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THE COMPLETE QUOTIENT RING OF IMAGES OF 
SEMILOCAL PRUFER DOMAINS 

JOHN CHUCHEL AND NORMAN EGGERT 

Introduction. It is well known that the complete quotient ring of a 
Noetherian ring coincides with its classical quotient ring, as shown in Akiba 
[1]. But in general, the structure of the complete quotient ring of a given ring 
is largely unknown. This paper investigates the structure of the complete 
quotient ring of certain Prùfer rings. Boisen and Larsen [2] considered condi
tions under which a Prùfer ring is a homomorphic image of a Prùfer domain 
and the properties inherited from the domain. We restrict our investigation 
primarily to homomorphic images of semilocal Prùfer domains. We characterize 
the complete quotient ring of a semilocal Prùfer domain in terms of complete 
quotient rings of local rings and a completion of a topological ring. Further, 
if the kernel of the homomorphism has an irredundant primary decomposition, 
we characterize the elements of the complete quotient ring. 

Throughout the paper, all rings are commutative and have identity 1. If 5 
is a multiplicatively closed set in a ring R, we let Rs be a ring of quotients of R. 
For S the set of regular elements of R, Rs is QC\(R), the classical quotient ring 
of R. If S is the complement of a prime ideal P of R, Rs is also written as RP} 

the localization of R to P. Among the conditions which are equivalent to R 
being a Prùfer domain, one which we will find particularly useful is: 

A domain R is Prùfer if and only if for every proper prime ideal P of R} the 
localization RP is a valuation ring (Theorem 22.1, (1), p. 276, Gilmer [5]). 

An ideal A in a commutative ring R is dense if rA = 0 implies r = 0 for all 
r £ R. It follows immediately that the finite intersection of dense ideals is 
dense. The notation of Lambek [6] is used in the discussion of complete quotient 
rings. If R is a ring, then Q(R) denotes the complete quotient ring of R. For 
/ G Q(R) we define the domain of / or domRf to be R:Rf, a dense ideal in R. 
We will write dom / for domRf provided that R is clearly specified. If R is an 
arbitrary commutative ring, then R C Qcl(R) Ç Q(R). 

Let Ai, . . . , An be primary ideals of a ring R and let Pt = \Œ], i = 1, . . . , 
n. A representation A = H A t of an ideal A is said to be an irredundant 
primary decomposition if: 

(i) No A f contains the intersection of the other primary ideals, and 
(ii) Pt 9* Pjîori 9*j. 
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If x G R, we will write x as the image of x under the canonical map R —> 
R/A. Let R be an integral domain. For the monomorphism R —> i?P, e and c 
will represent the extension and contraction, respectively, of ideals; namely 
Ie = IRP and Jc = JC\R. 

1. Semilocal Priifer domains. Let R be a semilocal Priifer domain and 
let T be an ideal of R. Let rj be the epimorphism of R onto R/T. Let 5 = 
{x G P|??(x) is a regular element of R/T). By Theorem 2 in [2], 77 can be 
extended to an epimorphism \x from Rs to QcX{R/T). The ring of quotients 
D = Rs is an integral domain satisfying the following properties, where A = 
TRS: 

(i) D is a semilocal Priifer domain, 
(ii) A is an ideal of D where D/A is its own classical quotient ring Qci(D/A), 

and 
(iii) x is not a unit of D if and only if x is a zero divisor in D/A. 
In the following we assume that the integral domain D and ideal A satisfy 

the above three properties. 
Notice that R need not be semilocal in order that Rs be semilocal. If R is a 

Priifer domain and T has an irredundant primary decomposition Pi TP with 
P = \fT~p, then Rs is semilocal where 5 = R\\J P, and Rs, TRs satisfy the 
three conditions. 

Let the set of maximal ideals of D be denoted by A. We will establish that 
there is a unique smallest dense ideal in D/A. 

We let vP denote the valuation associated with the maximal ideal P of D. 

THEOREM 1.1. For each maximal ideal P G A there is a prime ideal P* Ç^ P 
such that whenever xP G D\P*, P G A , then there exists x G D such that vP(x) = 
Vp(xP) for all P G A . 

Proof. Suppose for each P G A there is a yP G P, but yP is not in any other 
maximal ideal of D. We define 

P* = {x G D\vP(x) > m - vP(yP) for all m G Z+}. 

For each P G A , choose xP G D\P*. Then there is an m G Z+ , independent of 
P , such that m • vP(yP) > vP{xP). Let zP = Il/yp'm, where the product is over 
all maximal ideals but P . Then for maximal ideals Pf ^ P, we have zP G 
P'\P; further, vP(zP) — 0 and Vp>{zP) = vP>(yP>m) > vP'(xP>). Let x = 
J^ XpZp, where the sum is over all maximal ideals. Since vP{xP>zP>) > vP(xP) 
for P 9^ P' and vP{xPzP) = vP(xP), we have vP(x) = vP(xP). The existence of 
the yP's follows since the elements in A are maximal ideals. For maximal ideals 
P 5* P', let yPP. G P\Pf. Define yP by: 

Jp = Z ( I l 3W') • 

Then 3>P is in P , but in no other maximal ideals. 
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916 J. CHUCHEL AND N. EGGERT 

For a maximal ideal P , if the ideal Aec is not P-primary, then \/Aec is a 
prime ideal properly contained in P , and the prime ideal P* of the theorem can 
be chosen to contain V' Aec. 

