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Abstract
Innovation, typically spurred by reusing, recombining and synthesizing existing concepts, is
expected to result in an exponential growth of the concept space over time. However, our
statistical analysis of TechNet, which is a comprehensive technology semantic network
encompassing over 4 million concepts derived from patent texts, reveals a linear rather than
exponential expansion of the overall technological concept space. Moreover, there is a
notable decline in the originality of newly created concepts. These trends can be attributed to
the constraints of human cognitive abilities to innovate beyond an ever-growing space of
prior art, among other factors. Integrating creative artificial intelligence into the innovation
process holds the potential to overcome these limitations and alter the observed trends in the
future.

Keywords: Innovation, Originality, Concept creation, Natural language processing,
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1. Introduction
Innovation leads to new technological concepts and expands the cumulative space
of technological concepts. Following the combinational view of creativity (Arthur
2007; Uzzi et al. 2013; He& Luo 2017; Han et al. 2018), new technological concepts
serve as new building blocks for future inventors to recombine and synthesize into
even newer ones. This process of new concepts empowering newer concept
creation suggests a cycle of positive reinforcement and increasing returns of
innovation (Arthur 1989). Therefore, new concept creation is expected to accel-
erate and result in exponential expansion of the concept space over time.

However, the accumulation of technological concepts created through innov-
ation over time may increase the knowledge demands or burdens on future
innovators (Jones 2009). To derive originality beyond an expanding space of prior
art, later-coming innovators need to navigate, learn, master, synthesize and
benchmark against a wider space of prior art than before, engage more multidis-
ciplinary teams, and cope with increasing complexity and uncertainty in the
invention process (Luo &Wood 2017). As a result, achieving originality in design
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might become more difficult. Such negative reinforcement may slow down innov-
ation over time.

Therefore, the cumulative expansion of the total technology space, resulting
from innovation over time, may exert two opposing forces on future innovation, as
depicted in Figure 1. On one hand, the expansion of the technology space due to
innovation provides more technological concepts for future innovators to reuse,
recombine and synthesize into newer ones, which could accelerate innovation and
further expand the technology space. On the other hand, this expansion increases
knowledge prerequisites for future inventors and raises the bar for deriving design
originality, consequently decelerating both innovation and the expansion of the
technological concept space. We refer to this as the innovation paradox, which is
the focal point of this article.

In this study, we are particularly interested in the pattern and pace of growth of
the technology space through innovation. More specifically, we ask – is the total
technology space expanding exponentially? If the technology space growth is not
exponential, it implies that innovation is decelerating, and variousmechanisms are
significantly limiting the combinatorial potential of the technology space. Such
understanding could have implications for the future of innovation processes,
informing the methods that innovators could employ, the strategies that
firms might adopt, and the policies that governments should consider to sustain
innovation.

Herein, we attempt to answer this question by statistically analyzing the scale
and structural evolution of the technology semantic network, which we refer to as
TechNet (Sarica, Luo &Wood 2020), as a proxy for the total technological concept
space. TechNet comprises over 4 million unique technical terms, including words
and phrases, extracted from the texts of all granted utility patents in the complete
United States Patent and Trademark Office (USPTO) database. These terms
represent elemental technological concepts created throughout history, spanning
all domains of technology. Specifically, we assess the originality of these once-new
concepts at the time they first appeared in the cumulative technological concept
space, according to their semantic similarity with prior concepts based on graph
theory, and the new information content they add to the technological concept
space based on information theory. Our results show a linear rather than expo-
nential expansion of the overall technological concept space and a continual

Figure 1. The innovation paradox: interplay of positive and negative feedback in the
creation and accumulation of technological concepts.
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decrease in the originality of new concepts when created, indicating a possible
deceleration of innovation.

In the following, we first review the relevant literature in Section 2, followed by
an outline of our researchmethodology in Section 3. Our findings, accompanied by
interpretations, are presented in Section 4. Section 5 delves into the potential of
creative artificial intelligence (CAI) in altering the observed trends. Subsequently,
Section 6 discusses the limitations of our data and methodology. We conclude in
Section 7.

