1

to the corresponding vertex in each (n − 1)-cell. We will label these so that f1 and f2

correspond to the two parallel cells.
We note that this graph is similar to that described in [3], although in the context of

that paper the orientation of the cells is not important.

1.3. The Laplacian

There are a number of different definitions of the Laplacian of a graph. The definition of
the graph Laplacian used in [7] is the generator matrix of a continuous-time random walk
on the graph, while in [2] a related symmetric matrix is used. However, the eigenvalues
of the different definitions differ by at most a simple transformation.

For convenience in describing the eigenfunctions, we use the following definition of the
Laplacian: the Laplacian LG of a graph G (which may have multiple edges but with no
loops) is a |V (G)| × |V (G)| matrix with, for a vertex i ∈ V (G), LG(i, i) = 1, and, for
i, j ∈ V (G) with i �= j, LG(i, j) = −ei,j/δi, where ei,j is the number of edges linking
i and j in G and δi is the degree of vertex i in G. This gives the same eigenvalues
as the symmetric Laplacian described in [2], and the eigenfunctions are the ‘harmonic
eigenfunctions’ described in [2]. Our definition of the graph Laplacian differs from that
in [7] only in that the sign of each entry (and hence of the eigenvalues) is reversed.

2. The relationship between the eigenvalues

We set f(µ) = 9(µ − 1)4 − 9(µ − 1)2 + 2, so that (1.2) becomes

2(1 − λ)2 = 9(µ − 1)4 − 9(µ − 1)2 + 2. (2.1)

We first show how to construct eigenvalues µ of LGn+1 from eigenvalues λ of LGn
when

λ /∈ {0, 1, 2}.
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Given λ and µ, we set

γ =
3(µ − 1)2 − 2

1 − λ
. (2.2)

Theorem 2.1. Given an eigenfunction x of LGn with eigenvalue λ /∈ {0, 1, 2}, we can
do the following.

(i) Solve (2.1) for µ to obtain four roots.

(ii) For each possible µ, set γ using (2.2).

(iii) Then define x′ by

x′
i =

{
xi i ∈ V (Gn−1),

γxi i ∈ V (Gn) \ V (Gn−1),
(2.3)

and, for a vertex k = k(e) ∈ V (Gn+1) \ V (Gn), we set

x′
k =

2xi(e)

3(1 − µ)
+

γxj(e)

3(1 − µ)
. (2.4)

Then x′ is an eigenfunction of LGn+1 with eigenvalue µ.

Proof. To check this, we just calculate LGn+1x
′. For i ∈ V (Gn−1),

(LGn+1x
′)i = xi +

1

δ
(n)
i

∑
e∈E

(n)
i

(
2xi

3(µ − 1)
+

γxj(e)

3(µ − 1)

)

= xi +
2xi

3(µ − 1)
+

γxi(1 − λ)
3(µ − 1)

= xi

(
3(µ − 1) + 2 + 3(µ − 1)2 − 2

3(µ − 1)

)
= µxi = µx′

i.

For j ∈ V (Gn) \ V (Gn−1),

(LGn+1x
′)j = γxj +

1

δ
(n)
j

∑
e∈E

(n)
j

(
2xi(e)

3(µ − 1)
+

γxj

3(µ − 1)

)

= γxj +
γxj

3(µ − 1)
+

2xj(1 − λ)
3(µ − 1)

= xj

(
3(µ − 1)γ + γ + 2(1 − λ)

3(µ − 1)

)
.

Using (2.1) and (2.2),

2(1 − λ) =
9(µ − 1)4 − 9(µ − 1)2 + 2

1 − λ

=
(3(µ − 1)2 − 1)(3(µ − 1)2 − 2)

1 − λ

= (3(µ − 1)2 − 1)γ,
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and so

(LGn+1x
′)j = xjγ

(
3(µ − 1) + 1 + 3(µ − 1)2 − 1

3(µ − 1)

)
= µγxj

= µx′
j ,

and, finally, for k ∈ j ∈ V (Gn) \ V (Gn−1), which satisfies k = k(e) for some edge e of
Gn, we have

(LGn+1x
′)k = x′

k − 2
3x′

i(e) − 1
3x′

j(e)

=
(

1
1 − µ

− 1
)

( 2
3xi + 1

3γxj)

= µ

(
2xi

3(1 − µ)
+

γxj

3(1 − µ)

)
= µx′

k,

so x′ is indeed an eigenfunction of LGn+1 with eigenvalue µ. �

Theorem 2.2. If

µ /∈
{

1, 1 +
√

2
3 , 1 −

√
2
3 , 1 +

√
1
3 , 1 −

√
1
3

}

and λ and µ satisfy (2.1), then µ is an eigenvalue of Gn+1 if and only if λ is an eigenvalue
of Gn, with the same multiplicity.