Let B be an ideal of D containing A. Then B is a dense ideal of D if and 
only il A: B = A.U B Isa, dense ideal of D, we say that the ideal B is A -dense 
of D. We note that there are no proper principal A -dense ideals of D. 

LEMMA 1.2. Let B be an A-dense ideal of D and let AB be the set of maximal 
ideals of D which contain B. Then B = \/B = O AB. 

Proof. Let Po be a prime ideal containing B. Then there is an ideal P Ç AB 

Ç A which contains P0 . Suppose x £ P\PQ and thus x £? B. By Theorem 1.1 
there is a w G D such that vP(x) ^ vP(w) > 0 and vP>(w) = 0 for P ' Ç A and 
P ' 7e P . Since the ideals of Z)P' are linearly ordered, PP>P/ C wDP/ = DP/ for 
P ' ^ P and P P P C P 0 P> P C WDP ^ DP. Thus B = HA Be Q DA wDe = 
wD 9e D. But since B is A -dense, so is wD, a contradiction. Thus P 0 = P is a 
maximal ideal. 

If P Ç A5 and BDP C\ D ^ P , then by Theorem 1.1, there is a y G P \ P ' 
for P ' U and P' ^ P, and y € P \ P D P . Again P = HA P e c Ç HA ;yP>e -
yD. Thus yD is ̂ 4-dense, a contradiction. For P G AB, we have BDP C\ D = P , 
and for P ç A\AB, we have PDP C\ D = D. Thus all primes containing a 
dense ideal P are maximal and B = OA Bec = P|AB P

e c = ^ AB. 

We now fix P by letting P be the intersection of all A -dense ideals P of A. 
Since A is a finite set, B is a dense ideal in D. 

COROLLARY 1.3. The ideal B is the unique smallest A-dense ideal of D. Further
more Q(D) = Horns (B,B). 

Proof. By Lemma 1.2, B is the smallest 4̂ -dense ideal of D and by Corollary 
3, page 97, Lambek [6], the complete quotient ring of D is Horns (P, B). 

Next we relate the complete quotient ring of a homomorphic image of a 
semilocal Prufer domain to a certain product of complete quotient rings of 
homomorphic images of valuation domains. 

LEMMA 1.4. Let V be a valuation domain with maximal ideal P and suppose 
that A is an ideal of V such that Qcl(V/A) = V/A. Then P is not A-dense if 
and only if there exists a y £ V\A such that A = yP = j x ^ D\v(x) > v(y)}. 

Remark. If P is ^4-dense, then Q(V) = Homy(P, P ) , whereas if P is not 
A -dense, then Q(V) = Qa(V) = V. 

Proof. The property that P is not A -dense is equivalent to the existence of 
a y G V where y G (A : P)V4. Since the ideals of V are linearly ordered, we 
have that A Ç yV. But yP CL A and since P is a maximal ideal of V, there 
are no ideals properly between yP and yV. Thus 4̂ = yP = {x G P|^(x) > 
v(y)}. 
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We next consider a necessary condition for a prime ideal of A to be A -dense. 
First suppose tha t P G A and P2 ^ P. Then, for some x G D, x G P\P2. By 
Theorem 1.1 we may assume tha t vP> (x) — 0 for P' G A, P' ^ P, and ^ P (x) > 
0. Thus xDP, = P>P> = PP>P> for P ' ^ P and xDP = PDP. Hence xD = 
O A xD e = P . If P is .4-dense, then x is a unit, contrary to x G P . Thus , in 
order t ha t P in A be A -dense, we must have P = P 2 . Of course, P need not 
be yl-dense even though P = P2. 

Suppose tha t P G A is A -dense, but PDP is not ^4P>P-dense in DP. By 
Lemma 1.4 there is a w G P such tha t ^4P>P = wPDP = \y G P>P|^(;y) > z>(w)} 
and ^4DP is a proper subset of wDP = ^4DP : PDP. We denote by 4^ p ) the 
ideal ADP : PP>P of P>P. Note tha t A^ : PDP = (ADP : PDP) : PDP = 
-4 ( P ) and thus PP>P is an A(P) -dense ideal of DP. 

If P G A implies tha t both P is A -dense and PDP is AD P-dense, we again 
define A^ = ,4P>P : PDP, bu t now ,4 ( P ) = ,4P>P. If P G A is not A -dense, 
leti4<p> = AD P. 