2. Related work

2.1. The deceleration of innovation

Earlier studies have provided coarse-grained empirical evidence on possible
declining trends in innovation. For instance, Huebner (2005) discovered a declin-
ing trend of breakthrough inventions over time-based on the count of noticeable
innovations in history. Jones (2009) observed an increase in inventors’ age at their
first invention, which suggests that more education and exploration time are
required before actualizing originality in their ideas. Luo & Wood (2017) found
a decrease in the number of patents per average inventor, indicating a decline in
inventive productivity. Bloom et al. (2020) reported declining research product-
ivity based on firm- and industry-level census data in the semiconductor, crops and
health industries. Park, Leahey & Funk (2023) investigated 45 million papers and
3.9 million patents between 1945 and 2010 and how they change citation networks
to prior work over time as a way to measure their disruptive impact. Their results
show a declining trend of such impact for both papers and patents.

2.2. Measures of innovation

These prior studies commonly investigate patent data but only employ measures
that are extrinsic to innovations to detect potential trends in innovations. A
technological innovation often appears and gets recognized as a newmethod, tool,
product, system, service or artifact. The newness or originality distinguishes it as an
innovation from normal designs or artifacts, but not all elements of an innovation
need to be original (Simonton 1999; Sternberg & Lubart 1999; Kaufman and Baer
2004; He & Luo 2017). In this study, we aim to look inside innovations and
investigate the elemental concepts that constitute innovations and contribute to
their originality. More specifically, we focus on measuring the originality of new
concepts when they appear for the first time in the total technological concept
space to investigate innovation trends over time. Note that the term “originality” is
often used interchangeably with “novelty” in literature. Hereafter, we use
“originality” for consistency.

Prior studies present various ways to assess originality in innovation. Creative
design evaluation is mostly carried out by experts or other types of human subjects,
with or without structured guidance or procedures (Sarkar & Chakrabarti 2007;
Brown 2015; Ahmed & Fuge 2018; Hay et al. 2019; Sosa 2019). However, human
experts are subject to their personal knowledge, experiences, opinions and intu-
itions (Weisberg 2006; Oman et al. 2013). What appears original to one group of
experts might not be so to others. Ideally, the originality of a technological concept
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should be assessed with reference to all previous concepts in history (Boden 1996).
Experts may have incomplete knowledge of prior art, insufficient cognitive cap-
acity to assess numerous new concepts, ideas or innovations – for example, at the
magnitude of millions – and are unlikely to provide statistical significance in their
assessments.

To cope with the limitations of human evaluation, data-driven and computa-
tional approaches have been developed to evaluate the originality of designs,
inventions, creative design ideas and so on (Luo 2023a). Many of these approaches
are based on patent databases. Patents contain rich design or technological
information and have been widely used as proxies for technological innovations
in empirical studies. Patent data have been extensively employed as digital design
repositories to develop engineering design theories and data-driven design support
methods and tools (Jiang et al. 2022), although patent data sources are subject to a
complex institutional system andmany non-technical factors, such as examination
processes, policy changes and industry differences.

Patent databases host millions of patent documents in all technological
domains and thus can support statistically significant, rigorous and systematic
data-driven evaluations of inventiveness or originality. Fleming & Sorenson
(2001), Kim et al. (2016) and He & Luo (2017) statistically analyze the rareness
of historical co-occurrences of co-classes of patents (or the classes of patent
references) tomeasure the originality of patented inventions from a recombination
perspective. Uzzi et al. (2013) assess the rareness of the combinations of references
of millions of academic papers to provide statistically significant indicators of the
originality of published research.

