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Abstract
We prove some results on the nilpotent orbit theorem for complex variations of Hodge structure.

Contents

0 Introduction 1
1 Preliminary 2

1.1 Complex polarized variations of Hodge structure . . . . . . . . . . . . . . . . . . . . 2
1.2 Deligne extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Acceptable bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Adapted to log order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Parabolic vector bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Prolongation via norm growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.7 Period domain and period mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Nilpotent orbit theorem 7
2.1 Two results of 𝐿2-estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Proof of Theorem A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 On the nilpotent orbit theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

0. Introduction

The nilpotent and SL2-orbit theorems of Schmid have been fundamental in understanding the degener-
ation of Hodge structure, particularly in the context of integral variation of Hodge structures. However,
their complete generalization to complex variations of Hodge structure remains unproven. This paper
aims to the study of Schmid’s nilpotent orbit theorem for complex variations of Hodge structure. The
main result of this paper is the main component of the nilpotent orbit theorem.

Theorem A. Let X be a complex manifold, and let 𝐷 =
∑ℓ
𝑖=1 𝐷𝑖 be a simple normal crossing divisor

on X. Let (𝑉,∇, 𝐹•, 𝑄) be a complex polarized variation of Hodge structure on 𝑋\𝐷. Then for any
multi-index 𝜶 = (𝛼1, . . . , 𝛼ℓ) ∈ Rℓ , 𝐹 𝑝

𝜶 := 𝑗∗𝐹
𝑝 ∩ 𝑉Del

𝜶 and 𝐹 𝑝
𝜶 /𝐹

𝑝+1
𝜶 are both locally free sheaves.

Here, 𝑉Del
𝜶 is the Deligne extension of the flat bundle (𝑉,∇) with the eigenvalues of the residue of ∇

over 𝐷𝑖 lying in [−𝛼𝑖 ,−𝛼𝑖 + 1).
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2 Y. Deng

We prove moreover that the grading ⊕𝑝+𝑞=𝑚𝐹
𝑝
𝜶 /𝐹

𝑝+1
𝜶 is naturally identified with ⊕𝑝+𝑞=𝑚P𝜶𝐸 𝑝,𝑞 ,

where P𝜶𝐸 𝑝,𝑞 is the prolongation of the Hodge bundles 𝐸 𝑝,𝑞 := 𝐹 𝑝/𝐹 𝑝+1 in terms of the norm growth
of the Hodge metric (see §1.6 for the definition).

Based on Theorem A, we can generalize main parts of Schmid’s nilpotent orbit theorem to complex
polarized variation of Hodge structure.

Theorem B. Let (𝑉,∇, 𝐹•, 𝑄) be a complex polarized variation of Hodge structure on (Δ∗) 𝑝 × Δ𝑞 .
Denote by Φ : H𝑝 × Δ𝑞 → 𝒟 its period mapping, where 𝒟 is the period domain and H = {𝑧 ∈
C | �𝑧 < 0}. Let us denote by 2𝜋𝑖𝑅𝑖 is the logarithm of the monodromy operator associated to the
counterclockwise generator of the fundamental group of the i-th copy of Δ∗ in (Δ∗) 𝑝 , whose eigenvalues
lie in (2𝜋𝑖(𝛼𝑖 − 1), 2𝜋𝑖𝛼𝑖] for some 𝜶 ∈ R𝑝 . Then for the holomorphic mapping Ψ : (Δ∗) 𝑝 × Δ𝑞 → �̌�

induced by Ψ̃ := exp(
∑𝑝
𝑖=1 𝑧𝑖𝑅𝑖) ◦Φ(𝑧, 𝑤),

(i) Ψ extends holomorphically to Δ 𝑝+𝑞;
(ii) the holomorphic mapping

𝜗 : H𝑝 × Δ𝑞 → �̌�

(𝑧, 𝑤) ↦→ exp

(
−

𝑝∑
𝑖=1

𝑧𝑖𝑅𝑖

)
◦ 𝑎(𝑤)

is horizontal, where 𝑎(𝑤) := Ψ(0, 𝑤), and �̌� is the compact dual of the period domain 𝒟.
(iii) In the one variable case, exp(−𝑧𝑅) ◦ 𝑎 lies in 𝒟 when �𝑧 ≤ −𝐶 for some 𝐶 > 0. Moreover, we

have the distance estimate

𝑑𝒟(exp(−𝑧𝑅) ◦ 𝑎,Φ(𝑧)) ≤ 𝐶 ′ |�𝑧 |𝛽𝑒𝛿�𝑧 for some 𝐶 ′, 𝛿, 𝛽 > 0

if �𝑧 ≤ −𝐶.

When (𝑉,∇) has quasi-unipotent monodromies around D, Theorems A and B are contained in
Schmid’s nilpotent orbit theorem [10]. Under this monodromy assumption, he proved Theorem B.(iii)
for the case of several variables.

Theorems A and B were also proved by Sabbah and Schnell [9] for the case of one variable in a
different way. Their methods can be extended to prove the general case.

Our proof of Theorem A is based on Mochizuki’s work on the prolongation of acceptable bundles
[8] and methods in 𝐿2-estimates. The proof of Theorems B.(ii) and B.(iii) essentially follows Schmid’s
method in [10].

We conclude the introduction by explaining applications of the main result in this paper. One
application is related to the work [13] on the injectivity and vanishing theorem for R-Hodge modules.
We remark that in [13 , Lemma 2.10], nilpotent orbit theorem for real variation of Hodge structures
was claimed. It seems to the author that the proof needs some amplification, and as such, Theorem A
complements the proof presented therein.

Another potential further application is on the complex Hodge modules. It is well-established that
Saito’s theory of mixed Hodge modules fundamentally relies on the nilpotent orbit theorem. Currently,
Sabbah and Schnell are developing the theory of mixed Hodge modules for complex Hodge structures.
We remark that the nilpotent orbit theorem established in this paper should serve as a foundational
component in their work.

1. Preliminary

1.1. Complex polarized variations of Hodge structure

Let us briefly recall the definition of polarized Hodge structure. We refer the readers to [12, 9] for more
details. A Hodge structure of weight w on a complex vector space V is a decomposition
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𝑉 =
⊕
𝑝+𝑞=𝑤

𝑉 𝑝,𝑞

and a polarization is a Hermitian pairing 𝑄 : 𝑉 ⊗C �̄� → C such that the above decomposition is
orthogonal with respect to Q and such that (−1)𝑞𝑄 is positive definite on the subspace 𝑉 𝑝,𝑞 . For any
𝑣 ∈ 𝑉 , its Hodge norm is defined

|𝑣 |2 =
∑

𝑝+𝑞=𝑤
(−1)𝑞𝑄 (𝑣𝑝,𝑞 , 𝑣𝑝,𝑞),

where 𝑣𝑝,𝑞 is the (𝑝, 𝑞)-component of v in the Hodge decomposition 𝑉 =
⊕

𝑝+𝑞=𝑤 𝑉 𝑝,𝑞 . Such a
polarized Hodge structure induces the Hodge filtration 𝐹•𝑉 of V defined by

𝐹 𝑝𝑉 =
⊕
𝑖≥𝑝

𝑉 𝑖,𝑤−𝑖 .

As introduced by [12], a complex polarized variation of Hodge structure (𝑉 =
⊕

𝑟+𝑠=𝑤 𝑉𝑟 ,𝑠,∇, 𝑄)
of weight w on a complex manifold U consists of the following data:

(a) a smooth vector bundle V with a Hodge decomposition 𝑉 =
⊕

𝑟+𝑠=𝑤 𝑉𝑟 ,𝑠;
(b) a flat connection ∇ satisfies the Griffiths’ transversality condition

∇ : 𝑉𝑟 ,𝑠 → 𝐴0,1 (𝑉𝑟+1,𝑠+1) ⊕ 𝐴1,0(𝑉𝑟 ,𝑠) ⊕ 𝐴0,1 (𝑉𝑟 ,𝑠) ⊕ 𝐴1,0 (𝑉𝑟−1,𝑠+1); (1.1)

(c) a parallel Hermitian form Q which makes the Hodge decomposition orthogonal and which on V𝑟 ,𝑠

is positive definite if r is even and negative definite if r is odd.

We decompose ∇ = 𝜃 + 𝜕 + 𝜕 + 𝜃 according to the above transversality condition in Equation (1.1). The
most important component of the connection turns out to be the Higgs field, which is the linear operator

𝜃 : 𝑉𝑟 ,𝑠 → 𝐴1,0(𝑉𝑟−1,𝑠+1).

We decompose∇ = ∇′+∇′′ into its (1,0)-component∇′ : 𝐴0(𝑉) → 𝐴1,0(𝑉) and its (0, 1)-component
∇′′ : 𝐴0 (𝑉) → 𝐴0,1 (𝑉). Then ∇′′ gives V the structure of a holomorphic vector bundle, which we
denote by the symbol V , and ∇′ defines an integrable holomorphic connection ∇′ : V → Ω1

𝑈 ⊗𝒪𝑈 V on
this bundle. The condition on ∇ in Equation (1.1) is saying that the Hodge filtration

𝐹 𝑝𝑉 =
⊕
𝑖≥𝑝

𝑉 𝑖,𝑤−𝑖

is a holomorphic subbundles of V , and that the connection ∇′ satisfies Griffiths’ transversality relation

∇′(𝐹 𝑝V) ⊆ Ω1
𝑈 ⊗𝒪𝑈 𝐹 𝑝−1V .

Note that (𝑉 𝑝,𝑞 , 𝜕) defines a holomorphic vector bundle, denoted by 𝐸 𝑝,𝑞 . From the above point of
view, the Higgs field is simply the holomorphic operator

𝜃 : 𝐸 𝑝,𝑞 → Ω1
𝑈 ⊗𝒪𝑈 𝐸 𝑝−1,𝑞+1.

