This department welcomes short notes and problems believed to be new. Contributors should include solutions where known, or background material in case the problem is unsolved. Send all communications concerning this department to I. G. Connell, Department of Mathematics, McGill University, Montreal, P.Q.

GROUPS IN WHICH RAISING TO A POWER IS AN AUTOMORPHISM

H. F. Trotter

For any group G and integer n, let $P_{n}: G \rightarrow G$ be the function defined by $P_{n}(g)=g^{n}$ for all $g \in G$. If G is abelian then P_{n} is a homomorphism for all n. Conversely, it is well known (and easy to show) that if P_{2} or P_{-1} is a homomorphism then G is abelian. As the groups G_{n} described below show, for every n other than 2 and -1 there exist non-abelian groups for which P_{n} is a homomorphism.

In this note we derive some elementary consequences of the assumption that P_{n} is an automorphism for some particular value of n. One somewhat surprising result is that P_{3} can be an automorphism only if G is abelian.

We begin with some simple lemmas. Let $H(G)$ be the set of integers n such that P_{n} is a homomorphism of G, and $A(G)$ the set of integers such that P_{n} is an automorphism of G. Since the composition of P_{n} and $P_{m p}$ is $P_{m n}$ we have
(1) If $m, n \in H(G)$ then $m n \in H(G)$.

If $m \in A(G)$ then the identity $P_{m n}=P_{m} P_{n}$ may be multiplied by P_{m}^{-1} to give $P_{n}=P_{m}^{-1} P_{m n}$. Writing q for $m n$, this gives
(2) If $m \in A(G), q \in H(G)$ and m divides q, then $q / m \in H(G)$.

We have $\mathrm{n} \in \mathrm{H}(\mathrm{G})$ if and only if $\mathrm{h}^{\mathrm{n}} \mathrm{g}^{\mathrm{n}}=(\mathrm{hg})^{\mathrm{n}}$ for all $h, g \in G$. Setting $h=x^{-1}, g=y^{-1}$, so that $h g=(y x)^{-1}$, converts this identity into $x^{-n} y^{-n}=(y x)^{-n}$. Premultiplication by x and postmultiplication by y gives $x^{1-n} y^{1-n}=(x y)^{1-n}$. Therefore
(3) If $n \in H(G)$ then $1-n \in H(G)$.

Now suppose $n \in A(G)$. $B y(3), 1-n \in H(G)$, and hence by (1), $(1-n)^{2} \in H(G)$. By (3) again, $1-(1-n)^{2}=2 n-n^{2} \in H(G)$. and by (2), $2-n \in H(G)$. A final application of (3) gives $n-1 \in H(G)$ and we have proved
(4) If $n \in A(G)$ then $n-1 \in H(G)$.

COROLLARY. If P_{3} is an automorphism then G is abelian (since P_{2} is a homomorphism).

LEMMA. If both n and $n+1$ are in $H(G)$, then $k \in H(G)$ implies $k^{\prime} \in H(G)$ for all $k^{\prime} \equiv k(\bmod n)$.

Proof: By assumption, $\mathrm{g}^{\mathrm{n}+1} \mathrm{~h}^{\mathrm{n}+1}=(\mathrm{gh})^{\mathrm{n}+1}=(\mathrm{gh})^{\mathrm{n}} \mathrm{gh}=$ $g^{n} h^{n} g h$ for all $g, h \in G$. Cancelling g^{n} on the left and h on the right gives $\mathrm{gh}^{\mathrm{n}}=\mathrm{h}^{\mathrm{n}} \mathrm{g}$, which shows that all n -th powers are in the centre of G. Now suppose $g^{k} h^{k}=(g h)^{k}$ and let r be any integer. We have $g^{k+n r_{h} k+n r}=g^{k} h^{k}\left(g^{n} h^{n}\right)^{r}=$ $(\mathrm{gh})^{k}\left((\mathrm{gh})^{\mathrm{n}}\right)^{\mathrm{r}}=(\mathrm{gh})^{\mathrm{k}+\mathrm{nr}}$, using the facts that $\mathrm{h}^{\mathrm{n}}, \mathrm{g}^{\mathrm{n}}$ are in the centre of G and that $n \in H(G)$.

THEOREM. If $n+1 \in A(G)$ then $H(G)$ consists of the union of congruence classes modulo n, and contains at least all integers congruent to 0 or 1 modulo n.

Proof: By (4) (with $n+1$ in place of n) the hypothesis of the lemma is satisfied. Obviously 0 and 1 are in $H(G)$ for any group G.

A sequence of examples G_{n} with $n+1 \in A\left(G_{n}\right)$ which exhibits some non-trivial possibilities for the set $H(G)$ may be defined as follows. The elements of G_{n} are triples (x, y, z) of integers modulo n (so G_{n} has order n^{3}) and multiplication is defined by $(x, y, z)\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}+2 x y^{\prime}\right)$. The group is non-abelian for $n>2$. An easy induction shows that $(x, y, z)^{k}=(k x, k y, k z+k(k-1) x y)$. Thus P_{n+1} is the identity map and $n+1 \in A\left(G_{n}\right)$. Direct calculation shows that $k \in H\left(G_{n}\right)$ if and only if $k(k-1)$ is divisible by n, which is consistent with the conclusion of the theorem.

Princeton University