2.3. Natural language processing

More recent studies have leveraged large pre-trained lexical databases and natural
language processing (NLP) techniques to automatically assess the originality of
newly generated design concepts in natural language descriptions (Siddharth et al.
2022a). Siddharth, Madhusudanan & Chakrabarti (2020) propose a method to
evaluate the novelty of a design solution, based on its distance to a reference
product database. This distance is calculated as text similarity using the SAPPhIRE
model. Camburn et al. (2020) evaluate the novelty of a large quantity of crowd-
sourced design ideas according to the semantic distance among the terms in the
design idea description texts, with semantic distance derived from Freebase. Han
et al. (2020) employ ConceptNet to assess the novelty of new design ideas based on
the semantic distance between elemental concepts. Gerken &Moehrle (2012) used
Subject-Action-Object triplets to measure the semantic similarity between patents
to indicate the novelty of patents concerning others. Olson et al. (2021) similarly
used a measure of semantic distance among words that a person generates as an
indicator of thought space divergence and creativity.

To calculate the semantic distance (or similarity) between words or phrases, a
comprehensive knowledge base is necessary. WordNet and ConceptNet have been
the most used knowledge bases for this purpose (Linsey, Markman &Wood 2012;
Georgiev & Georgiev 2018; Kan & Gero 2018; Goucher-Lambert & Cagan 2019;
Han et al. 2022). TechNet is a relatively newer knowledge base, trained on
engineering design data, such as patent texts, and is more suitable than
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ConceptNet, WordNet and other common-sense knowledge bases for assessing
semantic distance or similarity between technological concepts (Sarica et al. 2020,
2023).

On the other hand, the originality of terms used in a patent or an academic
paper can serve as an indicator of the originality of the described design or research
finding. New terms, compared to prior terms in the literature or technological
knowledge base, represent original concepts that may challenge the status quo and
shape the future directions of the corresponding field (Kuhn 1970;Wray 2011). For
instance, Park et al. (2023) discovered a trend of declining new word-pair occur-
rences in patent titles, indicating a decrease in the diversity of word usage and a
decline in combinatorial novelty. Originality is a matter of degree.

In this study, we employ TechNet, a large semantic network of technical
concepts, as the semantic knowledge base for assessing the degree of originality
of technological concepts created over time. The originality assessment centers on
the semantic distance (the opposite of semantic similarity) between new terms in
new patents and prior terms in earlier patents, using several metrics based on graph
theory and information theory. Consequently, our analysis focuses on concepts in
patentable technological inventions from the past four decades. In the following
sections, we introduce TechNet, the patent data source and our metrics in detail.

3. Measuring concept creation and originality in
technology semantic network

3.1. Technology semantic network (TechNet)

The technology semantic network utilized for this research, termed TechNet, has
been pre-trained and published in our prior work (Sarica et al. 2020). It is made
publicly available on the web (https://www.tech-net.org) for external researchers,
allowing access to broader research and applications. TechNet is a semantic
network comprising of 4,038,924 technology concepts (words and phrases up to
4 grams) and their pairwise semantic distances. To ensure comprehensive coverage
of technology concepts across all technology and engineering domains, the source
data for constructing TechNet included all 5,771,030 utility patents granted
between 1976 and October 2017 from the USPTO database.

Due to incomplete data coverage for the year 2017, we chose not to include data
from that year. Furthermore, the digital patent database only became available
starting in 1976. Since concepts created before 1976 could be reused in innovation
and appear in patents after 1976, the “new” concepts in the initial years of the
database may not be genuinely new, but only new to the database. Our analysis
reveals that concepts appearing in patents between 1976 and the end of 1980
constitute over 90% of the total concepts used throughout the entire period from
1976 to 2016, indicating comprehensive coverage of baseline patent knowledge.
Consequently, we established an initial semantic network, including concepts that
appeared in patents between 1976 and the end of 1980 as the baseline. Our trend
analysis commences in 1981.