Denote by (𝐸, 𝜃) = (⊕𝑝+𝑞=𝑤𝐸
𝑝,𝑞 , 𝜃), which is called the system of Hodge bundles relative to the C-

VHS (𝑉 = ⊕𝑝+𝑞=𝑤𝑉
𝑝,𝑞 ,∇, 𝑄). Let us define ℎ𝑝,𝑞 := (−1) 𝑝𝑄, which is a Hermitian metric for 𝐸 𝑝,𝑞 by

Item (c). For the Hermitian metric ℎ = ⊕𝑝+𝑞=𝑤 ℎ𝑝,𝑞 of E, the component 𝜃 : 𝑉𝑟 ,𝑠 → 𝐴0,1 (𝑉𝑟+1,𝑠−1) is
the adjoint of 𝜃 with respect to h. Since the primary objective of this paper is to establish the nilpotent
orbit theorem for C-VHS, we will adopt the notation (𝑉,∇, 𝐹•𝑉,𝑄) to represent the C-VHS, as the
Hodge filtration 𝐹•𝑉 plays a central role in the nilpotent orbit theorem.
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1.2. Deligne extension

Let X be a complex manifold, and let D be a simple normal crossing divisor on X. For the flat bundle
(𝑉,∇) defined on𝑈 := 𝑋\𝐷, Deligne introduced a way to extend it across D. We recall this construction
briefly and refer the readers to [10, 7, 9] for more details. For any point 𝑥 ∈ 𝐷, we choose an admissible
coordinate (Ω; 𝑧1, . . . , 𝑧𝑛) such that Ω � Δ𝑛 and 𝐷 ∩ Ω = (𝑧1 . . . 𝑧𝑝 = 0) (see Definition 1.1 for
the definition). Write 𝑞 = 𝑛 − 𝑝. The fundamental group 𝜋1

(
(Δ∗) 𝑝 × Δ𝑞

)
is generated by elements

𝛾1, . . . , 𝛾𝑝 , where 𝛾 𝑗 may be identified with the counterclockwise generator of the fundamental group
of the j-th copy of Δ∗ in (Δ∗) 𝑝 . We denote by 𝑉∇ the space of multivalued flat sections of (𝑉,∇),
which is a finite-dimensional C-vector space. Set 𝑇𝑗 to be the monodromy transformation with respect
to 𝛾 𝑗 , which pairwise commute and are endomorphisms of 𝑉∇; that is, for any multivalued section
𝑣(𝑡1, . . . , 𝑡𝑝+𝑞) ∈ 𝑉∇, one has

𝑣(𝑡1, . . . , 𝑒2𝜋𝑖𝑡 𝑗 , . . . , 𝑡𝑝+𝑞) = (𝑇𝑗𝑣) (𝑡1, . . . , 𝑡𝑝+𝑞)

and [𝑇𝑗 , 𝑇𝑘 ] = 0 for any 𝑗 , 𝑘 = 1, . . . , 𝑝. Let us write 𝑆𝑝(𝑇𝑗 ) the set of eigenvalues of 𝑇𝑗 , and for any
𝜆 𝑗 ∈ 𝑆𝑝(𝑇𝑗 ), we denote byE(𝑇𝑗 , 𝜆 𝑗 ) ⊂ 𝑉∇ the corresponding eigenspace. We know that all 𝜆 𝑗 ∈ 𝑆𝑝(𝑇𝑗 )
has norm 1 (see, e.g., [9]). Write 𝑆𝑝 :=

∏𝑝
𝑖=1 𝑆𝑝(𝑇𝑗 ). For 𝝀 = (𝜆1, . . . , 𝜆𝑝), we define

E𝝀 := ∩𝑝
𝑗=1E(𝑇𝑗 , 𝜆 𝑗 ).

Since 𝑇𝑗 pairwise commute, one has

𝑉∇ = ⊕𝝀∈𝑆𝑝E𝝀 ,

and E𝝀 is an invariant subspace of 𝑇𝑗 for any 𝝀 ∈ 𝑆𝑝 and any j.
Let us fix a p-tuple 𝜶 := (𝛼1, . . . , 𝛼𝑝) ∈ R𝑝 . Then for 𝝀 ∈ 𝑆𝑝, there exists a unique 𝛽𝑖 ∈ (𝛼𝑖 − 1, 𝛼𝑖]

such that exp(2𝜋𝑖𝛽𝑖) = 𝜆𝑖 . Since 𝜆−1
𝑖 𝑇𝑖 |E𝝀 is unipotent, its logarithm can be defined as

log(𝜆−1
𝑖 𝑇𝑖 |E𝝀 ) :=

∞∑
𝑘=1

(−1)𝑘+1 (𝜆
−1
𝑖 𝑇𝑖 |E𝝀 − 𝐼)𝑘

𝑘
.

We denote 𝑁𝑖 := log(𝜆−1
𝑖 𝑇𝑖 |E𝝀 )
2𝜋𝑖 . Then for any 𝑣 ∈ E𝝀 , we define

�̃�(𝑡) := exp

(
−

𝑝∑
𝑖=1

(𝛽𝑖 𝐼 + 𝑁𝑖) · log 𝑡𝑖

)
𝑣(𝑡) =

𝑝∏
𝑖=1

𝑡
−𝛽𝑖
𝑖 exp

(
−

𝑝∑
𝑖=1

𝑁𝑖 · log 𝑡𝑖

)
𝑣(𝑡). (1.2)

One can check that �̃� is single valued and that ∇0,1�̃� = 0. We now fix a basis 𝑣1, . . . , 𝑣𝑟 of 𝑉∇ such
that each 𝑣𝑖 belongs to some E𝝀 . Then the holomorphic sections �̃�1, . . . , �̃�𝑟 of V defines a prolongation
of V over X which we denoted by 𝑉Del

𝜶 . One can check that this construction does not depend on our
choice of the basis. This is called the Deligne extension of the flat bundle (𝑉,∇) with the eigenvalues
of the residue of ∇ over 𝐷𝑖 lying in [−𝛼𝑖 ,−𝛼𝑖 + 1). Note that it is defined for any flat bundle (𝑉,∇) (not
necessarily complex variation of Hodge structure).

If (𝑉,∇) underlies a complex polarized variation of Hodge structure (𝑉,∇, 𝐹•𝑉,𝑄), we define
𝐹 𝑝
𝜶 := 𝑗∗𝐹

𝑝 ∩ 𝑉Del
𝜶 . It is called the extension of the Hodge filtration. It should be noted that, a priori,

we do not know whether 𝐹 𝑝
𝜶 is locally free.

1.3. Acceptable bundles

Definition 1.1 (Admissible coordinate). Let X be a complex manifold, and let D be a simple normal
crossing divisor. Let x be a point of X, and assume that {𝐷 𝑗 } 𝑗=1,...,ℓ are the components of D containing
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p. An admissible coordinate around x is the tuple (Ω; 𝑧1, . . . , 𝑧𝑛; 𝜑) (or simply (Ω; 𝑧1, . . . , 𝑧𝑛) if no
confusion arises) where

◦ Ω is an open subset of X containing x.
◦ There is a holomorphic isomorphism 𝜑 : Ω → Δ𝑛 such that 𝜑(𝐷 𝑗 ) = (𝑧 𝑗 = 0) for any 𝑗 = 1, . . . , ℓ.

We shall write Ω∗ := Ω − 𝐷, Ω(𝑟) := {𝑧 ∈ Ω | |𝑧𝑖 | < 𝑟, ∀𝑖 = 1, . . . , 𝑛} and Ω∗(𝑟) := Ω(𝑟) ∩Ω∗.

We define a (incomplete) Poincaré-type metric 𝜔𝑃 on (Δ∗)ℓ × Δ𝑛−ℓ by

𝜔𝑃 =
ℓ∑
𝑗=1

√
−1𝑑𝑧 𝑗 ∧ 𝑑𝑧 𝑗

|𝑧 𝑗 |2 (log |𝑧 𝑗 |2)2 +
𝑛∑

𝑘=ℓ+1

√
−1𝑑𝑧𝑘 ∧ 𝑑𝑧𝑘 . (1.3)

Note that

𝜔𝑃 = 𝑖𝜕𝜕 log��
ℓ∏
𝑗=1

(− log |𝑧 𝑗 |2)−1 ·
𝑛∏

𝑘=ℓ+1
exp(|𝑧𝑘 |2)

���.
For any system of Hodge bundles (𝐸, 𝜃, ℎ), we have the following crucial norm estimate for its Higgs

field 𝜃. The one-dimensional case is due to Simpson [11, Theorem 1] and the general case was proved
by Mochizuki in [5, Proposition 4.1]. Its proof relies on a clever use of Ahlfors–Schwarz lemma.

Theorem 1.2. Let (𝐸, 𝜃, ℎ) be a system of Hodge bundle on 𝑋\𝐷. Then for any point 𝑥 ∈ 𝐷, it has an
admissible coordinate (Ω; 𝑧1, . . . , 𝑧𝑛) such that the norm |𝜃 |ℎ,𝜔𝑃 ≤ 𝐶 holds over Ω∗ for some constant
𝐶 > 0. Here, |𝜃 |ℎ,𝜔𝑃 denotes the norm of 𝜃 with respect to h and 𝜔𝑃 .

Here, we also recall the following definition in [7, Definition 2.7].

Definition 1.3 (Acceptable bundle). Let (𝐸, ℎ) be a Hermitian vector bundle over 𝑋\𝐷. We say that
(𝐸, ℎ) is an acceptable at 𝑝 ∈ 𝐷, if the following holds: There is an admissible coordinate (Ω; 𝑧1, . . . , 𝑧𝑛)
around p such that the norm |𝑅(𝐸, ℎ) |ℎ,𝜔𝑃 ≤ 𝐶 for some 𝐶 > 0. Here, 𝑅(𝐸, ℎ) is the Chern curvature
of (𝐸, ℎ). When (𝐸,ℎ) is acceptable at any point p of D, it is called acceptable.

Hodge filtrations and Hodge bundles endowed with the Hodge metric are all acceptable.

Lemma 1.4. Let (𝑉,∇, 𝐹•, 𝑄) be a complex polarized variation of Hodge structure of weight m on
𝑋\𝐷. Let h (resp. ℎ𝑝,𝑞) be the Hermitian metric on V (resp. on 𝐸 𝑝,𝑞) introduced in §1.1. Consider the
induced Hermitian metric ℎ𝑝 := ℎ|𝐹 𝑝 on the Hodge filtration 𝐹 𝑝 . Then both (𝐹 𝑝 , ℎ𝑝) and (𝐸 𝑝,𝑞 , ℎ𝑝,𝑞)
are acceptable bundles.