For P G A let Q(P) be the complete ring of quotients of DP/A(P). T h u s if 
P G A we have the following possibilities: 

(i) P G A and P is ^ -dense . Then PDP is ,4 ( P ) = ,4P>P : PP>P-dense and 
the complete ring of quotients of DP/A(P) is Q(P) = Horn (PDP/A{P\ 

PDP/A{P)), as given by the remark after Lemma 1.4. 
(ii) P G A and P is not A -dense. Then A^P) = ADP and PDP could be 

.4 ( P )-dense. In this case we are more concerned with the factor ring 
DP/A{P) than with the quotient ring Q (P). 

LEMMA 1.5.-4 = H A A(PK 

Proof. Since ADP C A(P), we have A C H A ̂ 4 (P). Conversely, suppose x G 
(f)A^4 ( P ))V4. Let A' = {P G A|z G i ( P ) \ i D p ) . Since HA-4P> P = A, A' is 
not empty . By definition of ^4 (P), the maximal ideals in A' are A -dense, bu t 
PDP is not ^4P>P-dense. Thus C = C\ A' is ^4-dense. By the definition of ^4 (P), 
if P G A 7 then ,4P>P = xPP>P - {y G P>M:y) > *>P(*)} . Let c G C. For 
P £ A', c £ P and tfP(c) > 0; hence vP(cx) > vP(x) and ex G ^4DP. Thus 
Cx C H A - 4 ^ P = 4. or x G 04 : C)\A, contrary to C being dense. Thus 
H A ^ 4 ( P ) QA. 

Consider the natural homomorphism from D into EL DP/A{P). By Lemma 
1.5 the kernel of this homomorphism is A. Thus we have a monomorphism 
<p: D/A -+n*Dp/A<p\ 

Let (f{P) be the natural homomorphism D/A —> DP/A{P). Then we have the 
commuta t ive diagram: 
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By Proposition 8, p. 41, Lambek [6], Q(UADP/A^) 2* I L 0<p>. These 
mappings will be considered further in the next section. 

Next we show that <p can be extended to a monomorphism from Q(D/A) to 
I L <2(P). In fact, if P G A is not A -dense, we can replace Q{P) by DP/A{P). 

LEMMA 1.6. If P ^ A and P is A-dense, then z £ A{P) P\ D if and only if 
P C (ADP C\D)\z. 

THEOREM 1.7. Let D be a semilocal Prilfer domain with an ideal A such that 
QCÏ(D/A) = D/A. Then, there exists a monomorphism r? : Q(D/A) —» I1A Q{P) 

which extends <p : D/A —» IIA DP/A{P). In particular for f G Q(D/A), if x £ B 
and y £ D such that fx = y then ry(/) = (/(P)), where f{P) G Q(P) and f{P) (x + 
^ ( P ) ) = ; y + ^ p > . 

Proo/. Let 5 be the smallest 4-dense ideal of D. For / G Q(D/A) = 
HomsCB, 5 ) , we define/(P) G Q(P). If P G A is not ,4-dense, then there is an 
x 6 5 \ P such that BDP = xDP = P>P. We define / ^ G DP/A^ Q QW as 
/ ( P ) = z/x + ^4(P), where fx = z. Notice tha t / ( P ) is independent of the choice 
of x and z. 

If P G A is A -dense, then BDP = P£>P is ^ (P)-dense and we define f{P) G 
QiP) b y / w ^ / y + A^) = z/y + A^p\ where y G D \ P , x G 5 , and /* = z. 
We need to show that / ( P ) is, in fact, well-defined. Suppose x/y -\- A{P) = x'/y' + 
A^ for x, x' G B and 3/, / G Z>\P. T h e n * / ~ x'j G ^4(P) H D. By Lemma 
1.6, if w G P then w(xy' — x'y) G ADP C\ D and there is a / G D\P, where 
wt(xy' — x'y) G A. Applying/, where fx — z and/x ' = z', we obtain wt(zy' — 
z'y) G A, or 0/(33/ — s'y) G 4̂£>p H D. Since this holds for all w G P , P Q 
(ADP C\ D) : izy' - z'y) and by Lemma 1.6, 

zy' - z'y £ A(pï r\D or z/y + A^ = z'/y' + A<p\ 

Thus/ ( P ) is well-defined and clearly a DP/A{P) endomorphism of PDP + A{P) ; 
that i s , / ^ G <2(P). 

We define 77 : Q(D/A) -> I IA <2(P) by r/(/)(P) = / ( P ) ; 77 is a homomorphism 
which extends ç>. Further, r? is a monomorphism. Suppose rj(f) = 0. Then for 
all P G A , f^ = 0. Let x G B and fx = z. Since /<p>(* + A^) = A^, 
z G A^P) for all P G A . That is, z £ A and / is the zero element of Q(D/A). 

2. Irredundant primary decomposition. We next characterize Q(V/A), 
where F is a valuation ring with maximal ideal P and A is a P-primary ideal 
not equal to P . The result is then used to characterize Q(D/A), where D is a 
semilocal Priifer domain with maximal ideals P and A has an irredundant 
primary decomposition C\ AP, with P = \/AP. 