In constructing TechNet, we began by extracting words and phrases from the
raw texts of patent titles and abstracts. These extracts represent meaningful
technological concepts (e.g., functions, components, structures, materials, config-
urations, working principles) and were processed using natural language
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processing techniques for phrasing, denoising and lemmatizing, among others.
The original text database contains 26,756,162 sentences and approximately
699 million words. Utilizing this data, several word embedding models were
trained on the preprocessed sentences to derive the embedding vectors of individ-
ual concepts, thereby forming a unified embedding vector space representing the
total technological concept space. A technological semantic network was then
constructed by connecting these technological concepts based on the cosine
similarity of their embedding vectors, that is, semantic similarity or an inverse
indicator of semantic distance. By using the total database to train the embedding
space of concepts, we anticipate that the embedding vector similarity will reflect the
most intrinsic technical relations between the technical concepts represented by
the terms.

Sarica et al. (2020) performed a benchmark comparison with other large
semantic networks and knowledge databases (e.g., WordNet and ConceptNet,
most of which were trained on common-sense databases) and found that the
word2vec embedding model (Mikolov et al. 2013) yielded the best-performing
technology semantic network for concept retrieval and inference tasks within the
specific context of technology and engineering. Consequently, the technology
semantic network (TechNet) used in this study is based on word2vec.1

Figure 2 shows an example subgraph consisting of 30 concepts sampled from
the technology semantic network cumulative to the year of 1990. With an interest

Figure 2. An example subgraph of 30 concepts sampled from the total technology concept network
cumulative to 1990. (A) The adjacency matrix representation of the subgraph where the value of each cell
is the semantic similarity of the corresponding tuple. (B) A filtered network representation of the subgraph. In
the total concept network cumulative to 1990, the share of the new concepts in cumulative total concepts is
5.4%. Preserving this ratio, the sample subgraph has 2 new concepts and 28 prior concepts. The concepts
“artificial neural network” and “unsupervised learning” appeared for the first time in 1990, whereas the other
28 concepts had occurred in previous years.

1The total technological semantic network can be accessed at http://www.tech-net.org/ and https://
github.com/SerhadS/TechNet/.
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in new concept creation and the evolution of concept space over time, we created
the longitudinal technology concept network cumulative to each year from 1980 to
2016 and identified the concepts that appeared for the first time andwere “original”
in each respective year. The associations of subsets of concepts in the yearly
networks are based on their pairwise semantic similarity (i.e., embedding vector
similarity) and are derived from the total embedding space trained on the complete
patent database from 1976 to 2016. Therefore, although the concepts included in
yearly networks change, their pairwise semantic similarity is universal. In the next
section, we introduce the graph-theoretic and information-theoretic metrics in our
analysis based on TechNet.

3.2. Graph and information theoretic metrics

3.2.1. The network of concepts and originality of new concepts
For a concept networkG¼ V ,Eð Þ, let two concepts be vi and vj ∈V . The semantic
similarity between them is denoted by wij. Then, the mean semantic similarity of
concepts in the network (representing a concept space) is calculated as:

wG ¼ 2
N N�1ð Þ

X

i, j, i≠ j
wij, (1)

where N is the number of concepts in the network.
wG is an inverse indicator of the divergence of the concept space. Recently,

Olson et al. (2021) similarly used a measure of the average semantic distance
among words that a person generates as the indicator of thought space divergence
and creativity. This measure will further allow us to detect whether the cumulative
technological concept space has been diverging or converging over time, as new
concepts continually enter the space each year.

We further assess the mean semantic similarity wN between the new and prior
concepts as:

wN ¼ 1
Uj j∣V ∣

X

∀i∈U,∀j∈V

wij, (2)

whereU is the set of concepts that appeared prior to the corresponding year and V
is the set of new concepts that appeared in the corresponding year. The calculation
considers only the edges between the concepts in sets U and V .

wN is an inverse indicator of the originality of the new concepts that appeared
for the first time in a year. It follows the spirit of a few recent studies that similarly
used measures of semantic distance between words or terms as novelty indicators
of design ideas (Goucher-Lambert & Cagan 2019; Camburn et al. 2020). This
metric will further allow us to detect the longitudinal change in the originality of
the new concepts appearing for the first time each year.