Proof. We write 𝜃𝑝,𝑞 := 𝜃 |𝐸 𝑝,𝑞 and let 𝜃†𝑝,𝑞 : 𝐸 𝑝−1,𝑞+1 → 𝐴0,1 (𝐸 𝑝,𝑞) be its adjoint with respect to
ℎ𝑝,𝑞 . For the Hermitian bundle (𝐹 𝑝 , ℎ𝑝), its curvature is

𝑅ℎ𝑝 (𝐹 𝑝) = −2𝜃†𝑚,0 ∧ 𝜃𝑚,0 + 2
𝑚−𝑝∑
𝑖=1

(−𝜃†𝑚−𝑖,𝑖 ∧ 𝜃𝑚−𝑖,𝑖 − 𝜃𝑚−𝑖+1,𝑖−1 ∧ 𝜃†𝑚−𝑖+1,𝑖−1) + 𝜃†𝑝,𝑚−𝑝 ∧ 𝜃𝑝,𝑚−𝑝 .

The curvature of the bundle (𝐸 𝑝,𝑞 , ℎ𝑝,𝑞) is

𝑅ℎ𝑝,𝑞 (𝐸𝑝,𝑞) = −𝜃†𝑝,𝑞 ∧ 𝜃𝑝,𝑞 − 𝜃𝑝+1,𝑞−1 ∧ 𝜃†𝑝+1,𝑞−1.

By Theorem 1.2, for any point 𝑥 ∈ 𝐷 there is an admissible coordinate (Ω; 𝑧1, . . . , 𝑧𝑛) around x such
that the norm ∑

𝑝+𝑞=𝑚
|𝜃𝑝,𝑞 |ℎ𝑝,𝑞 ,𝜔𝑃 = |𝜃 |ℎ,𝜔𝑃 ≤ 𝐶
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holds over Ω∗ for some constant 𝐶 > 0. Since 𝜃†𝑝,𝑞 is the adjoint of 𝜃𝑝,𝑞 with respect to ℎ𝑝,𝑞 , one has
|𝜃†𝑝,𝑞 |ℎ,𝜔𝑃 ≤ 𝐶 for any p. It follows that |𝑅ℎ𝑝 (𝐹 𝑝) |ℎ𝑝,𝑞 ,𝜔𝑃 ≤ 𝐶 ′ and |𝑅ℎ𝑝,𝑞 (𝐸𝑝,𝑞) |ℎ𝑝,𝑞 ,𝜔𝑃 ≤ 𝐶 ′ for
some 𝐶 ′ > 0. Hence, (𝐹 𝑝 , ℎ𝑝) and (𝐸 𝑝,𝑞 , ℎ𝑝,𝑞) are both acceptable. �

1.4. Adapted to log order

We recall some notions in [7, §2.2.2]. Let X be a complex manifold, D be a simple normal crossing
divisor on X and E be a holomorphic vector bundle on 𝑋\𝐷 such that 𝐸 |𝑋\𝐷 is equipped with a
Hermitian metric h. Let 𝒗 = (𝑣1, . . . , 𝑣𝑟 ) be a smooth frame of 𝐸 |𝑋\𝐷 . We obtain the 𝐻 (𝑟)-valued
function 𝐻 (ℎ, 𝒗) defined over 𝑋\𝐷, whose (𝑖, 𝑗)-component is given by ℎ(𝑣𝑖 , 𝑣 𝑗 ).

Let us consider the case 𝑋 = D𝑛 and 𝐷 =
∑ℓ
𝑖=1 𝐷𝑖 with 𝐷𝑖 = (𝑧𝑖 = 0). We have the coordinate

(𝑧1, . . . , 𝑧𝑛). Let h, E and 𝒗 be as above.

Definition 1.5. A smooth frame 𝒗 on 𝑋\𝐷 is called adapted up to log order, if the following inequalities
hold over 𝑋\𝐷:

𝐶−1

(
−

ℓ∑
𝑖=1

log |𝑧𝑖 |
)−𝑀

≤ 𝐻 (ℎ, 𝒗) ≤ 𝐶

(
−

ℓ∑
𝑖=1

log |𝑧𝑖 |
)𝑀

for some positive numbers M and C.

1.5. Parabolic vector bundles

In this subsection, we recall the notions of parabolic (vector) bundles. For more details, we refer to [6].
Let X be a complex manifold, 𝐷 =

∑ℓ
𝑖=1 𝐷𝑖 be a reduced simple normal crossing divisor, 𝑈 = 𝑋\𝐷 be

the complement of D and 𝑗 : 𝑈 → 𝑋 be the inclusion.

Definition 1.6. A parabolic bundle P∗𝐸 on (𝑋, 𝐷) is a holomorphic vector bundle E on U, together
with an Rℓ-indexed filtration P𝜶𝐸 (parabolic structure) by locally free subsheaves of 𝑗∗𝐸 such that

(i) 𝜶 ∈ Rℓ and P𝜶𝐸 |𝑈 = 𝐸 .
(ii) P𝜶𝐸 ⊂ P𝜷𝐸 if 𝛼𝑖 ≤ 𝛽𝑖 for all i.

(iii) For 1 ≤ 𝑖 ≤ ℓ, P𝜶+1𝑖𝐸 = P𝜶𝐸 ⊗O𝑋 (𝐷𝑖), where 1𝑖 = (0, . . . , 1, . . . , 0) with 1 in the i-th component.
(iv) P𝜶+𝜺𝐸 = P𝜶𝐸 for any vector 𝝐 = (𝜖, . . . , 𝜖) with 0 < 𝜖 � 1.
(v) The set of weights {𝜶 | P𝜶𝐸/P<𝜶𝐸} ≠ 0 is discrete in Rℓ .

1.6. Prolongation via norm growth

Let X be a complex manifold, 𝐷 =
∑ℓ
𝑖=1 𝐷𝑖 be a simple normal crossing divisor, 𝑈 = 𝑋\𝐷 be the

complement of D and 𝑗 : 𝑈 → 𝑋 be the inclusion. Let (𝐸, ℎ) be a Hermitian vector bundle on U. For
any 𝜶 = (𝑎1, . . . , 𝑎ℓ) ∈ Rℓ , we can prolong E over X by a sheaf of O𝑋 -module P𝜶𝐸 as follows:

P𝜶𝐸 (𝑈) =
{
𝜎 ∈ Γ(𝑈\𝐷, 𝐸 |𝑈\𝐷) | |𝜎 |ℎ �

ℓ∏
𝑖=1

|𝑧𝑖 |−𝛼𝑖−𝜀 for all 𝜀 > 0

}
.

In [8, Theorem 21.3.1], Mochizuki proved that the prolongation of acceptable bundles defined above
are parabolic bundles.

Theorem 1.7 (Mochizuki). Let (𝐸, ℎ) be an acceptable bundle over 𝑋\𝐷. Then P∗𝐸 defined above is
a parabolic bundle.
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1.7. Period domain and period mapping

In this subsection, we quickly review the definitions of period domain and period mapping. We refer
the readers to [1, 4, 9] for more details.

Let (𝑉 = ⊕𝑝+𝑞=𝑚𝑉
𝑝,𝑞 , 𝑄) be a polarized complex Hodge structure of weight m defined in §1.1.

Recall that the Hodge filtration is defined to be 𝐹 𝑝 := ⊕𝑖≥𝑝𝑉 𝑖,𝑚−𝑖 . After fixing m and dimC 𝐹 𝑝 , the set
of all such filtration 𝐹• is a complex flag manifold, which is denoted by �̌�. It is a closed submanifold
of a product of Grassmannians and is thus a projective manifold. The subset 𝒟 of all complex polarized
Hodge structures are charcterized by

(a) 𝐹 𝑝 = 𝐹 𝑝 ∩ (𝐹 𝑝+1)⊥ ⊕ 𝐹 𝑝+1.
(b) (−1) 𝑝𝑄 is positive definite over 𝐹 𝑝 ∩ (𝐹 𝑝+1)⊥.

It is an open submanifold of �̌�. We usually write F instead of 𝐹• to lighten the notation. Since the groups
GL(𝑉) and 𝐺 := 𝑈 (𝑉,𝑄) act transitively on �̌� and 𝒟, respectively, �̌� and 𝒟 are thus homogeneous
spaces.

For any Hodge structure 𝐹 ∈ �̌�, the holomorphic tangent space 𝑇�̌�,𝐹 of �̌� at F is identified with

End(𝑉)/{𝐴 ∈ End(𝑉) | 𝐴(𝐹 𝑝) ⊂ 𝐹 𝑝 for all 𝑝}.

For any 𝐴 ∈ End(𝑉), we denote by [𝐴]𝐹 its image in 𝑇�̌�,𝐹 .
A tangent vector [𝐴]𝐹 in 𝑇�̌�,𝐹 is called horizontal if 𝐴(𝐹 𝑝) ⊂ 𝐹 𝑝−1 for all p. The subbundle of

𝑇�̌� consisting of horizontal vectors is denoted by 𝑇−1,1
�̌�

, and one can show that it is a holomorphic
subbundle of 𝑇�̌�. A holomorphic map 𝑓 : Ω → �̌� from a complex manifold Ω is called horizontal if
𝑑𝑓 : 𝑇Ω → 𝑓 ∗𝑇�̌� factors through 𝑓 ∗𝑇−1,1

�̌�
.

A complex (unpolarized) variation of Hodge structure (𝑉 = ⊕𝑝+𝑞=𝑚,∇) over a complex manifold
Ω induces a horizontal holomorphic map Φ : Ω̃ → �̌� by the Griffiths’ transversality, where Ω̃ is the
universal cover of Ω. Here, we choose the reference space of �̌� to be the space of multivalued flat
sections 𝑉∇. Φ is called the period mapping associated to (𝑉,∇, 𝐹•). When this complex variation of
Hodge structure is moreover polarized, Φ factors through 𝒟.