Let F be a valuation ring writh associated valuation v and with ideals P and 
A as described above. The intersection of all P-primary ideals of F is a prime 
ideal P 0 of F, and associated with this prime ideal is a rank one subgroup of 
the value group of F. By Proposition 5.15, p. 110 of [7], this subgroup is 
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isomorphic to an additive subgroup of the real numbers. Thus the group H = 
{ dz v(x)\x G V\PQ} will b e considered a subgroup of the real numbers. Let 
s = g\b(v(A) H H) G R. Since ,4 5* P, we have s > 0. Either 4 = 
{x G F|^(x) > r) or i = jx f V\v(x) ^ r} with r = s. U H is discrete we 
write A = {x G V\v(x) > r), where r is the immediate predecessor of s. If 
s ^ H, we write i = (x Ç V\v(x) ^ r}, where r = s. By Lemma 1.4 and the 
above convention, P is A -dense if and only if A — {x G V\v(x) ^ r). 

Notice that if x, x' G A and x = x' in F/M, then v{x) = v(xf). 

LEMMA 2.1. Let f G Q(V/A) and if x G dom/, /e/ 3; = /x, w/^re x and 3/ are 
preimages of x and y. Then, if v(y) < v(x), x G A. 

Proof. The domain of/ is either F/^4 or P/A. If ^(^) < ^(x), then x £ yV 
and there is a & G V such that x = by. Hence b G P, since fl(x) = z;(&) + z/(;y) 
and */(&) > 0. By the remark after Lemma 1.4, fb G P/A and there is a c G P 
where £ = /5 . Then there is a g G Z+ such that q • v(c) = y(c?) > r, and 
cff G yl. Thus in F/^4, (/fr)ç = 0 and /5 is nilpotent. Since x = by, we have 

/* = fh = /*/5 and /x(T - /5) = Ô. 

With Ï — fb a unit in F/^4, we must have y = /x = 0 in F/^4 or 3/ G -4. 
Hence x G A. 

Equivalently, v(y) ^ z/(x) for each x G P\^4 ^ 0, where y = fx. 

LEMMA 2.2. Por / G Q(V/A), let x, x* G dom/, w&ere y = fx and y* = fx*. 
If x, x*, y, y* G A, then v(y*) — v(x*) = ^(y) — v(x). 

Proof. By Lemma 2.1 above, v(y*) — v(x*) ^ 0 and v(y) — v(x) ^ 0. 
Without loss of generality we may assume that v(x) ^ v(x*). Then there is a 
c G D such that x* = ex. But 3/* = /ex = cfx = cy. Since y* and C3> G -4, 
vCy*) = v(cy)- Hence v(y*) — z>(x*) = v(y) + z/(c) — (v(x) -\- v(c)) = v(y) — 
v(x). Therefore v{y*) — v(x*) = v(y) — v(x) ^ 0, showing the invariance 
of this difference for all pairs (x, y) associated with/ , where x, y G A. 

For each / G Q(V/A), f 9^ 0, let z/[/] be the above constant 1/(3;) — v(x) 
associated with / . We come now to a fundamental theorem characterizing the 
elements of Q(V/A). 

THEOREM 2.3. Let V be a valuation ring with valuation v and maximal ideal P 
and let A be a P-primary ideal of V. If P is A-dense and f G Q(V/A), f j* 0, 
then there exist N G Z+ , r G R+, a G V, and (bj)j^N in V such that b1 is a unit 
in V, 1/N < r — v(a), v(bj — 1) > r — v(a) — 1/j, and foe = (11)1^ bf)ax 
whenever v(x) > l/i,i è N. 

Proof. We have previously shown that P is A -dense if and only if A = 
{x G V\v(x) ^ r}. This establishes the existence of r G R+- By the definition 
olv[f], for/ ^ 0 , / G Q(F/M), we note that r — z>[/] > 0. There is an element 
a G V\A such that v(a) = v[f]. Since the subgroup H of the value group of V 
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is not discrete, there is a sequence of elements (xk) in V such that 0 < v(xk) < 
1/k and v(xk+i) < v(xk), where xk (£ A. The integer N is chosen to satisfy 
1/iV < Y — via) in order that neither xk nor yk be elements of A for k ^ N, 
where /£* = y*. Then for k ^ N, v(yk) = ï^ax*) since w(yfc) — v(xk) = v[f] = 
v(a). Hence there is a unit uk in V such that yk = ukaxk. 

Let u = uN and define the unit bj to be the product uj+iUf~l for j ^ iV. 
Then % = uH)Zl

Nbj for jfe ^ iV + 1. Further for j ^ iV, */(&, - 1) = 
v(uj+iu~l — 1) = v(uj+i — Uj) since v(Uj) = 0. Since A(XH-I) < ^(XJ)> there 
is a 2J+i in F such thatx ;- = zj+ixj+i. Hence ûjâXj = fXj = fzj+iXj+\ = ûj+iâXj, 
and (uj+i — iij)aXj £ A. Thus 

v(bj — 1) = v(uj+i — Uj) 

^ r — v(a) — v(Xj) 

> r — v(a) — 1/j 
for j ^ iV. 

