THE MARKOFF SPECTRUM OF AN ALGEBRAIC NUMBER FIELD

A. C. WOODS
To Kurt Mahler on his seventy-fifth birthday

(Received 4 January 1978)
Communicated by J. H. Coates

Abstract

The Markoff spectrum of an algebraic number field is defined and it is proved that the spectrum of $Q(\sqrt{5})$ is not discrete.

Subject classification (Amer. Math. Soc. (MOS) 1970): 12 A 25

Let K be a finite extension of the rational numbers \mathbf{Q} find let M be a full module of K. Further, denote by $n(M)$ the least value of $|N(m)|$ as m runs over all nonzero elements of M and by $D(M)$ the discriminant of M. Put

$$
\mu(M)=n(M) / \sqrt{ }(|D(M)|)
$$

The number $\mu(M)$ is an invariant of the similarity class of modules containing M. In analogy to the Markoff spectrum of real indefinite quadratic forms the set of such numbers $\mu(M)$ is called the Markoff spectrum of K. The first question concerning this set of numbers is whether it possesses any finite limit points. Here we prove the following:

Theorem. The Markoff spectrum of $\mathbf{Q}(\sqrt{5})$ has at least one limit point.
Proof. Let $u_{0}=1, u_{1}=1$ and, in general, $u_{n+2}=u_{n+1}+u_{n}, n \geqslant 0$, be the Fibonacci numbers. Denote by L_{n} the sublattice of L of basis

$$
\left(u_{n}, u_{n}\right),\left(\left(2 u_{n-1}+u_{n}\right) w,\left(2 u_{n-1}+u_{n}\right) w^{\prime}\right) .
$$

It suffices to prove $m\left(L_{n}\right)=u_{n}^{2}$, for $n \geqslant 3$, as in this case, since
it follows that

$$
d\left(L_{n}\right)=u_{n}\left(2 u_{n-1}+u_{n}\right) \sqrt{5}
$$

$$
\mu\left(L_{n}\right)=1 /\left(2\left(u_{n-1} / u_{n}\right)+1\right) \sqrt{5}>1 / 3 \sqrt{ } 5
$$

Since the ratios u_{n-1} / u_{n} are all distinct, the theorem follows.
It remains to show $m\left(L_{n}\right)=u_{n}^{2}$ for $n \geqslant 3$. In fact this is also true when $n=1,2$ but we do not need this.

The values taken by the quadratic form

$$
\begin{aligned}
F_{n}(x, y) & =\left(u_{n} x+w\left(2 u_{n-1}+u_{n}\right) y\right)\left(u_{n} x+w^{\prime}\left(2 u_{n-1}+u_{n}\right) y\right) \\
& =u_{n}^{2} x^{2}+\left(u_{n}^{2}+2 u_{n-1} u_{n}\right) x y-\left(2 u_{n-1}+u_{n}\right)^{2} y^{2},
\end{aligned}
$$

as (x, y) ranges over all pairs of rational integers other than $(0,0)$, are precisely the values of $x_{1} x_{2}$ as (x_{1}, x_{2}) ranges over all points of L_{n} other than 0 . Hence it suffices to show that the minimal value of $\left|F_{n}(x, y)\right|$ is u_{n}^{2} when (x, y) ranges over all pairs of rational integers other than $(0,0)$. We use the classical theory of reduction of binary indefinite quadratic forms to complete the proof, see for example Dickson (1930).

The standard notation for continued fractions is employed, so that (a_{1}, \ldots, a_{m}) denotes the simple continued fraction

$$
a_{1}+1 /\left(a_{2}+1 /\left(a_{3}+\ldots+1 / a_{n}\right) \ldots\right)
$$

of finite length, whereas ($a_{1}, \overline{a_{2}, \ldots, a_{n}}$) denotes the simple continued fraction of infinite length obtained when the block a_{2}, \ldots, a_{n} is repeated a countable number of times.