2. Nilpotent orbit theorem

2.1. Two results of 𝐿2-estimate

Set 𝑋 = Δ𝑛 and 𝐷 = (𝑧1 · · · 𝑧ℓ = 0). We equip the complement 𝑈 := 𝑋\𝐷 with the Poincaré metric 𝜔𝑃

defined in Equation (1.3). Write

𝑋 (𝑟) := {𝑧 ∈ 𝑋 | |𝑧𝑖 | < 𝑟 for 𝑖 = 1, . . . , ℓ} and 𝑈 (𝑟) = 𝑋 (𝑟) ∩𝑈. (2.1)

Lemma 2.1. Let (𝐹, ℎ𝐹 ) be a Hermitian vector bundle on U such that |𝑅ℎ𝐹 (𝐹) | ≤ 𝐶𝜔𝑃 for some
constant 𝐶 > 0. Then for any section 𝜂 ∈ 𝒞∞(𝑈,Λ0,1𝑇∗

𝑈 ⊗ 𝐹) such that |𝜂 |ℎ𝐹 ,𝜔𝑃 �
∏ℓ

𝑗=1 |𝑧 𝑗 |𝜀 for
some 𝜀 > 0 and 𝜕𝜂 = 0, there exists 𝜎 ∈ 𝒞∞(𝑈, 𝐹) such that 𝜕𝜎 = 𝜂 and∫

𝑈
|𝜎 |2ℎ𝐹

ℓ∏
𝑗=1

(− log |𝑧 𝑗 |2)𝑁 𝑑vol𝜔𝑃 < ∞

for some 𝑁 � 1.

Proof. For the line bundle 𝐾−1
𝑈 endowed with the natural metric g induced by 𝜔𝑃 , it is acceptable.

Hence, for the Hermitian vector bundle (𝐸, ℎ) := (𝐾−1
𝑈 ⊗ 𝐹, 𝑔 · ℎ𝐹 ), it is also acceptable. It follows from

[3, Lemma 1.10] that one can choose 𝑁 � 1 such that
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𝑖𝑅ℎ (𝐸) ≥𝑁𝑎𝑘 −(𝑁 − 1)𝜔𝑃 ⊗ Id𝐸 ,

where “≥𝑁𝑎𝑘” stands for Nakano semipositive (see [2, Définition 2.2]). For the function

𝜑 := log��
ℓ∏
𝑗=1

(− log |𝑧 𝑗 |2)−1 ·
𝑛∏

𝑘=ℓ+1
exp(|𝑧𝑘 |2)

���, (2.2)

one has 𝑖𝜕𝜕 log 𝜑 = 𝜔𝑃 . For any 𝑘 ∈ Z, we define a new metric ℎ(𝑘) = ℎ · 𝑒−𝑘𝜑 for E. Therefore,

𝑖𝑅ℎ (𝑁 ) (𝐸) = 𝑖𝑅ℎ (𝐸) + 𝑁𝜔𝑃 ⊗ Id𝐸 ≥𝑁𝑎𝑘 𝜔𝑃 ⊗ Id𝐸 .

Note that 𝒞∞(𝑈,Λ𝑛,1𝑇∗
𝑈 ⊗ 𝐸) = 𝒞∞(𝑈,Λ0,1𝑇∗

𝑈 ⊗ 𝐹) with |𝜂 |ℎ,𝜔𝑃 = |𝜂 |ℎ𝐹 ,𝜔𝑃 . Since |𝜂 |ℎ𝐹 ,𝜔𝑃 �∏ℓ
𝑗=1 |𝑧 𝑗 |𝜀 , |𝜂 |ℎ (𝑁 ) ,𝜔𝑃 ≤ 𝐶 ′ for some 𝐶 ′ > 0. Hence, ‖𝜂‖ℎ (𝑁 ) ,𝜔𝑃 < ∞. Thanks to the Demailly–

Hörmander 𝐿2-estimate [2, Théorème 4.1 and Remarque 4.2], there exists 𝜎 ∈ 𝒞∞(𝑈, 𝐾𝑈 ⊗ 𝐸) =
𝒞∞(𝑈, 𝐹) such that 𝜕𝜎 = 𝜂 and ‖𝜎‖ℎ (𝑁 ) < ∞. Here, we note that the smoothness of 𝜎 follows from
the elliptic regularity of the Laplacian. The lemma is proved. �

Lemma 2.2. Let (𝐸, ℎ) be a Hermitian vector bundle on U such that |𝑅ℎ (𝐸) | ≤ 𝐶𝜔𝑃 for some
constant 𝐶 > 0. Assume that 𝜎 ∈ 𝐻0 (𝑈, 𝐸) such that ‖𝜎‖ℎ (𝑁 ) < ∞ for some integer 𝑁 ≥ 1, where
ℎ(𝑁) := ℎ · 𝑒−𝑁 𝜑 with 𝜑 defined in Equation (2.2), then over 𝑈 ( 1

2 ), |𝜎 |ℎ �
∏ℓ

𝑗=1 |𝑧 𝑗 |−𝜀 for any 𝜀 > 0 .
Proof. Since |𝑅ℎ (𝐸) | ≤ 𝐶𝜔𝑃 for some constant 𝐶 > 0, it follows from [3, Lemma 1.10] that
(𝐸, ℎ(−𝑁 ′)) is Griffiths’ seminegative for some 𝑁 ′ � 1, where ℎ(−𝑁 ′) := ℎ · 𝑒𝑁 ′𝜑 with 𝜑 defined in
Equation (2.2). One can show that log |𝜎 |2

ℎ (−𝑁 ′) is a plurisubharmonic function. For any 𝑧 ∈ 𝑈∗( 1
2 ),

one has

log |𝜎(𝑧) |2ℎ (−𝑁 ′) �
4𝑛

𝜋𝑛
∏ℓ

𝑖=1 |𝑧𝑖 |2

∫
Ω𝑧

log |𝜎(𝑤) |2ℎ (−𝑁 ′)𝑑vol𝑔

� log

(
4𝑛

𝜋𝑛
∏ℓ

𝑖=1 |𝑧𝑖 |2
·
∫
Ω𝑧

|𝜎(𝑤) |2ℎ (−𝑁 ′)𝑑vol𝑔

)
� log

(
𝐶

∫
Ω𝑧

1∏ℓ
𝑖=1 |𝑤𝑖 |2

|𝜎(𝑤) |2ℎ (−𝑁 ′)𝑑vol𝑔

)
� 𝐶1 + log

∫
Ω𝑧

|𝜎(𝑤) |2ℎ (−𝑁 ′) · |
ℓ∏
𝑖=1

(log |𝑤𝑖 |2)2 |𝑑vol𝜔𝑃

� 𝐶2 + log
∫
Ω𝑧

|𝜎(𝑤) |2ℎ (𝑁 )𝑑vol𝜔𝑃

� 𝐶2 + log‖𝜎‖2
ℎ (𝑁 ) ,

where Ω𝑧 := {𝑤 ∈ 𝑈∗ | |𝑤𝑖 − 𝑧𝑖 | ≤ |𝑧𝑖 |
2 for 𝑖 ≤ ℓ; |𝑤𝑖 − 𝑧𝑖 | ≤ 1

2 for 𝑖 > ℓ} and g is the Euclidean metric.
𝐶1, 𝐶2 are two positive constants which do not depend on 𝑧 ∈ 𝑈∗( 1

2 ). The first inequality is due to the
mean value inequality, and the second one follows from the Jensen inequality. It follows that

|𝜎(𝑧) |ℎ = |𝜎(𝑧) |ℎ (−𝑁 ′) ·
��

ℓ∏
𝑗=1

(− log |𝑧 𝑗 |2)
𝑁 ′
2 ·

𝑛∏
𝑘=ℓ+1

exp(|𝑧𝑘 |2)−
𝑁 ′
2
���

≤ exp
(
𝐶2
2

)
· ‖𝜎‖ℎ (𝑁 ) ·

��
ℓ∏
𝑗=1

(− log |𝑧 𝑗 |2)
𝑁 ′
2 ·

𝑛∏
𝑘=ℓ+1

exp(|𝑧𝑘 |2)−
𝑁 ′
2
��� �

ℓ∏
𝑖=1

|𝑧𝑖 |−𝜀

for any 𝜀 > 0. �
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2.2. Proof of Theorem A

We first prove that the Deligne extension of the flat bundle underlying a complex variation of Hodge
structure coincides with the prolongation defined in §1.6.

Proposition 2.3. Let X be a complex manifold, 𝐷 =
∑ℓ
𝑖=1 𝐷𝑖 be a simple normal crossing divisor. For a

complex variation of Hodge structure (𝑉,∇, 𝐹•, ℎ) defined on 𝑈 := 𝑋\𝐷, one has 𝑉Del
𝜶 = P𝜶𝑉 for any

multi-index 𝜶 ∈ Rℓ , where P𝜶𝑉 is the prolongation of V defined in §1.6.

Proof. Step 1: We prove that𝑉Del
𝜶 ⊂ P𝜶𝑉 . We will use the notation in §1.2. Since this is a local problem,

we can assume that 𝑋 = Δ𝑛 and 𝐷 = (𝑡1 · · · 𝑡𝑝 = 0). By the construction of 𝑉Del
𝜶 , one can take a basis

𝑣1, . . . , 𝑣𝑟 of 𝑉∇ with each 𝑣𝑖 ∈ E𝝀 (𝑣𝑖) for some 𝝀(𝑣𝑖) ∈ 𝑆𝑝 such that {�̃�1, . . . , �̃�𝑟 } defined in Equation
(1.2) forms a basis of 𝑉Del

𝜶 . It thus suffices to estimate the norm

�̃�(𝑡) := exp

(
−

𝑝∑
𝑖=1

(𝛽𝑖 𝐼 + 𝑁𝑖) · log 𝑡𝑖

)
𝑣(𝑡) =

𝑝∏
𝑖=1

𝑡
−𝛽𝑖
𝑖 exp

(
−

𝑝∑
𝑖=1

𝑁𝑖 · log 𝑡𝑖

)
𝑣(𝑡)

for any 𝝀 and 𝑣 ∈ E𝝀 .
By the weaker norm estimate in [7, Lemma 9.31] for general harmonic bundles, there exists a

frame 𝑣1, . . . , 𝑣𝑟 of 𝑉∇ with each 𝑣𝑖 ∈ E𝝀 (𝑣𝑖) and {𝑎𝑖 𝑗 }𝑖=1,...,𝑟 ; 𝑗=1,..., 𝑝 ⊂ R such that if we put
𝑣′𝑖 := 𝑣𝑖 ·