By our choice of N, this latter result shows that bj — 1 G P for each j ^ iV. 
For arbitrary x £ P Q dom/ , pick i ^ N such that y(x) > 1/i. Then 

v(x) > l/i > v(Xi), so that there exists st £ V such that x = stXi. Hence 

fx =jSi%i 

à { ' J X % 

o f ' Li/ jU/J\/ î 

= SfûyYi bjjâXi 

= û\ Yl bjjax. 

Without loss of generality we may replace ua by a, since u is a unit in V. 
Thus fx — (Iljljv bj)âx is the desired representation. 

If/ is the zero element in Q(V/A), then/x = âx where a £ A. 

The converse of Theorem 2.3 is also true. 

THEOREM 2.4. Let V be a valuation ring with valuation v and maximal ideal P 
and let A be a P-primary ideal of V, where either A = {x £ F|^(x) > r) or 
A = {x £ F|^(x) ^ r). Let an element a £ V and a sequence (bj)j^N of units 
in V be given such that v(bj— 1) > r — v(a) — 1/j, where j ^ TV and \/N < 
r — v{a). If v(x) > l/i, i £ Z + and i > N, define fx = (JAl~^bf)ax. Then 
/ É Q(V/A). 

Proof. First we show t h a t / is well-defined. For 5 a positive integer, if v(x) > 
l/i, then v(x) > 1/(i + s)- Hence we must show that 

( i-1 _ \ / i+s-l _ \ 

n M<*X = ( n ôjâx. 
j=AT / \ j=tf I 
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First 

i - ' n b, = ( i - h ) + E b(...b^(i-b,) 
;= i j= i+1 

and since the minimum valuation that any summand can have is greater than 
r — via) — 1/i, 

( i+s-l \ 
i - n bj) 

3= i ' 

Thus 

> r — via) — ~ 
i 

]ax (ri b)ax- ('TibX 

v(x) +v\U bA +v[l- I l bA 
\j=N ' \ j=i I 

v(a) + 

> via) + - + 0 + r — via) : = r. 
t i 

Finally (IljQv bj)ax — (II jiv~ b j)ax £ A and the above equality is established. 
Next, suppose that v(xi) > 1/ii and v{x^) > 1A*2 where i\, i2 £ Z+ . Let 

i = max {ii, i2}. Then 

= (f l »,)< f(pci + x2) = 111 bAaixi + 0C2) 

= fXi + fx2. 

Let v{x) > 1/i where i Ç Z+ and let z be an arbitrary element of V. Then 
it follows that / (sa) = z{fx). Therefore/ £ Q(V/A). 

By Theorem 1.7, Q(D/A) is isomorphic to a subring of Ft ()(P). We now 
proceed to show that the subring is IT Q(P) itself when A has an irredundant 
primary decomposition. 

LEMMA 2.5. Let D be a semilocal Prilfer domain with maximal prime ideals P. 
Let A be an ideal of D such that QC](D/A) = D/A. If A has an irredundant 
primary decomposition, A = f\ AP, where each AP is P-primary, then D/A is 
isomorphic to I I DP/A(P). 

Proof. Let A have an irredundant primary decomposition D AP with maxi
mal primes P, as stated above. Then the AP are pairwise comaximal and, since 
D is a Priifer domain, D satisfies the Chinese Remainder Theorem (pp. 307-10, 
Gilmer [5]). 

Let (aP/bP + A{P)) be an element in I I DP/A{P) where aP Ç D and bP £ 
D\P. Applying the Chinese Remainder Theorem, let a be a solution of x = 
aP (mod AP) and let b be a solution of x = bP (mod AP), so that b Ç D\ W P. 
Then a/b = aP/bP (mod A{P)). Thus b is a unit in D and «-&-1 G D. Hence 
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the natural map D —> I I DP/A(P) is a surjection with kernel D A(P) = A ; that 
is, D/A is isomorphic to ^ DP/A{P). 

The monomorphism 77 described in Theorem 1.7 is an isomorphism in the 
setting of this section. Namely, if / G Q{D), then v(f) = (J(P)) G I I £ ( P \ 
where f or x G 5 , 3; 6 £> and/x = y,f{P)(x -\- A{P)) = y + A{P). To verify that 
y) is onto I I <2(P\ let/<p> G <2(P) for P G A. Let x G 5 ; t h e n / ^ (x + 4<p>) = 
aP/bp -\- AiP) G P>P/,4(P). But by the above Lemma 2.5 there is a J Ç D / i 
such that <p(y) = (aP/bP + ,4 (P )). Now define / G ( K ^ M ) by fx = J; / is 
well defined, for if 3/ = y = aP/bP (mod A{P)) for all P G A , then y' = y 
(mod Pi ^4(P) = -4). Since/ ( P ) is a D homomorphism of DP/A^P\ and -4 = 
O ^4 (P\ / is a J9 homomorphism of J9/^4 and thus also a Z>/̂ 4 homomorphism. 
T h u s / is an element in Q(D/A). Further, rj(f) = (J (P)). Thus we have estab
lished the following: 

THEOREM 2.6. Let D be a semilocal Priifer domain with maximal prime ideals 
P. Let A be an ideal of D such that Qcl(D/A) = D/A. If A has an irredundant 
primary decomposition, A = D AP, where each AP is P-primary, then Q(D/A) 
is isomorphic to H Q{P). 