Due to the large size of the total TechNet, for each year, we randomly sample
100 subgraphs of the total concept network cumulative to each year for calculating
the graph theoretic metrics. Each subgraph contains 1,000 (or 500, 2000, 5000 in
the robustness tests) randomly sampled concepts from the total network cumula-
tive to each year. In each random subgraph, the share of new concepts is preserved
to be the same as the share in the total network cumulative to that year.
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3.2.2. Concept information content
We also measure the additional new information content that is brought by a new
concept to the cumulative space of technological concepts. This can imply the
amount of learning required to remove uncertainty over the meaning of the new
concept. Assuming that all prior concepts have been known by the collective
intelligence of human innovators, the information content of a new concept can
be approximated as the sum of the information content of the most similar prior
concept to the new concept and the additional information content that the new
concept brings in. This can be expressed as:

IC xnewð Þ¼ IC pð ÞþΔIC xnewjpð Þ, (3)

where IC xnewð Þ is the information content of the newly introduced concept xnew,
IC pð Þ is the information content of the prior concept p most similar to xnew, and
ΔIC xnewjpð Þ is the additional information content that xnew brings to collective
concept space given the most similar prior concept p.

According to Shannon’s information entropy, the information content of an
event x is,

IC xð Þ¼� logP xð Þ: (4)

It states that if an event x has a lower probability of occurrence, that is, if P(x) is
lower, its information content is higher. Thus, an unexpected event carries more
information than a highly expected event.

By inserting equation (4) into equation (3), we obtain ΔIC xnewjpð Þ as:

ΔIC xnewjpð Þ¼ log
P pð Þ

P xnewð Þ : (5)

Since it is assumed that prior concepts are collectively known, P pð Þ can be
approximated as 1 (i.e., the probability that someone is an expert on prior concept p
is 1). On the other hand, P xnewð Þ can be approximated as the cosine similarity
between the new concept and its most similar prior concept. In other words, the
probability of inferring the meaning of the new concept is approximated by its
maximum similarity to prior concepts.

Equation (5) with log base 2 is used to calculate each new concept’s expected
additional information content when it appeared for the first time. On this basis,
we measure the mean additional information content that a sample of 1,000
(or 500, 2,000 and 5,000 in the robustness tests) randomly sampled new concepts
bring to the technology semantic network each year. Then we detect the changes in
the mean additional information content of new concepts each year.

Our data and codes are available at https://github.com/SerhadS/techspace-
evolution.

4. Findings and interpretations

4.1. Findings

We now report the longitudinal changes in the macro- and micro-structures of the
technological concept network over the past four decades, focusing on the origin-
ality and information content addition of new concepts that appeared for the first
time in the technological concept space cumulative to each year.
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First, we observe that the number of accumulated concepts within the total
technological concept space has exhibited linear growth, signifying a relatively
steady annual creation of new concepts. The annual growth rate of new concepts
has consistently decreased over the past four decades (Figure 3).2 This rate is
calculated by dividing the number of new concepts in each year by the cumulative
number of concepts in the total space up to that year. Had the growth rate been
constant or increasing, the cumulative curve would have taken an exponential
shape. Moreover, the ratio of new concepts to all unique concepts, assessed in
rolling 5-year windows, has also seen a decline (refer to Supplementary Material).
Concurrently, there has been a reduction in the average number of new concepts
per patent, decreasing from 2.15 to 0.54, while the total number of concepts per
patent has remained relatively stable. In summary, the expansion of the total
technological concept space is linear, rather than exponential.

Second, as shown in Figure 4, from 1981 to 2016, the mean semantic similarity
of all concepts increased by 23%. This suggests that the concepts in the techno-
logical concept space are converging over time. We conducted Kolmogorov–
Smirnov tests and the results show significant increases across years and periods
of 5 years (see Supplementary Material). Furthermore, the mean semantic simi-
larity between new and prior concepts increased by 31%.3 This suggests that

Figure 3.The total number of concepts and the proportion of new concepts to the total number of concepts in
the network, accumulated up to a given year.