∏𝑝
𝑗=1 |𝑡 𝑗 |

−𝑎𝑖 𝑗 , then for the multivalued smooth sections 𝒗′ = (𝑣′1, . . . , 𝑣
′
𝑟 ), over a given sector

of U one has the norm estimate(
𝑝∏
𝑖=1

| log |𝑡𝑖 | |
)−𝑀

� 𝐻 (ℎ, 𝒗′) �
(

𝑝∏
𝑖=1

| log |𝑡𝑖 | |
)𝑀

(2.3)

for some 𝑀 > 0. Here, h is the Hodge metric and 𝐻 (ℎ, 𝒗′) is the 𝐻 (𝑟)-valued function defined in §1.4.
Fix some {𝑡1, . . . , 𝑡𝑝} ⊂ Δ∗. For each ℓ = 1, . . . , 𝑝, over any sector of Δ∗, we have

| log |𝑡 | |)−𝑀 � |𝑣𝑖 |2 (𝑡1, . . . , 𝑡ℓ−1, 𝑡, 𝑡ℓ+1, . . . , 𝑡𝑛) � | log |𝑡 | |𝑀

by the Hodge norm estimate in one-dimensional case in [9, 11]. Together with Equation (2.3), it implies
that 𝑎𝑖 𝑗 = 0 for all 𝑖 = 1, . . . , 𝑟; 𝑗 = 1, . . . , ℓ. Therefore, we conclude that over a given sector of U one
has the norm estimate (

𝑝∏
𝑖=1

| log |𝑡𝑖 | |
)−𝑀

� 𝐻 (ℎ, 𝒗) �
(

𝑝∏
𝑖=1

| log |𝑡𝑖 | |
)𝑀

. (2.4)

Then for any multivalued flat section 𝑣 ∈ 𝑉∇, over any given sector of U one has(
𝑝∏
𝑖=1

| log |𝑡𝑖 | |
)−𝑀

� |𝑣(𝑡) |ℎ �
(

𝑝∏
𝑖=1

| log |𝑡𝑖 | |
)𝑀

for some 𝑀 > 0. Since all 𝑁𝑖 are nilpotent and pairwise commute,

exp

(
−

𝑝∑
𝑖=1

𝑁𝑖 · log 𝑡𝑖

)
𝑣(𝑡) =

𝑝∑
𝑖=1

𝑁∑
𝑘=0

1
𝑘!

(log 𝑡𝑖)𝑘 (𝑁 𝑘
𝑖 𝑣) (𝑡)

for some integer 𝑁 > 0. Note that if 𝑣 ∈ E𝝀 , we also have 𝑁 𝑘
𝑖 𝑣 ∈ E𝝀 for any 𝑘 ≥ 0. Since one can cover

𝑋\𝐷 by finitely many sectors, this proves the norm estimate

https://doi.org/10.1017/fms.2023.109 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.109


10 Y. Deng

| exp

(
−

𝑝∑
𝑖=1

𝑁𝑖 · log 𝑡𝑖

)
𝑣(𝑡) |ℎ �

(
𝑝∏
𝑖=1

| log |𝑡𝑖 | |
)𝑀 ′

for some 𝑀 ′ > 0. Hence,

|�̃�(𝑡) |ℎ �
𝑝∏
𝑖=1

|𝑡𝑖 |−𝛽𝑖−𝜀 �
𝑝∏
𝑖=1

|𝑡𝑖 |−𝛼𝑖−𝜀

for any 𝜀 > 0. This proves the inclusion 𝑉Del
𝜶 ⊂ P𝜶𝑉 by the definition of P𝜶𝑉 in §1.6.

Step 2: We prove that P𝜶𝑉 ⊂ 𝑉Del
𝜶 . First, we note that the decomposition 𝑉∇ = ⊕𝝀∈𝑆𝑝E𝝀 induces a

decomposition of the flat bundle (𝑉,∇) into

(𝑉,∇) = ⊕𝝀∈𝑆𝑝 (𝑉 (𝝀),∇|𝑉 (𝝀) ), (2.5)

where (𝑉 (𝝀),∇|𝑉 (𝝀) ) is the flat subbundle induced by E𝝀 . We fix a basis (𝑣1, . . . , 𝑣𝑟 ) ∈ 𝑉∇ such that
𝑣𝑖 ∈ E𝝀 (𝑣𝑖) for some 𝝀(𝑣𝑖) ∈ 𝑆𝑝. This means that such basis is compatible with the above decomposition
(2.5); namely, 𝑣 𝑗 is a mutivalued flat section of (𝑉 (𝝀(𝑣 𝑗 )),∇|𝑉 (𝝀 (𝑣𝑗 )) ). Consider the dual bundle 𝑉∗ of
V, and it can endowed with the natural connection ∇ defined by

(∇𝜇)𝑣 = 𝑑 (𝜇(𝑣)) − 𝜇(∇(𝑣))

for 𝜇 and v sections in 𝑉∗ and V, respectively. (𝑉∗,∇) is thus also a flat bundle. Moreover, (𝑉∗)∇ is the
dual space of (𝑉∇). Consider the dual basis (𝑣∗1, . . . , 𝑣

∗
𝑟 ) of (𝑣1, . . . , 𝑣𝑟 ). Since

(∇𝑣∗𝑖 )𝑣 𝑗 = 𝑑 (𝑣∗𝑖 (𝑣 𝑗 )) − 𝑣∗𝑖 (∇𝑣 𝑗 ) = 0,

one has 𝑣∗𝑖 ∈ (𝑉∗)∇. Recall that𝑇𝑗 is the monodromy transformation of (𝑉,∇) with respect to 𝛾 𝑗 defined
by

𝑣(𝑡1, . . . , 𝑒2𝜋𝑖𝑡 𝑗 , . . . , 𝑡𝑝+𝑞) = (𝑇𝑗𝑣) (𝑡1, . . . , 𝑡𝑝+𝑞)

for any 𝑣 ∈ 𝑉∇. Let us denote by 𝑇𝑗 the monodromy transformation of (𝑉,∇) with respect to 𝛾 𝑗 defined
by

𝜇(𝑡1, . . . , 𝑒2𝜋𝑖𝑡 𝑗 , . . . , 𝑡𝑝+𝑞) = (𝑇𝑗𝜇) (𝑡1, . . . , 𝑡𝑝+𝑞)

for any 𝜇 ∈ (𝑉∗)∇. Then for any 𝑣 ∈ 𝑉∇ and any 𝜇 ∈ (𝑉∗)∇ one has

𝜇(𝑡) (𝑣(𝑡)) = 𝜇(𝑡1, . . . , 𝑒2𝜋𝑖𝑡 𝑗 , . . . , 𝑡𝑝+𝑞) (𝑣(𝑡1, . . . , 𝑒2𝜋𝑖𝑡 𝑗 , . . . , 𝑡𝑝+𝑞))
= (𝑇𝑗𝜇(𝑡)) (𝑇𝑗𝑣(𝑡)) = (𝑇𝑗𝜇) (𝑇𝑗𝑣) = (𝑇∗

𝑗𝑇𝑗𝜇) (𝑣),

where 𝑇∗
𝑗 : (𝑉∗)∇ → (𝑉∗)∇ is the adjoint of 𝑇𝑗 . Hence

𝑇𝑗 = (𝑇∗
𝑗 )−1. (2.6)

It follows that 𝑆𝑝(𝑇𝑗 ) = {𝜆−1}𝜆∈𝑆𝑝 (𝑇𝑖) . Set E(𝑇𝑗 , 𝜆 𝑗 ) ⊂ (𝑉∗)∇ to be the corresponding eigenspace of
𝜆 𝑗 ∈ 𝑆𝑝(𝑇𝑗 ). We know that all 𝜆 𝑗 ∈ 𝑆𝑝(𝑇𝑗 ) have norm 1 since (𝑉∗,∇) admits a complex variation of
Hodge structure. For 𝝀 = (𝜆1, . . . , 𝜆𝑝) ∈ 𝑆𝑝, we define

Ẽ𝝀 := ∩𝑝
𝑗=1E(𝑇𝑗 , 𝜆

−1
𝑗 ) ⊂ (𝑉∗)∇.
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Since 𝑇 ′
𝑗 𝑠 are pairwise commute, one has

(𝑉∗)∇ = ⊕𝝀∈𝑆𝑝Ẽ𝝀 ,

and �̃�𝝀 is an invariant subspace of 𝑇𝑗 for any 𝝀 ∈ 𝑆𝑝 and any j.
By Lemma 2.4 below, one can show that for any 𝜇 ∈ Ẽ𝝀′ and 𝑣 ∈ E𝝀 , 𝜇(𝑣) = 0 if 𝝀 ≠ 𝝀′, which

implies that 𝑣∗𝑗 ∈ Ẽ𝝀 (𝑣𝑗 ) .
For 𝝀 ∈ 𝑆𝑝, there exists a unique 𝛽𝑖 ∈ (𝛼𝑖 − 1, 𝛼𝑖] such that exp(2𝜋𝑖𝛽𝑖) = 𝜆𝑖 . Denote 𝑁𝑖 :=

log(𝜆−1
𝑖 𝑇𝑖 |E𝝀 )
2𝜋𝑖 . Recall that for any 𝑣 ∈ E𝝀 , we define

�̃�(𝑡) := exp

(
−

𝑝∑
𝑖=1

(𝛽𝑖 𝐼 + 𝑁𝑖) · log 𝑡𝑖

)
𝑣(𝑡) =

𝑝∏
𝑖=1

𝑡
−𝛽𝑖
𝑖 exp

(
−

𝑝∑
𝑖=1

𝑁𝑖 · log 𝑡𝑖

)
𝑣(𝑡).

Likewise, since 𝜆𝑖𝑇𝑖 |Ẽ𝝀 is unipotent, its logarithm can be defined as

log(𝜆𝑖𝑇𝑖 |Ẽ𝝀 ) :=
∞∑
𝑘=1

(−1)𝑘+1 (𝜆𝑖𝑇𝑖 |Ẽ𝝀 − 𝐼)𝑘

𝑘
.

Write �̃�𝑖 :=
log(𝜆𝑖�̃�𝑖 |Ẽ𝝀 )

2𝜋𝑖 . Then for any 𝜇 ∈ Ẽ𝝀 , we define

�̃�(𝑡) := exp

(
−

𝑝∑
𝑖=1

(−𝛽𝑖 𝐼 + �̃�𝑖) · log 𝑡𝑖

)
𝜇(𝑡) =

𝑝∏
𝑖=1

𝑡
𝛽𝑖
𝑖 exp

(
−

𝑝∑
𝑖=1

�̃�𝑖 · log 𝑡𝑖

)
𝜇(𝑡). (2.7)

Since 𝑇𝑖 = (𝑇∗
𝑖 )−1, one has �̃� 𝑗 = −𝑁∗

𝑗 . Therefore,

�̃�(𝑡) (�̃�(𝑡)) = exp

(
−

𝑝∑
𝑖=1

�̃�𝑖 · log 𝑡𝑖

)
𝜇(𝑡)

(
exp

(
−

𝑝∑
𝑖=1

𝑁𝑖 · log 𝑡𝑖

)
𝑣(𝑡)

)
= exp

(
𝑝∑
𝑖=1

𝑁∗
𝑖 · log 𝑡𝑖

)
𝜇(𝑡)

(
exp

(
−

𝑝∑
𝑖=1

𝑁𝑖 · log 𝑡𝑖

)
𝑣(𝑡)

)
= 𝜇(𝑣) = constant.