L e t / G Q(p) and let P G A be A -dense. Then it follows from Theorem 2.3 
that for any/ ( P ) G Q{P), there is a sequence (a */&*), i §; N, and an element c/d 
in DP, where c G D and at, bu d £ D\P. If P G A is not A -dense, we let a* = 
b i = 1 and c = z, d = x as discussed above. Notice that the positive integer N 
can be chosen the same for all of the elements in A. Furthermore, the elements 
au bu c and d need only be defined modulo A{P) C\ D — AP. Since the Chinese 
Remainder Theorem holds in D and the AP are pairwise comaximal, the au 

bit c and d can be chosen the same for all the maximal ideals P in D. Hence 
the elements au bt and d are units in D, a fie1 is a unit in D and cd~l G D. 
Replacing a fie1 by at and cd~l by c for / G Q(D), we can establish the fol
lowing theorem. 

THEOREM 2.7. Given f G Q(D) there is a sequence (ai)i^N of units in D and an 
element c G D such that for x G B, fx = II^L^ ofix where vP(x) > \/Nr for all 
A-dense ideals P . Furthermore, if P is A-dense, then AP = {x G D\vP(x) ^ rP} 
and either 

(i) vP(at — 1) > rP — vP(c) — l/i for rP G R, or 
(ii) c G A p. 

If P is not A-dense, then ai — 1 G AP. 

Proof. From above, for all P G A and x G B, /<p>(* + 4<p>) = ITJL^1 

(a<cx + 4<p>). Thus if/x = y, then 3/ - I I ^ 1 atcx G ^ ( P ) for all P G A and 
fx — n^L^ diCx. 

If P is yl-dense and fp> = 0 in Q<p>, then ^ i ^ n D = i P . I f ? is 
^4-dense and/ ( P ) ^ 0, then since our choices of at and c are congruent modulo 
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A{P) to the elements of Theorem 2.3, we have vP(at — 1) > rP — vP(c) — \/i. 
If P is not A -dense, then a% is congruent to 1 modulo AP and thus a t — 1 G AP. 

Finally we show that the converse of Theorem 2.7 is valid, thus completely 
describing the elements of the complete quotient ring of D/A in terms of 
certain products. 

THEOREM 2.8. Let D, A, A and rP G R be as above. Let N G Z + and c G D 
be given. Let (a*)^^ be a sequence of units in D such that if P G A is A-dense, 
then either 

(i) vP(at — 1) > rP — vP(c) — l/i, i > N, or 
(ii) c G AP, 

and if P G A is W0£ A-dense, then at — I £ AP. If P is A-dense and x ^ B, 
where vP(x) > l/N', N' G Z+ and N' > N, define fx = U^1 âtcxf. Then 
f e Q(D). 

The proof is similar to that of Theorem 2.4. 

3. Topological closure. Let D be a semilocal Prufer domain and let D/A 
be its own classical quotient ring. We construct a topology in D/A and demon
strate that the completion of the topological ring is Q(D/A). Let vP be the 
valuation associated with P G A, vP : QC\(D) —> GP, where we assume the 
map is onto the ordered group GP. If P is A -dense and £ G GP

+, let 

U^P) = {x G £>PA4(P)|there is a;y G Qci(£>) such that;y = xand^P(;y) > £} 

and let GP' be the set of all £ G GP
+ for which £ 7 ^ ^ {Ô}. If P is not ,4-dense, 

we define U^P) as above but let GP = GP
+. For P A -dense, we have C\^GP> 

U^ = {0} since x G UVp{x/
P) for x G £>PV4(P). And for P not .4-dense, we 

have H c7^> = {0}. By Chapter III, 6.3, Bourbaki [4], the set U^ = 
{ U£P)\% G GP) forms a filter basis of neighborhoods of the origin for DP/A{P). 
Furthermore this topology is Hausdorff (page 223, ibid.). 

Let £ G XA GP' = G' and define U^ to be 

^ ( X A C W P ) ) = {ôc e D/A\vP(X) > J(P) for all P) 

(see the definition of cp after Lemma 1.5). Then { £/$|£ G G'} is a filter base of 
neighborhoods of the origin for a Hausdorff topology of D/A and <p is con
tinuous. 