2The pattern here should not be confused with the one based onHeap’s law. Heap’s law describes the
relationship between the number of distinct terms from a vocabulary in a text and the length of the text.
Our case addresses the relationship between the number of new terms entering a vocabulary and the
expanding size of the vocabulary. The length of individual patent abstract texts has been rather stable.

3As a relevant test, we randomly chose 10,000 patents every year and calculated the pairwise semantic
similarity between unique terms in patent titles and abstracts. We find a slight increase in the mean
semantic similarity among the concepts within individual patents from 0.27 to 0.31, with a rather stable
number of total concepts per patent. See Supplementary Material.

9/18

https://doi.org/10.1017/dsj.2024.10 Published online by Cambridge University Press

http://doi.org/10.1017/dsj.2024.10
http://doi.org/10.1017/dsj.2024.10
http://doi.org/10.1017/dsj.2024.10
https://doi.org/10.1017/dsj.2024.10


concepts created each year (i.e., appearing for the first time in the network
cumulative to that year) are becoming more similar to prior concepts, implying
that the originality of new concepts is diminishing over time. To test the robustness
of this pattern, we also experimented with samples containing 500, 2,000 and 5,000
concepts to calculate mean semantic similarity, and the results are reported in
Figure 5. The trend remains consistent.

Figure 4. The mean semantic similarity of all concepts and the mean semantic similarity between new and
prior concepts in the network accumulated up to a given year. Due to the size of the technology concept
network, for computational efficiency, we sampled 100 subgraphs, each comprising 1,000 randomly selected
concepts, from the total network accumulated up to each year, and calculated the means and standard
deviations of the mean semantic similarity for the 100 subgraphs.

Figure 5. Robustness tests for mean semantic similarity measurement. The mean (node) and standard
deviation (error bar) of semantic similarities of the concepts in 100 randomly sampled subgraphs, each
consisting of (A) 500 concepts, (B) 2,000 concepts and (C) 5,000 concepts each year. The differences between
sub-plots suggest higher variance for smaller subgraph sizes and lower variance for larger subgraphs, as
expected.
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Third, Figure 6 shows a continuous 21% decrease in the mean additional
information content that an average new concept contributes to the prior total
concept space from 1981 to 2016. We conducted Kolmogorov–Smirnov tests, and
the results demonstrate that the decreases across years and periods of 5 years are
significant (see Supplementary Material). To test the robustness of this trend, we
experimented with samples containing 500, 2,000 and 5,000 concepts to calculate
mean additional information content, and the results are displayed in Figure 7.
This consistent trend suggests that the newly created concepts are contributing a
diminishing amount of new information to the existing knowledge base. For
example, when the term “deep learning” first appeared in TechNet, it was highly
associated with many previously existing concepts, such as “neural network,”
“machine learning” and “regression,” thus adding little new information to the
prior concept space. The same applies to “blockchain,” “Web 3,” “metaverse,” and
many other emerging terms, which can be considered as “rehashed concepts”with
low originality.

Similar or related trends have been documented in several prior studies, albeit
with more coarse-grained empirical evidence at the level of discrete breakthrough
inventions (Huebner 2005), patented inventions (Luo &Wood 2017), or regarding
the behaviors and productivity of individuals (Jones 2009), firms and industries
(Bloom et al. 2020). Our analysis examines the elemental concepts that constitute
inventions and their relations that form the total technology space, thereby
providing both finer-grained and more macro-empirical evidence on the possible
trends of innovation. Notably, our work is enabled by the latest natural language
processing technologies and, specifically, the large pre-trained technology seman-
tic network, TechNet, which has only recently become publicly available.

Figure 6. The mean additional information content contributed by 1,000 randomly selected new concepts to
the technology concept network. Themeans and standard deviations are denoted by the nodes and error bars,
respectively.
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4.2. Interpretations

The linear expansion of the total technological concept space, coupled with the
shrinking originality of new concepts over time, implies diminishing returns on the
creation of new concepts. This trend may stem from the dominant negative
feedback illustrated in Figure 1, which outweighs the positive feedback.