This implies that �̃�∗𝑖 (𝑡) (�̃� 𝑗 (𝑡)) = 𝑣∗𝑖 (𝑣 𝑗 ) ≡ 𝛿𝑖 𝑗 if 𝝀 = 𝝀′, where �̃�∗𝑖 is defined in Equation (2.7) in terms
of 𝑣∗𝑖 ∈ Ẽ𝝀 (𝑣𝑖) .

If 𝜇 ∈ Ẽ𝝀 and 𝑣 ∈ E𝝀′ with 𝝀 ≠ 𝝀′, the above construction shows that �̃� and �̃� are holomorphic
sections of 𝑉∗(𝝀) and 𝑉 (𝝀′). Here, 𝑉 (𝝀′) is the invariant flat subbundle of (𝑉,∇) defined in Equation
(2.5), and 𝑉∗(𝝀) is defined to be the invariant flat subbundle of (𝑉∗,∇) generated by �̃�𝝀 . Hence, �̃�∗𝑖 and
�̃� 𝑗 are holomorphic sections of 𝑉∗(𝝀(𝑣𝑖)) and 𝑉 (𝝀(𝑣 𝑗 )), respectively. This shows that �̃�∗𝑖 (𝑡) (�̃� 𝑗 (𝑡)) ≡ 0
for 𝝀 ≠ 𝝀′ by Lemma 2.4.

In conclusion, we prove that �̃�∗1, . . . , �̃�
∗
𝑟 is the dual frame of �̃�1, . . . , �̃�𝑟 .

Recall that 𝑣 𝑗 ∈ E𝝀 (𝑣𝑗 ) for some 𝝀(𝑣 𝑗 ) ∈ 𝑆𝑝. There exists a unique 𝛽(𝑣 𝑗 )𝑖 ∈ (𝛼𝑖 − 1, 𝛼𝑖] such that
exp(2𝜋𝑖𝛽(𝑣 𝑗 )𝑖) = 𝝀(𝑣 𝑗 )𝑖 . Define a smooth section �̃�′𝑗 = �̃� 𝑗 ·

∏𝑝
𝑖=1 |𝑡𝑖 |

𝛽 (𝑣𝑗 )𝑖 . By the norm estimate in the
first step, for all �̃�′𝑗 one has the norm estimate

|�̃�′𝑗 |ℎ �
(

𝑝∏
𝑖=1

| log |𝑡𝑖 | |
)𝑀
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for some 𝑀 > 0. It follows that

𝐻 (ℎ; �̃�′1, . . . , �̃�
′
𝑟 ) �

(
𝑝∏
𝑖=1

| log |𝑡𝑖 | |
)𝑀

.

Here, 𝐻 (ℎ; �̃�′1, . . . , �̃�
′
𝑟 ) is a 𝑟×𝑟-matrix function whose (𝑖, 𝑗)-component is ℎ(�̃�′𝑖 , �̃�′𝑗 ). On the other hand,

we put 𝜇′
𝑖 = �̃�∗𝑖 ·

∏𝑝
𝑗=1 |𝑡 𝑗 |

−𝛽 (𝑣𝑖 ) 𝑗 . Since complex polarized variation of Hodge structure is functorial by
taking dual, (𝑉∗,∇) admits a complex polarized variation of Hodge structure whose Hodge metric is
the dual metric ℎ∗ of the Hodge metric h for (𝑉,∇, 𝐹•, 𝑄). In the same manner, we obtain

|𝜇′
𝑖 |ℎ∗ �

(
𝑝∏
𝑖=1

| log |𝑡𝑖 | |
)𝑀 ′

for every 𝜇′
𝑖 and some 𝑀 ′ > 0. This implies that

𝐻 (ℎ∗; 𝜇′
1, . . . , 𝜇

′
𝑟 ) �

(
𝑝∏
𝑖=1

| log |𝑡𝑖 | |
)𝑀 ′

.

By our construction, 𝜇′
1, . . . , 𝜇

′
𝑟 is the dual of the smooth frame �̃�′1, . . . , �̃�

′
𝑟 . It follows that(

𝑝∏
𝑖=1

| log |𝑡𝑖 | |
)−𝑀 ′

� 𝐻 (ℎ∗; 𝜇′
1, . . . , 𝜇

′
𝑟 )−1 = 𝐻 (ℎ; �̃�′1, . . . , �̃�

′
𝑟 ).

Hence, (
𝑝∏
𝑖=1

| log |𝑡𝑖 | |
)−𝑀 ′

� 𝐻 (ℎ; �̃�′1, . . . , �̃�
′
𝑟 ) �

(
𝑝∏
𝑖=1

| log |𝑡𝑖 | |
)𝑀

. (2.8)

Now, we are ready to prove the inclusion P𝜶𝑉 ⊂ 𝑉Del
𝜶 . For any 𝑠 ∈ P𝜶𝑉 (𝑈), it can be written as

𝑠 =
∑𝑟
𝑖=1 𝑓𝑖 �̃�𝑖 , where 𝑓𝑖 is a holomorphic function on U. By Equation (2.8) one has

𝑟∑
𝑖=1

| 𝑓𝑖 |2 ·
𝑝∏
𝑗=1

|𝑡 𝑗 |−2𝛽 (𝑣𝑖) 𝑗 ·
(

𝑝∏
𝑘=1

| log |𝑡𝑘 | |
)−2𝑀 ′

� |𝑠 |2ℎ �
𝑝∏
𝑖=1

|𝑡 𝑗 |−2𝛼𝑗−𝜀

for any 𝜀 > 0. Since 𝛽(𝑣𝑖) 𝑗 ∈ (𝛼 𝑗 − 1, 𝛼 𝑗 ], one can choose 𝛿 > 0 such that 𝛽(𝑣𝑖) 𝑗 − 𝛼 + 1 > 𝛿 for all 𝑣𝑖
and every 𝑗 = 1, . . . , 𝑝. The above inequality implies that for every 𝑓𝑖 ,

| 𝑓𝑖 | �
𝑝∏
𝑖=1

|𝑡 𝑗 |−1+𝛿 .

Hence, all 𝑓𝑖 extend to holomorphic functions over X. This proves that 𝑠 ∈ 𝑉Del
𝜶 (𝑋) since �̃�1, . . . , �̃�𝑟 is

a holomorphic basis of 𝑉Del
𝜶 by the definition of Deligne extension in §1.2. The inclusion P𝜶𝑉 ⊂ 𝑉Del

𝜶

is proved. We complete the proof of the proposition. �

We leave the proof of the following lemma of linear algebra to the reader.

Lemma 2.4. Let 𝑇 : 𝑉 → 𝑉 be an isomorphism of a finite-dimensional C-vector space V. Decompose
𝑉 = 𝑉𝜆1 ⊕ . . . ⊕ 𝑉𝜆𝑘 into eigenspaces of T, where 𝜆𝑖 is a eigenvalue of T and 𝑉𝜆𝑖 is the corresponding
eigenspace. Denote by 𝑉∗ the dual vector space. Then for the isomorphism (𝑇∗)−1 : 𝑉∗ → 𝑉∗, its
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eigenvalues are 𝜆−1
1 , . . . , 𝜆−1

𝑘 and its eigenspace decomposition is 𝑉∗ = 𝑉∗
𝜆−1

1
⊕ . . . ⊕ 𝑉∗

𝜆−1
𝑘

, where 𝑉∗
𝜆−1
𝑗

is the corresponding eigenspace of 𝜆−1
𝑗 . Moreover, one has 𝜇(𝑣) = 0 if 𝜇 ∈ 𝑉∗

𝜆−1
𝑖

and 𝑣 ∈ 𝑉𝜆 𝑗 with
𝑖 ≠ 𝑗 .

Theorem 2.5. Let X be a complex manifold, and let 𝐷 =
∑ℓ
𝑖=1 𝐷𝑖 be a simple normal crossing divisor on

X. Let (𝑉,∇, 𝐹•, 𝑄) be a complex polarized variation of Hodge structure of weight m on 𝑋\𝐷. Let P∗𝐹
𝑝

and P∗𝐸𝑝,𝑚−𝑝 be the induced filtered bundle of Hermitian bundles (𝐹 𝑝 , ℎ𝑝) and (𝐸𝑝,𝑚−𝑝 , ℎ𝑝,𝑚−𝑝)
defined in §1.6. Then for every p, P∗𝐹

𝑝 and P∗𝐸𝑝,𝑚−𝑝 are parabolic bundles and for each multi-index
𝛼 ∈ Rℓ , there is a natural exact sequence

0 → P𝜶𝐹 𝑝+1 → P𝜶𝐹 𝑝 → P𝜶𝐸𝑝,𝑚−𝑝 → 0. (2.9)

Proof. By Lemma 1.4, (𝐹 𝑝 , ℎ𝑝) and (𝐸𝑝,𝑚−𝑝 , ℎ𝑝,𝑚−𝑝) are acceptable bundles for every p. It follows
from Theorem 1.7 that P∗𝐹

𝑝 and P∗𝐸𝑝,𝑚−𝑝 defined in §1.6 are parabolic ones.
We first show that we can define

0 → P𝜶𝐹 𝑝+1 → P𝜶𝐹 𝑝 𝑞
→ P𝜶𝐸𝑝,𝑚−𝑝 , (2.10)

which is exact. Note that we have the following exact sequence

0 → 𝐹 𝑝+1 → 𝐹 𝑝 𝑞
→ 𝐸𝑝,𝑚−𝑝 → 0 (2.11)

on 𝑋\𝐷 by the definition of C-VHS. Pick any 𝑥 ∈ 𝐷 and any admissible coordinate (Ω; 𝑧1, . . . , 𝑧𝑛)
centering at x such that 𝐷 ∩ Ω = (𝑧1 · · · 𝑧𝑘 = 0). By the prolongation via norm growth defined in §1.6,
any section 𝑠 ∈ P𝜶𝐹 𝑝+1(Ω) satisfies that 𝑠 ∈ 𝐹 𝑝+1(Ω\𝐷) and |𝑠 |ℎ𝑝+1 �

∏𝑘
𝑖=1 |𝑧𝑖 |−𝛼𝑖−𝜀 for any 𝜀 > 0.