By Proposition 6, page 278, ibid., there is a complete Hausdorff ring T such 
that D/A is a dense subring of T. We now proceed to show that T is isomorphic 
to Q(D/A). 

Let {za}rf be a Cauchy net in D/A. For x G B, we define £ G G' as follows: 
(i) if P is A -dense then, since xDP is not ^4(P)-dense, there exists 

wP G (,4(P) : xDP)\A^; then let £(P) = i/P(wP). 
(ii) if P is not A -dense, let £(P) G vP-l{A^P)). 
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Since {za}^ is a Cauchy net, there is an a G S$ such tha t if /3, y > a, then 
vP(zp — zy) > £(P) for all P G A. From above, zpx — zyx G A{P) for all P G A. 
Hence Jî x = I^x in D / A T h a t is, for each x £ B, {zjc} is a Cauchy net in D/A 

which is eventually constant and converges to an element in D/A. By defining 
fx to be this limit, it follows t h a t / is a well-defined map from B to B. S i n c e / is 
a D/A homomorph i sm, / is an element of Q(D/A). 

We now define /x: T —> Ç by considering z G P. Then s is the l imit of a 
Cauchy net [za\^ in D/^4 and corresponds to an e l e m e n t / G Q as above. The 
element / is seen to be independent of the choice of Cauchy nets. T h u s /x is 
a function from T to Q. Since sums and products in T correspond to sums and 
products in Q, /x is a homomorphism. 

Let z £ T and suppose t ha t s G ker /x; then s is the limit of a Cauchy net 
{za}^ in D/G4. Let £ G G7. For fixed P G A , where P is 4̂ -dense, there exists 
x G P\A such tha t ^ P (x) = £ (P) . Since xP (£ A, there is a 3/ G P\-4. such 
tha t x;y G P \ T . Since z G ker /x and since {z~^y} is eventual ly constant , there is 
an otp G S$ such tha t if /3 > aP, then s ^ G A. T h u s ^ ( z ^ ) > z;P(jx) and 

Vp(zfi) = vP(zpy) - vP(yx) + vP{x) > vP(x) = £ (P) . 

Now for fixed P G A , where P is not A -dense, by Theorem 1.1 there is a 
y G B such tha t ^p(^) = 0. Again, since z G ker /x, there is an aP G ^ such 
tha t for (3 > aP we have z^y £ A Q A{PK Thus , since £(P) G GP ' - GP+, 
Vp(zp) = ^pfe^) > K P ) - Since A is finite, we can find a G ^ independent of 
P such tha t if /3 > a, then z^feO > £(P) for all P G A . T h u s {za)^ converges 
to 0 G D/./1 Ç 7" and /x is a monomorphism. 

In the following, we show tha t /x is onto. We now let the index set J^/ be the 
collection of elements in B which 

(i) are not in P if P is not A -dense, 
(ii) are not in P * U A if P is A -dense, 

where P * is defined in Theorem 1.1. By Theorem 1.1, s/ is not empty . We 
order the elements ins/ by defining, for each pair x, y mSZ?, x ^ y if and only if 
vP(x) ^ vP(y) for all P G A . Note t ha t if P is not A -dense, then vP(x) = 0. 
The inequali ty " ^ " o n j / i s a part ial ordering a n d s / becomes a directed set 
under " ^ " by Theorem 1.1. 

Let x £ s/ and l e t /x = y. We now show tha t y/x G D. Assume the opposite. 
Then y/x G D>P for some P G A . But if P is not ^4-dense, then x is a uni t in 
Dp and y/x G D P . If P is A -dense and y/x G DP, then & = x/y G PD>P and 
5 G d o m / ( P ) , since 7}P is a valuat ion domain. T h u s in DP/A{P\ 

y = f(P)x = f^by = yf^b. 

L e t / ( P ) 5 = c, c G £>P; then 3/(1 — c) G -4 ( P ) . If c is not a unit , then 1 — c is a 
uni t and 3/ G ^4 (P), contrary to 3>/x G D P . If c is a unit , then wi thout loss of 
generality there is a d G P D P , where / ( P ) 5 = Ï . Since P 2 = P , there exist u, 
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v G PDP such that d = uv and ûf(P)v — f(P)d = Ï. Thus u is a unit in DP, 
contrary to u G PD P . Therefore ;y/# G DP for all P G A and y/x G D. 

For convenience we write the elements of the index se ts$ as Greek letters, 
a G J^/, and let xa Ç D bea itself. For a G J ^ let/xa = ya and let 2a = j a / 4 G Z). 
Next we show that {za}^ is a Cauchy net in D/A and thus converges to an 
element z in T. By the definition of JJL: T —> Q(D/A), IX(Z) = / and conse
quently M is onto. 