Proof. If we have an eigenfunction x′ of LGn+1 with eigenvalue µ �= 1, then, for each
edge e of Gn+1,

x′
k(e) =

2x′
i(e)

3(1 − µ)
+

x′
j(e)

3(1 − µ)
,

so that, for each i ∈ V (Gn−1),

x′
i(1 − µ) =

1

δ
(n)
i

∑
e∈E

(n)
i

(
2x′

i

3(1 − µ)
+

x′
j(e)

3(1 − µ)

)

=
2x′

i

3(1 − µ)
+

1

δ
(n)
i

∑
e∈E

(n)
i

x′
j(e)

3(1 − µ)
,

giving

x′
i(3(1 − µ)2 − 2) =

1

δ
(n)
i

∑
e∈E

(n)
i

x′
j(e). (2.5)
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Similarly, for j ∈ V (Gn) \ V (Gn−1),

x′
j(1 − µ) =

1

δ
(n)
j

∑
e∈E

(n)
j

(
x′

j

3(1 − µ)
+

2x′
i(e)

3(1 − µ)

)

=
x′

j

3(1 − µ)
+

1

δ
(n)
j

∑
e∈E

(n)
j

2x′
i(e)

3(1 − µ)
,

giving

x′
j(3(1 − µ)2 − 1) =

1

δ
(n)
j

∑
e∈E

(n)
j

x′
i(e). (2.6)

By the conditions of the theorem, (1 − µ)2 �= 2
3 . Then (2.5) implies that, for any λ,

x′
i(1 − λ) =

1

δ
(n)
i

∑
e∈E

(n)
i

1 − λ

3(1 − µ)2 − 2
x′

j(e), (2.7)

while (2.6) gives, if λ �= 1,

1 − λ

3(1 − µ)2 − 2x′
j

(3(1 − µ)2 − 2)(3(1 − µ)2 − 1)
2(1 − λ)

=
1

δ
(n)
j

∑
e∈E

(n)
j

x′
i(e). (2.8)

Then, if we set xi = x′
i for i ∈ V (Gn−1) and

xj = x′
j

1 − λ

3(1 − µ)2 − 2
,

(2.7) and (2.8) become

xi(1 − λ) =
1

δ
(n)
i

∑
e∈E

(n)
i

xj(e)

and

xj
(3(1 − µ)2 − 2)(3(1 − µ)2 − 1)

2(1 − λ)
=

1

δ
(n)
j

∑
e∈E

(n)
j

xi(e),

which imply that x is an eigenfunction of LGn with eigenvalue λ if

(1 − λ) =
(3(1 − µ)2 − 2)(3(1 − µ)2 − 1)

2(1 − λ)
,

which is equivalent to the quartic (2.1).
This eigenfunction can be degenerate only if 1 − λ = 0, i.e. if either (1 − µ)2 = 1

3 or
(1 − µ)2 = 2

3 . �
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The set {
1, 1 +

√
2
3 , 1 −

√
2
3 , 1 +

√
1
3 , 1 −

√
1
3

}
of values of µ where Theorem 2.2 does not apply plays a similar role to that of the
exceptional set in [7].

We note that the eigenvalues λ and 2−λ produce the same values of µ, with the same
eigenfunctions. This is related to the bipartite nature of the graph; in fact, if x is an
eigenfunction with eigenvalue λ, then, following [2], we can obtain an eigenfunction with
eigenvalue 2−λ by simply changing the sign of x on V (Gn)\V (Gn−1). These two eigen-
functions will then produce the same new eigenfunction using the above construction.

We now consider the cases when Theorems 2.1 and 2.2 do not apply, i.e. when λ ∈
{0, 1, 2} or

µ ∈
{

1, 1 +
√

2
3 , 1 −

√
2
3 , 1 +

√
1
3 , 1 −

√
1
3

}
.

We note that if µ = 1 and λ and µ satisfy (2.1), then λ = 0 or 2.
When λ = 1 and xi �= 0 for some i ∈ V (Gn−1), we use the same method, but with

γ = 0 and the quartic (2.1) replaced by

(µ − 1)2 = 2
3 . (2.9)

We cannot use this method if xi = 0 for all i ∈ V (Gn−1), because the constructed
eigenfunction would be zero everywhere.