Since ℎ𝑝+1 is the induced metric of ℎ𝑝 on 𝐹 𝑝+1, it follows that

|𝑠 |ℎ𝑝+1 = |𝑠 |ℎ𝑝 �
𝑘∏
𝑖=1

|𝑧𝑖 |−𝛼𝑖−𝜀 (2.12)

for any 𝜀 > 0. Hence, the inclusion 𝐹 𝑝+1 ⊂ 𝐹 𝑝 also results in the inclusion P𝜶𝐹 𝑝+1 ⊂ P𝜶𝐹 𝑝 . We
proved that Equation (2.10) is exact in the left.

Note that the metric ℎ𝑝,𝑚−𝑝 on 𝐸𝑝,𝑚−𝑝 is the quotient metric of ℎ𝑝 . It follows that for any section
𝑠 ∈ P𝜶𝐹 𝑝 (Ω), we have

|𝑞(𝑠) |ℎ𝑝,𝑚−𝑝 ≤ |𝑠 |ℎ𝑝 �
𝑘∏
𝑖=1

|𝑧𝑖 |−𝛼𝑖−𝜀

for any 𝜀 > 0. Hence, the quotient 𝑞 : 𝐹 𝑝 → 𝐸𝑝,𝑚−𝑝 induces the morphism P𝜶𝐹 𝑝 → P𝜶𝐸𝑝,𝑚−𝑝 and
thus Equation (2.10) can be defined. Next, we will show that Equation (2.10) is exact in the middle.

Take any section 𝑠 ∈ P𝜶𝐹 𝑝 (Ω) such that 𝑞(𝑠) = 0. Thanks to the exactness in Equation (2.11), we
have 𝑠 ∈ 𝐹 𝑝+1(Ω\𝐷). By Equation (2.12), we conclude that 𝑠 ∈ P𝜶𝐹 𝑝+1(Ω). This implies the exactness
of Equation (2.10).

In what follows, we will prove that Equation (2.10) is exact on the right. It suffices to prove that for
any point 𝑥 ∈ 𝐷 and any section 𝑠 ∈ P𝜶𝐸𝑝,𝑚−𝑝 (Ω), where Ω is a neighborhood of x, there is a section
𝑠 ∈ P𝜶𝐹 𝑝 (Ω′) for some smaller neighborhood Ω′ of x such that 𝑞(𝑠) = 𝑠 |Ω′ . We shall construct such 𝑠
by utilizing the previous results on 𝐿2-estimate in Lemmas 2.1 and 2.2.

Since this is a local problem, we can assume that 𝑋 = Δ𝑛, 𝐷 = (𝑧1 · · · 𝑧ℓ = 0) and x is the origin.
We equip the complement 𝑈 := 𝑋\𝐷 with the Poincaré metric 𝜔𝑃 . Let 𝑋 (𝑟) and 𝑈 (𝑟) be defined as
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in Equation (2.1). By the semicontinuity of the parabolic bundle in Definition 1.6.(iv), we can choose
𝜷 ∈ Rℓ such that 𝛽𝑖 > 𝛼𝑖 and

P𝜷𝐹
𝑝 = P𝜶𝐹 𝑝 . (2.13)

Pick any 𝑠 ∈ P𝜶𝐸𝑝,𝑚−𝑝 (𝑋). Then 𝑠 ∈ 𝐻0(𝑈, 𝐸𝑝,𝑚−𝑝) with |𝑠 |ℎ𝑝,𝑚−𝑝 �
∏ℓ

𝑖=1 |𝑧𝑖 |−𝛼𝑖−𝜀 for any 𝜀 > 0.
We will construct a section 𝑠 ∈ 𝐻0(𝑈 (𝑟), 𝐹 𝑝) for some 0 < 𝑟 < 1 such that 𝑞(𝑠) = 𝑠 |𝑈 (𝑟 ) and
|𝑠 |ℎ𝑝 �

∏ℓ
𝑖=1 |𝑧𝑖 |−𝛽𝑖−𝜀 for any 𝜀 > 0. Note that there is a canonical smooth isomorphism (and isometry)

Φ : (𝐹 𝑝 , ℎ𝑝) → (𝐹 𝑝+1, ℎ𝑝+1) ⊕ (𝐸𝑝,𝑚−𝑝 , ℎ𝑝,𝑚−𝑝)

such that the holomorphic structure of 𝐹 𝑝 via Φ is defined by[
𝜕𝐹 𝑝+1 𝜃†𝑝+1,𝑚−𝑝−1

0 𝜕𝐸𝑝,𝑚−𝑝 ,

]
,

where 𝜃†𝑝+1,𝑚−𝑝−1 is the adjoint of 𝜃𝑝+1,𝑚−𝑝−1 with respect to ℎ𝑝+1,𝑚−𝑝−1. If 𝑞(𝑠) = 𝑠, thenΦ(𝑠) = [𝜎, 𝑠]
for some 𝜎 ∈ 𝒞∞(𝑈, 𝐹 𝑝+1) such that[

𝜕𝐹 𝑝+1 𝜃†𝑝+1,𝑚−𝑝−1
0 𝜕𝐸𝑝,𝑚−𝑝

] [
𝜎
𝑠

]
= 0.

Hence, 𝜕𝐹 𝑝+1𝜎 = −𝜃†𝑝+1,𝑚−𝑝−1𝑠. We will solve this 𝜕-equation with proper norm estimate.
By Theorem 1.2, after we replace U by 𝑈 (𝑟) for some 0 < 𝑟 < 1, we have |𝜃𝑝+1,𝑚−𝑝−1 |ℎ,𝜔𝑃 ≤ 𝐶

over U. This implies that |𝜃†𝑝+1,𝑚−𝑝−1 |ℎ,𝜔𝑃 ≤ 𝐶 over U. Hence,

|𝜃†𝑝+1,𝑚−𝑝−1𝑠 |ℎ𝑝+1 ,𝜔𝑃 ≤ |𝜃†𝑝+1,𝑚−𝑝−1 |ℎ,𝜔𝑃 · |𝑠 |ℎ𝑝,𝑚−𝑝 �
ℓ∏
𝑖=1

|𝑧𝑖 |−𝛼𝑖−𝜀

for any 𝜀 > 0. We now introduce a new metric for 𝐹 𝑝 defined by

ℎ𝑝 (𝜷) := ℎ𝑝 ·
ℓ∏
𝑖=1

|𝑧𝑖 |𝛽𝑖 .

Since 𝛽𝑖 > 𝛼𝑖 for each i, we have

|𝜃†𝑝+1,𝑚−𝑝−1𝑠 |ℎ𝑝+1 (𝜷) ,𝜔𝑃 �
ℓ∏
𝑗=1

|𝑧 𝑗 | 𝛿

for some 𝛿 > 0. Note that 𝜃†𝑝+1,𝑚−𝑝−1𝑠 ∈ 𝐴0,1 (𝐸𝑝+1,𝑚−𝑝−1). We have

𝜕𝐹 𝑝+1 (𝜃†𝑝+1,𝑚−𝑝−1𝑠) = (𝜕𝐸𝑝+1,𝑚−𝑝−1 + 𝜃†𝑝,𝑚−𝑝) (𝜃
†
𝑝+1,𝑚−𝑝−1𝑠)

= 𝜕𝐸𝑝+1,𝑚−𝑝−1 (𝜃
†
𝑝+1,𝑚−𝑝−1𝑠)

= (𝐷0,1
ℎ 𝜃†𝑝+1,𝑚−𝑝−1)𝑠 − 𝜃†𝑝+1,𝑚−𝑝−1(𝜕𝐸𝑝,𝑚−𝑝 𝑠) = 0,

where the second equality follows from 𝜃†𝑝+1,𝑚−𝑝−1∧𝜃
†
𝑚−𝑝 = 0, and the last one follows from 𝐷0,1

ℎ (𝜃†) =
0. Here, 𝐷ℎ is the Chern connection for the Hodge bundle (𝐸 = ⊕𝑝+𝑞=𝑚𝐸𝑝,𝑞 , ℎ). Since (𝐹 𝑝+1, ℎ𝑝+1(𝜷))
is also acceptable by Lemma 1.4, we can invoke Lemma 2.1 to find some 𝜎 ∈ 𝒞∞(𝑈, 𝐹 𝑝+1) such that
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𝜕𝐹 𝑝+1 (𝜎) = −𝜃†𝑝+1,𝑚−𝑝−1𝑠

and ∫
𝑈
|𝜎 |2ℎ𝑝+1 (𝜷,𝑁 )𝑑vol𝜔𝑃 < ∞

for some 𝑁 � 1. Here, ℎ𝑝+1(𝜷, 𝑁) is a new metric for 𝐹 𝑝+1 define by

ℎ𝑝+1(𝜷, 𝑁) = ℎ𝑝+1 ·
ℓ∏
𝑖=1

|𝑧𝑖 |𝛽𝑖 · 𝑒−𝑁 𝜑

with 𝜑 defined in Equation (2.2). Since |𝑠 |ℎ𝑝,𝑚−𝑝 �
∏ℓ

𝑖=1 |𝑧𝑖 |−𝛼𝑖−𝜀 for any 𝜀 > 0, it follows that
|𝑠 |ℎ𝑝,𝑚−𝑝 (𝜷,𝑁 ) < 𝐶 for some constant 𝐶 > 0, where we define

ℎ𝑝,𝑚−𝑝 (𝜷, 𝑁) = ℎ𝑝,𝑚−𝑝 ·
ℓ∏
𝑖=1

|𝑧𝑖 |𝛽𝑖 · 𝑒−𝑁 𝜑 .

Thus, the section 𝑠 := Φ−1([𝜎, 𝑠]) is a holomorphic section of 𝐹 𝑝 such that∫
𝑈
|𝑠 |2ℎ𝑝 (𝜷,𝑁 )𝑑vol𝜔𝑃 =

∫
𝑈
|𝜎 |2ℎ𝑝+1 (𝜷,𝑁 )𝑑vol𝜔𝑃 +

∫
𝑈
|𝑠 |2ℎ𝑝,𝑚−𝑝 (𝜷,𝑁 )𝑑vol𝜔𝑃 < ∞.