The cumulative expansion of the total technological concept space as a result of
continual innovation implies more knowledge prerequisites for future innovators
(Jones 2009; Callaghan 2021) and more prior concepts to benchmark against to
derive originality in future innovation. To invent new technologies and create
original concepts against an expanding space of prior art, future innovators must
learn, master, utilize and synthesize an ever-increasing number of prior concepts
and knowledge than ever before. Many new concepts are “rehashed concepts”
rather than truly original ones and might confuse the learning of young students
and future innovators. Additionally, the increasing complexities in new technolo-
gies, design processes and organizations, as evidenced and analyzed in many prior
studies (de Weck, Roos & Magee 2011; Luo & Wood 2017), may also introduce
further challenges to future innovation.

On the other hand, the accumulation and expansion of the total technology
space may offer more knowledge ingredients for potential reuse, recombination
and synthesis into new concepts. This is the positive feedback depicted in Figure 1.
However, such creative recombination potentials are conditioned on the cognitive
capabilities of humans to fully utilize, learn and synthesize the growing space of
prior concepts. The linear expansion of the technological concept space and
diminishing originality of new concepts characterize the era to date when innov-
ation primarily relied on biologically limited human intelligence. Moving forward,
AImay help copewith the growing knowledge burden and “complexity” challenges
to human intelligence for innovation.

5. The promise of creative AI
Here, we introduce CAI (Creative Artificial Intelligence) as a type of AI with the
potential to counteract the negative forces impacting innovation. CAI extends

Figure 7. Robustness tests for mean additional information content measurement. Longitudinal change in
mean (node) and standard deviation (error bar) additional information content brought by new concepts in
samples of (A) 500 concepts, (B) 2,000 concepts and (C) 5,000 concepts in each year. Although the sub-plots
are similar, smaller samples exhibit slight fluctuations, which diminish in larger ones.
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beyond traditional machine learning, which is primarily focused on pattern
recognition, and transcends the realm of computer-aided design (CAD) and
human concept generation capabilities (Nagai, Taura & Mukai 2009; English
et al. 2010; Luo et al. 2018; He et al. 2019; Luo, Sarica & Wood 2021; Sarica
et al. 2021).

Creative AI distinguishes itself from Generative AI by necessitating that its
outputs be both original and useful to qualify as genuinely creative. CAI needs to
integrate three interlinked, knowledge-based capabilities essential for creative
tasks: machine learning, machine creation and machine evaluation (see Figure 8).

Machine learning absorbs prior knowledge and concepts efficiently, addressing
the increasing knowledge burdens and complexity. Machine creation, through the
automated recombination of existing concepts, fosters the generation of diverse
and novel concepts, potentially counterbalancing the decline in originality.
Machine evaluation swiftly compares new concepts against the vast repository of
prior art, facilitating the identification of truly novel innovations (Haefner et al.
2021; Hutchinson 2021; Luo 2023a). These interconnected capabilities are vital for
overcoming the challenges associated with the dwindling originality in innovation.

Recent breakthroughs in Generative Pretrained Transformers (GPTs) and
Large Language Models (LLMs) have showcased extraordinary abilities in content
generation from a broad knowledge base (OpenAI 2023). Although such capabil-
ities do not inherently guarantee the originality of the generated content, they can
be harnessed and refined into CAI through fine-tuning and creativity-oriented
model controls. Our research at the Data-Driven Innovation Lab has leveraged
design creativity theories to adapt or control various GPTs with curated design
datasets, enabling them to achieve a higher level of artificial creativity that
surpasses human ingenuity and generates highly original technological concepts
for complex problems (Zhu & Luo 2023; Zhu, Zhang & Luo 2023). This under-
scores the promise of CAI to enhance creativity in the innovation process.