However, in the case where λ = 1 and xi = 0 for all i ∈ V (Gn−1), we can construct an
eigenfunction x′ by setting x′

i = 0 for i ∈ V (Gn−1), and x′
i = xi for i ∈ V (Gn)\V (Gn−1).

This gives eigenvalues µ with
(µ − 1)2 = 1

3 , (2.10)

using similar methods to those above.

3. Dirichlet–Neumann and non-Dirichlet–Neumann eigenfunctions

The graph Gn has vn vertices and en edges where v0 = 2, e0 = 1 and en = 3en−1,
vn = vn−1 + en−1. Hence en = 3n and vn = 1

2 (3n + 3).
The following lemma provides a means of constructing Dirichlet–Neumann eigenfunc-

tions, which are zero on the two boundary vertices 1 and 2.

Lemma 3.1. Let Γ0 be a connected graph with m vertices, including distinguished
endpoints 1 and 2, and let Γ be the graph formed by defining Γ1 and Γ2 to be two
identical copies of Γ0 and connecting them in parallel by identifying their endpoints.
Then the Laplacian of Γ has m − 2 linearly independent eigenfunctions which are zero
on the endpoints.

The associated eigenvalues are the eigenvalues of the Laplacian LΓ restricted to the
set {2j : 2 � j � m − 1} of vertices in Γ2.

Proof. We label the vertices of Γ0, 1, 2, . . . , m. Then we label the vertices in Γ so
that, for j � 3, vertex j in Γ0 corresponds to vertex 2j − 3 in Γ1 and vertex 2j − 2 in Γ2.
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Now consider the Laplacian LΓ . For 2 � j, k � m − 1 we have

LΓ (1, 2j − 1) = LΓ (1, 2j),

LΓ (2, 2j − 1) = LΓ (2, 2j),

LΓ (2j − 1, 2k − 1) = LΓ (2j, 2k),

LΓ (2j − 1, 2k) = LΓ (2j, 2k − 1) = 0

and consider functions x satisfying

x(1) = x(2) = 0,

x(2j − 1) = −x(2j) for 2 � j � m − 1.

Now

(LΓ x)(1) =
m−1∑
j=2

(LΓ (1, 2j − 1)x(2j − 1) + LΓ (1, 2j)x(2j)) = 0

and, similarly, (LΓ x)(2) = 0, while

(LΓ x)(2j − 1) =
m−1∑
k=2

LΓ (2j − 1, 2k − 1)x(2k − 1)

= −
m−1∑
k=2

LΓ (2j, 2k)x(2k) = (LΓ x)(2j).

So the Laplacian LΓ preserves vectors of this form, which form a vector space of dimension
m − 2, and it acts on them in a similar way to the Laplacian restricted to the interior
vertices of Γ0. As the Laplacian is symmetric, there are m − 2 linearly independent
Dirichlet–Neumann eigenfunctions of the Laplacian. �

If Gn contains a subgraph Γ of this form, where the vertices of Γ other than the
endpoints have no edges linking them to Gn\Γ , then we can take one of the eigenfunctions
x on Γ constructed by the above lemma and extend it to an eigenfunction x̃ on Gn by
setting

x̃(v) =

{
x(v) for v ∈ V (Γ ),

0 otherwise.

If neither of the endpoints 1 or 2 is in the interior of the subgraph Γ , then this x̃ will be
Dirichlet–Neumann.

Proposition 3.2. The graph Gn has at least 1
2 (3n + 3) − 2n − 1 linearly independent

Dirichlet–Neumann eigenvalues.

Proof. The model graph contains parallel edges, so Gn contains a subgraph consisting
of two copies of Gn−1 with their boundary points identified as in Lemma 3.1. This gives
vn−1 − 2 eigenfunctions. For each eigenfunction x obtained thus, we have x(f1(v)) =
−x(f2(v)) and x(f3(v)) = 0 for each v ∈ V (Gn−1).
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Furthermore, given a Dirichlet–Neumann eigenfunction x of Gn−1, we can obtain three
Dirichlet–Neumann eigenfunctions x1, x2, x3 of Gn by extending them from (n − 1)-cells
to the whole graph, i.e.

xi(fj(v)) = δijx(v) for all v ∈ V (Gn−1), i, j = 1, 2, 3.

However, we only obtain two linearly independent eigenfunctions, because the linear
combination x1 − x2 is of the form obtained using Lemma 3.1.