Let / G 0 ( ^ / 4 ) and /xa = Ja for a es/. Suppose £ G G' and P G A. We 
must consider two cases. If P is ^4-dense, let w G PDP\A(P), where vP(w) = 
£(P). Then there is a w G P£>P such that mu G wPDP\A(P) by Lemma 1.4 
(since ^4(P) is a proper subset of wPDP). By Theorem 1.1, let 7 be such that 
vP(xy) ^ vP(u). For a, /3 > 7, we assume without loss of generality that 
^pfe) ^ ^pfe) ^ vP(u). Then there exists 6 G Z)P such that bxa = X/? and 
& = c/d, where c £ D and d G P>\P. Hence 

cya = /cx« = /dx/3 = Jj/j 
or 

a = bya - y? G A<p\ 

And 

vP(ya/xa — y^A/s) = vP(a/xp) 

^ vP{a/u) 

= vP(aw/uw) = vP{a/uw) + vP(w) 

> vP(w) = £(P). 

Thus 3^a/xa — ^A/3 G Ut(p){P) for a, 0 > 7. 
On the other hand, if P is not yl-dense, then for any a, fi (z se, xa, x$ G P \ P . 

We can again find 6 G D P and a G A{P), where &xa = ^ and a = &;ya — 
yfi G ̂ 4(P). Hence 

vP(ya/xa — y$/xp) = Vpia/xp) = flp(a) 

and ;ya/xa - 3 ^ G ^4(P) Ç £ W P > . 
Thus we can find a 7 independent of P such that ya/xa — y$/xp G £/$ for all 

a, p > 7. Therefore {ya/xa}^ is a Cauchy net in D/^4 and hence converges to 
an element z G T, and 2; maps o n t o / G Q(D/A). 

The above establishes the following: 

THEOREM 3.1. Let D be a semilocal Prilfer domain with ideal A and let D/A 
be its own classical quotient ring. Then the valuations on D define a Hausdorff 
topology on D/A, the completion of which is the complete quotient ring of D/A. 

4. An example. We now give an example of a homomorphic image of a 
Prufer domain R which has a non-trivial complete quotient ring. The following 
is adapted from Example (6), pp. 390-1, Bourbaki [3]: 
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Let r be the real numbers R and let F be an arbitrary field. Let T+ = 
R + U {0} and let C be the semigroup algebra of T+ over F. Then C is a domain 
and an .F-algebra with basis (xa)a€r+ and multiplication given by xax0 = 
xa+0. Note thatxo = 1. Let K be the quotient field of C. Defines: K—»TU {co } 
by 

v I YJ aaxa / 2Z M*J = m i n (a) — m i n (P)> 

where ^(0) = oo . Let R = [p\p £ Ka,ndv(p) ^ 0}, i^ being the valuation ring 
of v. Then R is a local Priifer domain with maximal ideal M = {p £ R\v(p) > 0}. 
Let A = {p £ R\v(p) è 1}; 4̂ is an M-primary ideal of R and M is 
the only dense ideal in R/A. Since units are the only regular elements in R/A, 
R/A is its own classical quotient ring. 

In Theorem 2.4, let a = 1, N = 2 and choose the sequence of units (b3-}%2 
in R where bj — 1 = XI - I /^+D = Cj. Note that fl(fy) = 1 — I/O' + 1). By 
Theorem 2.4, an element/ ^ 0 in Q(R/A) is determined such that 

7 1 - 1 

/x = n (i + ŷ* = ? 

for x Ç d o m / = M and fl(x) > 1/n. Now 

n—1 Ti—1 n—1 

n i + ^ = ï + i ] ^ = ï + s *i/cy+i)» 
3=2 j=2 j-2 

since the valuation of a product of two or more of the c/s is greater than 1. 
Hence for x £ dom/ , where v(x) > 1/n, we obtain 

$ = ( 1 + X ;̂7(;+D )x = ( 1 + X) ^Ax. 

Suppose that / is in the classical quotient ring of R/A ; that is, for some 
e e R,f = l G R/A. Thus for x Ç i? with Ï;(X) > 1/», 

fx = ex or I 1 + X ĉ  — e Ix = 0. 
\ ; = 2 / 

By definition of the valuation v, we can choose a positive integer L such that 
if k ^ L then 

= *>1 ! + 12 ci - e J = Al + ]C Cj - ej . 

If t < 1, let 5 be a positive integer such that s > L and / < 1 — 1/s. For 
x = Xi/(s+i),/x = ëx and 

l ^ » ( ( l + Ë Cj-ejx) = ^ + 1 / (5+ 1) < 1 - 1 /5+ 1 / (5+ 1 ) < 1 , 
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a contradiction. If t ^ 1, then e = 1 + 2t=2 Cj. For x = Xi/(L+2), we obtain 
for n = L + 1, 

( 1 + £ ^ P = ^ ==/* = U + Z) cJâ 

Thus 

0 = (l + Z ^ ) * ~ (l + E *,)* 

— ^ L / ( L + I ) * ^ i /a+2) 

= ^l-l/(L+l)(L+2) = ^(L+D(L+2) 9e 0, 

a contradiction. 
Hence the assumption t h a t / is in R/A leads to a contradiction and R/A is 

not its own classical quotient ring. 
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