Furthermore, empirical studies have documented the exponential growth in the
functional performance of key technology categories, notably in information and
energy processing (Kurzweil 2005; Koh & Magee 2006, 2008). Such acceleration
implies increasing returns on technological enhancements. These studies,

Figure 8. The fundamental constituents of creative artificial intelligence (CAI).
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however, concentrate on functional performance improvements rather than new
concept creation and originality that drive innovation, the very elements our
research focuses on.

The observed dichotomy indicates that while functional improvements have
been accelerating, the origination of novel technological concepts has been decel-
erating. The past four decades suggest that technological progression has been
predominantly incremental, prioritizing refinement over groundbreaking concep-
tual innovation. Nevertheless, original, pioneering innovations could still signifi-
cantly influence long-term technological performance. On the other hand, the
swift advancements in data computing, storage and transmission technologies
(Singh, Triulzi & Magee 2021), identified as peaks in the technology fitness
landscape (Jiang & Luo 2022), have propelled the development of GPTs and LLMs
and may potentially fuel the CAI evolution.

Incorporating CAI into the innovation process holds promise for transforming
the course of concept creation and originality, challenging the historical reliance on
human intellect. As CAI assumes an increasingly prominent role in designing
future technologies, we must ponder the future roles of human designers. The
interplay between CAI and human intelligence in future design processes presents
an urgent research inquiry (Song et al. 2022; Song, Zhu& Luo 2024). The co-design
process involving humans and CAI must be thoughtfully crafted to safeguard
fundamental human values, in both the innovation outcomes and the process itself
(Luo 2023b). Nonetheless, it is crucial to recognize that societal, economic,
geopolitical and demographic factors may also influence the trends and future
scenarios.

6. Limitations and cautions
It is essential to exercise caution when interpreting and drawing inferences from
the observed trends for several reasons related to data and methodology. First, our
empirical basis is limited to patentable technological inventions during a specific
period from 1976 to 2016 in a specific database from USPTO. Future research
should examine non-patentable inventions and cover other time periods to test if
the patterns we discovered hold true.While the U.S. patents provide the best proxy
for measuring global invention originality to date, this situation might change in
the future and examining the originality of patents from other nations might yield
additional insights (Santacreu & Zhu 2018).

Second, the patent institutional systemmay introduce confounding factors that
affect the interpretation of the trends we have observed over the past four decades.
The propensity to patent varies over industries, organizations and time periods.
For example, many software inventions are not patented. Patent quality is
also related to the examination process. Legal and institutional changes (e.g., the
Bayh-Dole Act, the creation of the Patent Trial and Appeal Board in 1982) may
impact the patent database. Future research should consider systematic
statistical techniques to control for such confounding factors when testing specific
interpretations.

Furthermore, our analysis is based on the only publicly available technology
semantic knowledge base, TechNet and several new metrics that we proposed.
Future research may explore other and emerging semantic knowledge bases, such
as the Engineering Knowledge Graph or EKG (Siddharth et al. 2022b), as well as
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alternative metrics to approximate the technological concept space and measure
concept originality. Future research may also compare concept creation and
originality patterns across different technological fields.

In sum, addressing these data andmethodological limitations in future research
may derive new insights and interpretations, and further support, nuance or
challenge our findings.

7. Conclusion
In this study, we analyzed the structure and evolution of the technology semantic
network based on graph and information theories. Our results suggest diminishing
originality of new concepts during the linear expansion of the total concept space
over the past four decades. We considered the negative and positive feedback
(depicted in Figure 1) fromprior innovation on future innovation to interpret these
trends. Innovation over time results in the cumulative expansion of the techno-
logical concept space, which raises the bar for deriving originality in future
innovation and increases knowledge burdens on future innovators, despite pro-
viding more knowledge ingredients for potential recombination and synthesis into
new concepts. Developing and deploying CAI in the innovation process might
potentially strengthen the positive feedback and mitigate the negative feedback
from prior innovation, thus altering the observed trends. The paper calls for more
research on CAI and its impact on future innovation.

Supplementary material
The supplementary material for this article can be found at https://doi.org/
10.1017/dsj.2024.10.
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