Hence, if ln is the number of Dirichlet–Neumann eigenvalues constructed by these
methods, it satisfies

ln = 2ln + 1
2 (3n−1 + 3) − 2

and l2 = 1, which gives the result. �

Let the total number of Dirichlet–Neumann eigenfunctions of Gn be ln + l̂n, so that
l̂n is the number of eigenfunctions that are not constructed by the methods of Proposi-
tion 3.2.

For this graph, we can also describe a set of non-Dirichlet–Neumann eigenfunctions.

Proposition 3.3. The graph Gn has 2n + 1 linearly independent eigenfunctions which
are not Dirichlet–Neumann.

Proof. We consider the set of functions x on V (G1) which are zero on the central
vertex of V (G1), i.e. they satisfy x(3) = 0 and, for each v ∈ V (Gn−1), x(f1(v)) =
x(f2(v)) = 1

2x(f3(v)); these form a (vn−1 − 1)-dimensional subspace. This is preserved
by the Laplacian of Gn, so we can find vn−1 − 1 = 1

2 (3n−1 + 1) linearly independent
eigenfunctions satisfying these properties.

To exclude those which are Dirichlet–Neumann, this is equivalent to the condition
that x(1) = x(2) = 0. So a Dirichlet–Neumann eigenfunction satisfying the above condi-
tions reduces to a Dirichlet–Neumann eigenfunction on each (n − 1)-cell. Hence there are
1
2 (3n−1 + 1) − ln−1 − l̂n−1 = 2n−1 − l̂n−1 non-Dirichlet–Neumann eigenfunctions satisfy-
ing the above conditions.

Now, given any eigenfunction x of Gn−1, we can extend it to an eigenfunction x′ of
Gn by setting x′(1) =

√
2x(1), x′(2) = x(1), x′(3) =

√
3x(2), x′(f1(v)) = x′(f2(v)) =

x′(f3(v)) = x(v) for v � 3, from the structure of the graph. This means that each of
the eigenfunctions constructed in Proposition 3.3 for Gn−1 can be extended to a non-
Dirichlet–Neumann eigenfunction of Gn, which will be linearly independent of those
already found (because x′(3) �= 0). Inductively, this also applies to those constructed for
Gn−m, m > 1.

The graphs are bipartite, so eigenfunctions (which are zero nowhere) for eigenvalues 0
and 2 exist as described in [2].

Hence the total number of linearly independent non-Dirichlet–Neumann eigenfunctions
is at least 2n + 1 −

∑n−1
m=0 l̂n. But we know that there are exactly 1

2 (3n + 3) linearly
independent eigenfunctions. Hence

1
2 (3n + 3) � 2n + 1 −

n−1∑
m=0

l̂m + 1
2 (3n + 3) − 2n − 1 + l̂n
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and so l̂n �
∑n−1

m=0 l̂m. But l̂m = 0 for m � 2, and hence for all m.
Hence the eigenfunctions constructed are all that exist, and there are 2n + 1 linearly

independent non-Dirichlet–Neumann ones, the remainder being Dirichlet–Neumann. �

4. The spectra of the graphs

We can now use the relationships between eigenvalues and the information on Dirichlet–
Neumann and non-Dirichlet–Neumann eigenfunctions to obtain a complete description
of the spectra of the graphs Gn.

Theorem 4.1. Set

α
(1)
1 = 1, α

(2)
1 = 1 −

√
2
3 and α

(2)
2 = 1 +

√
2
3 .

We extend this to define
{α

(n)
i ; 1 � i � 2n−1}

to be the 2n−1 values µ satisfying the quartic (2.1), with λ = α
(n−1)
j for some j.

Similarly, set

β
(1)
1 = 1, β

(2)
1 = 1 −

√
1
3 and β

(2)
2 = 1 +

√
1
3 .

We extend this to define
{β

(n)
i ; 1 � i � 2n−1}

to be the 2n−1 values µ satisfying the quartic (2.1), with λ = β
(n−1)
j for some j.

Then we have the following.

(a) If n � m, then LGn has a non-Dirichlet–Neumann eigenfunction with eigenvalue
α

(m)
i , 1 � i � 2m−1. Together with eigenfunctions with eigenvalues 0 and 2, this

describes the non-Dirichlet–Neumann spectrum of LGn .

(b) If n � m + 1, then LGn
has 1

2 (3n−m − 1) linearly independent Dirichlet–Neumann
eigenvalues with eigenvalue β

(m)
i , for 1 � i � 2m−1.