Lemma. For $n \geqslant 1$, if $\theta=(1, \overline{2,1, \ldots, 1,3,1, \ldots, 1,4})$ then θ is a root of $F_{n+2}(x, 1)$.
Proof. All rational numbers appearing in this proof will be in lowest terms.
For $n \geqslant 1$, we have $(\leftarrow, \ldots, 1)=u_{n} / u_{n-1}$, and so

$$
\begin{aligned}
& (\stackrel{\leftarrow}{1, \ldots, \overrightarrow{1}, 4})=\left(4 u_{n}+u_{n-1}\right) /\left(u_{n}+3 u_{n-1}\right) \\
& \left(\stackrel{\leftarrow-1, \overrightarrow{1}, 3)=\left(u_{n}+2 u_{n-1}\right) /\left(2 u_{n}-u_{n-1}\right)}{ } .\right.
\end{aligned}
$$

and therefore also

$$
z=(\stackrel{\leftarrow}{1}, \ldots, 1,3, \leftarrow, \stackrel{n}{1}, \ldots, 1,4)=\left(4 u_{n}^{2}+10 u_{n} u_{n-1}+5 u_{n-1}^{2}\right) /\left(9 u_{n}^{2}-4 u_{n-1}^{2}\right)
$$

Hence

$$
\begin{aligned}
(2, z) & =\left(17 u_{n}^{2}+20 u_{n} u_{n-1}+6 u_{n-1}^{2}\right) /\left(4 u_{n}^{2}+10 u_{n} u_{n-1}+5 u_{n-1}^{2}\right) \\
& =\left(3 u_{n+2}^{2}+2 u_{n+2} u_{n+1}+u_{n+1}^{2}\right) /\left(4 u_{n+1}^{2}+2 u_{n+1} u_{n+2}-u_{n+2}^{2}\right)
\end{aligned}
$$

Next,

$$
\begin{aligned}
w & =(\stackrel{\leftarrow-1, \ldots, 1,3, \stackrel{n \longrightarrow}{\stackrel{n}{1}, \ldots, 1})}{ } \\
& =\left(u_{n}^{2}+2 u_{n} u_{n-1}+u_{n-1}^{2}\right) /\left(2 u_{n}^{2}-u_{n-1}^{2}\right)
\end{aligned}
$$

and so,

$$
(2, w)=u_{n+2}^{2} / u_{n+1}^{2}
$$

Hence, if $\psi=(2, z, \psi)$ then ψ satisfies the equation

$$
\psi=\frac{\left(3 u_{n+2}^{2}+2 u_{n+2} u_{n+1}+u_{n+1}^{2}\right) \psi+u_{n+2}^{2}}{\left(4 u_{n+1}^{2}+2 u_{n+1} u_{n+2}-u_{n+2}^{2}\right) \psi+u_{n+1}^{2}}
$$

and therefore also $\theta=1+1 / \psi$ satisfies $F_{n+2}(\theta, 1)=0$, which proves the lemma.
It now follows that the ordered set of integers

$$
2,1, \ldots, 1,3,1, \ldots, 1,4
$$

is a period of the form $F_{n+2}(x, y)$. Hence, applying the classical theory of reduction of indefinite binary quadratic forms, see for example Dickson (1930), it is easy to see that the required minimum value of $F_{n+2}(x, y)$ is attained for $(x, y)=(p, q)$ where p and q are relatively prime integers for which

$$
p / q=(1,2,1, \ldots, 1,3,1, \ldots, 1) .
$$

As $p / q=(1,2, w)=\left(u_{n+2}^{2}+u_{n+1}^{2}\right) / u_{n+2}^{2}$, so the required minimum value is

$$
\left|F_{n+2}\left(u_{n+2}^{2}+u_{n+1}^{2}, u_{n+2}^{2}\right)\right|=u_{n+2}^{2}
$$

since

$$
u_{n+2}^{2}+2 u_{n+2} u_{n+1}-u_{n+1}^{2}=(-1)^{n}
$$

This completes the proof of the theorem.

References

J. W. S. Cassels and H. P. F. Swinnerton-Dyer (1955), "On the product of three homogeneous linear forms and indefinite ternary quadratic forms", Phil. Trans. Royal Soc. London A 248, 73-96.
L. G. Dickson (1930), Studies in the Theory of Numbers (University of Chicago Press).
H. P. F. Swinnerton-Dyer (1971), "On the product of three homogeneous linear forms", Acta Arith. 18, 371-385.

The Ohio State University

Columbus, Ohio
USA