Proof. We note that G1 has a non-Dirichlet–Neumann eigenfunction with eigen-
value 1. As described in the proof of Proposition 3.3, this can then be extended to
give a non-Dirichlet–Neumann eigenfunction x with eigenvalue 1 for each Gn, n � 1.

Because this eigenfunction is non-Dirichlet–Neumann, it has xi �= 0 for at least some
i ∈ V (Gn−1). Hence the construction of eigenfunctions of Gn+1 with eigenvalues µ satis-
fying (1−µ)2 = 2

3 produces non-degenerate eigenfunctions, which are also non-Dirichlet–
Neumann. So Gn+1 has non-Dirichlet–Neumann eigenfunctions with eigenvalues

1 ±
√

2
3 .

We have already shown that Gn has a non-Dirichlet–Neumann eigenfunction with
eigenvalue α

(2)
i , 1 � i � 2n−1, for n � 2. Now, if Gn−1 has a non-Dirichlet–Neumann
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eigenfunction with eigenvalue α
(m−1)
i for each 1 � i � 2m−2, then the construction of

eigenfunctions gives us a non-Dirichlet–Neumann eigenfunction of Gn with eigenvalue
α

(m)
i for each 1 � i � 2m−1. Using this inductively, we find that Gn has a non-Dirichlet–

Neumann eigenfunction with eigenvalue α
(m)
i , 1 � i � 2m−1, for n � m.

Along with the eigenfunctions with eigenvalues 0 and 2, this gives us all 2n + 1 non-
Dirichlet–Neumann eigenfunctions from Proposition 3.3, and hence completes the proof
of (a).

We now consider the Dirichlet–Neumann eigenfunctions. We note that G2 has a
Dirichlet–Neumann eigenfunction with eigenvalue 1. Such an eigenfunction is zero on
V (G1), so our main construction produces a degenerate eigenfunction. However, the alter-
native construction with (1 − µ)2 = 1

3 does produce two eigenfunctions of G3. Hence,
as there are 1

2 (3n + 3) − 2n − 1 Dirichlet–Neumann eigenfunctions of Gn, we can use
the constructions to obtain 3n + 3 − 2n+1 − 2 Dirichlet–Neumann eigenfunctions, with
eigenvalues other than 1, of Gn+1.

We now show that, for n � 2, Gn has 1
2 (3n−1 − 1) linearly independent Dirichlet–

Neumann eigenfunctions with eigenvalue 1. This is the case for n = 2. For each such
eigenfunction of Gn, we can construct three eigenfunctions of Gn+1 using the methods
in the proof of Proposition 3.2.

Assuming that Gn has 1
2 (3n + 3) − 2n − 1 linearly independent Dirichlet–Neumann

eigenfunctions of which 1
2 (3n−1 − 1) have eigenvalue 1, we have 1

2 (3n − 3) linearly inde-
pendent Dirichlet–Neumann eigenfunctions of Gn+1 with eigenvalue 1, and 3n + 3 −
2n+1 − 2 with other eigenvalues. However, we know from Proposition 3.2 that there are
1
2 (3n+1 + 3) − 2n+1 − 1 in total, and

1
2 (3n − 3) + 3n + 3 − 2n+1 − 2 = 1

2 (3n+1 + 3) − 2n+1 − 2.

The one unexplained eigenfunction must also have eigenvalue 1 because, if it had
eigenvalue λ �= 1, we would also have an unexplained eigenfunction with eigenvalue
2 − λ. Hence we have 1

2 (3n − 1) linearly independent Dirichlet–Neumann eigenfunctions
of Gn+1 with eigenvalue 1, giving the result by induction.

We know that, for n � 2, Gn has 1
2 (3n−1 −1) linearly independent Dirichlet–Neumann

eigenfunctions with eigenvalue 1. We now use our constructions m times to show that, for
n � m + 1, Gn has 1

2 (3n−m −1) linearly independent Dirichlet–Neumann eigenfunctions
with eigenvalue β

(m)
i , for 1 � i � 2m−1. This completes the proof of (b). �

5. Reversing the orientation

We remark that very similar results can be obtained if we reverse the orientation of the
model graphs in the definitions of § 1.2. Because of the asymmetry this gives a different
self-similar sequence of graphs. Eigenvalues λ and µ of Laplacians of successive members
of the sequence are related by the same equation (2.1) when λ /∈ {0, 1, 2}, but the two
equations (2.9) and (2.10) for µ when λ = 1 are reversed. This has the effect that, in
Theorem 4.1, the roles of α

(n)
i and β

(n)
i are reversed.
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