Since (𝐹 𝑝 , ℎ𝑝 (𝜷)) is also acceptable by Lemma 1.4, thanks to Lemma 2.2, over some𝑈 (𝑟) for 0 < 𝑟 < 1
we have |𝑠 |ℎ𝑝 (𝜷) �

∏ℓ
𝑗=1 |𝑧 𝑗 |−𝜀 for any 𝜀 > 0. Therefore, |𝑠 |ℎ𝑝 �

∏ℓ
𝑗=1 |𝑧 𝑗 |−𝛽 𝑗−𝜀 for any 𝜀 > 0. It

follows that 𝑠 ∈ P𝜷𝐹
𝑝 (𝑋 (𝑟)). By Equation (2.13), we conclude that 𝑠 ∈ P𝜶𝐹

𝑝 (𝑋 (𝑟 ′)) for some
0 < 𝑟 ′ < 1. This implies the right exactness of Equation (2.9) as 𝑞(𝑠) = 𝑠. The theorem is proved. �

Let us prove Theorem A.

Proof of Theorem A. Thanks to Proposition 2.3, we have 𝑉Del
𝜶 = P𝜶𝑉 . By Lemma 1.4, (𝐹 𝑝 , ℎ𝑝) and

(𝐸𝑝,𝑚−𝑝 , ℎ𝑝,𝑚−𝑝) are acceptable bundles for any p. It follows from Theorem 1.7 that the induced filtered
bundle P∗𝐹

𝑝 and P∗𝐸𝑝,𝑚−𝑝 defined in §1.6 are parabolic ones. In particular, P𝜶𝐹 𝑝 and P𝜶𝐸𝑝,𝑚−𝑝 are
locally free sheaves. Denote by 𝑗 : 𝑋\𝐷 → 𝑋 the inclusion map. Note that

P𝜶𝐹 𝑝 = 𝑗∗(𝐹 𝑝) ∩ P𝜶𝑉
Proposition 2.3

= 𝑗∗𝐹
𝑝 ∩𝑉Del

𝜶 =: 𝐹 𝑝
𝜶 . (2.14)

Hence, the exact sequence (2.9) in Theorem 2.5 implies the following one

0 → 𝐹 𝑝+1
𝜶 → 𝐹 𝑝

𝜶 → P𝜶𝐸𝑝,𝑚−𝑝 → 0.

In particular, 𝐹 𝑝
𝜶 /𝐹

𝑝+1
𝜶 is isomorphic toP𝜶𝐸𝑝,𝑚−𝑝 , which is thus locally free. The theorem is proved. �

2.3. On the nilpotent orbit theorem

In this subsection, we apply Theorem A to prove Theorem B following closely Schmid’s original method
[10, p. 288-289]. We will use the notations and conventions in §1.7.

Let (𝑉,∇, 𝐹•, 𝑄) be a complex polarized variation of Hodge structure on (Δ∗) 𝑝 × Δ𝑞 . Denote by
Φ : H𝑝 × Δ𝑞 → 𝒟 its period mapping, where we set

H
𝑝 × Δ𝑞 → Δ𝑛

(𝑧, 𝑤) ↦→ (𝑒𝑧1 , . . . , 𝑒𝑧𝑝 , 𝑤)
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to be the uniformizing map. Let 𝑇𝑗 be the monodromy transformation defined in §1.2. For some fixed
𝜶 ∈ R𝑝 , there exist 𝑆𝑖 , 𝑁𝑖 ∈ End(𝑉∇) such that

◦ 𝑇𝑖 = exp(2𝜋𝑖(𝑆𝑖 + 𝑁𝑖));
◦ [𝑆𝑖 , 𝑆 𝑗 ] = 0, [𝑆𝑖 , 𝑁 𝑗 ] = 0, and [𝑁𝑖 , 𝑁 𝑗 ] = 0;
◦ 𝑆𝑖 is semisimple whose eigenvalues lying in (𝛼𝑖 − 1, 𝛼𝑖] and 𝑁𝑖 is nilpotent.

Let us define

Ψ̃(𝑧, 𝑤) := exp

(
𝑝∑
𝑖=1

(𝑆𝑖 + 𝑁𝑖)𝑧𝑖

)
Φ(𝑧, 𝑤),

which satisfies Ψ̃(𝑧1, . . . , 𝑧𝑖 + 2𝜋𝑖, . . . , 𝑧𝑝, 𝑤) = Ψ̃(𝑧, 𝑤) for 𝑖 = 1, . . . , 𝑝. It thus descends to a single-
valued map Ψ : (Δ∗) 𝑝 × Δ𝑞 → �̌� such that Ψ(𝑒𝑧1 , . . . , 𝑒𝑧𝑝 , 𝑤) = Ψ̃(𝑧, 𝑤).

Lemma 2.6. The twisted holomorphic map Ψ extends holomorphically to Δ 𝑝+𝑞 .

Proof. We use the notations in §1.2. We fix a basis 𝑣1, . . . , 𝑣𝑟 of 𝑉∇ such that each 𝑣𝑖 belongs to some
E𝝀 . Then the sections �̃�1, . . . , �̃�𝑟 defined in Equation (1.2) induces a trivialization

𝑉∇ ⊗C Δ 𝑝+𝑞 � 𝑉Del
𝜶 ,

where 𝑉Del
𝜶 is the Deligne extension. Under such trivialization, the Hodge filtration 𝐹•

𝜶 (𝑡1, . . . , 𝑡𝑝+1)
becomes Ψ(𝑡1, . . . , 𝑡𝑝+1). Thanks to Theorem A, the Hodge filtration 𝐹•

𝜶 extends to locally free sheaves
overΔ 𝑝+𝑞 such that𝐹 𝑝

𝜶 /𝐹
𝑝+1
𝜶 is also locally free. Therefore,Ψ extends holomorphic maps overΔ 𝑝+𝑞 . �

This lemma thus proves Theorem B.(i). We write 𝑎(𝑤) := Ψ(0, 𝑤). In general, it does not lie in 𝒟.
The following well-known result follows from the fact that GL(𝑉∇) acts transitively on �̌�.

Lemma 2.7. For any 𝑔 ∈ GL(𝑉∇), consider the left translation 𝐿𝑔 : �̌� → �̌� with 𝐿𝑔 (𝐹) := 𝑔𝐹. Then

(𝐿𝑔)∗ : 𝑇−1,1
�̌�,𝐹

∼→ 𝑇−1,1
�̌�,𝑔𝐹

.

Recall that for any 𝐴 ∈ End(𝑉∇) and any 𝐹 ∈ �̌�, we denote by [𝐴]𝐹 the image of A under the natural
map End(𝑉∇) → 𝑇�̌�,𝐹 .

Lemma 2.8. For each 𝑖 = 1, . . . , 𝑝, [𝑆𝑖 + 𝑁𝑖]𝑎 (𝑤) ⊂ 𝑇−1,1
�̌�,𝑎 (𝑤)

.

Proof. Since

Ψ̃∗

(
𝜕

𝜕𝑧𝑖

)
(𝑧, 𝑤) = [𝑆𝑖 + 𝑁𝑖]Ψ̃(𝑧,𝑤) + (𝐿exp(

∑𝑝
𝑖=1 (𝑆𝑖+𝑁𝑖)𝑧𝑖) )∗Φ∗

(
𝜕

𝜕𝑧𝑖

)
(𝑧, 𝑤),

Φ∗( 𝜕
𝜕𝑧𝑖

) is horizontal since Φ is a horizontal mapping by §1.7. By Lemma 2.7,
(𝐿exp(

∑𝑝
𝑖=1 (𝑆𝑖+𝑁𝑖)𝑧𝑖) )∗Φ∗( 𝜕

𝜕𝑧𝑖
) (𝑧, 𝑤) is horizontal. On the other hand,

Ψ̃∗

(
𝜕

𝜕𝑧𝑖

)
(𝑧, 𝑤) = Ψ∗

(
𝜕

𝜕𝑡𝑖

)
(𝑒𝑧1 , . . . , 𝑒𝑧𝑝 , 𝑤) · 𝑒𝑧𝑖

which tends to zero if �𝑧𝑖 → −∞ and �𝑧 𝑗 ≤ 𝐶 for other j. By the continuity, this implies that

[𝑆𝑖 + 𝑁𝑖]𝑎 (𝑤) ∈ 𝑇−1,1
�̌�,𝑎 (𝑤)

. �

We are ready to prove Theorem B.(ii).
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Lemma 2.9. The holomorphic mapping

𝜗 : H𝑝 × Δ𝑞 → �̌�

(𝑧, 𝑤) ↦→ exp

(
−

𝑝∑
𝑖=1

𝑧𝑖 (𝑆𝑖 + 𝑁𝑖)
)
◦ 𝑎(𝑤)

is horizontal.

Proof. Note that 𝜗∗( 𝜕
𝜕𝑧𝑖

) = [𝑆𝑖 + 𝑁𝑖]𝜗 (𝑧,𝑤) . Since [𝑆𝑖 , 𝑁𝑖] = 0, one has

(𝐿exp(
∑𝑝

𝑖=1 (𝑆𝑖+𝑁𝑖)𝑧𝑖) )∗
(
[𝑆𝑖 + 𝑁𝑖]𝜗 (𝑧,𝑤)

)
=

[
Ad exp(

∑𝑝
𝑖=1 (𝑆𝑖+𝑁𝑖)𝑧𝑖) (𝑆𝑖 + 𝑁𝑖)

]
𝑎 (𝑤)

= [𝑆𝑖 + 𝑁𝑖]𝑎 (𝑤) .

It then follows from Lemmas 2.7 and 2.8 that [𝑆𝑖 + 𝑁𝑖]𝜗 (𝑧,𝑤) ∈ 𝑇−1,1
�̌�,𝜗 (𝑧,𝑤)

. We conclude that 𝜗∗( 𝜕
𝜕𝑧𝑖

)
is horizontal.

On the other hand, one has

𝜗∗

(
𝜕

𝜕𝑤𝑖

)
= (𝐿exp(−

∑𝑝
𝑖=1 (𝑆𝑖+𝑁𝑖)𝑧𝑖) )∗𝑎∗

(
𝜕

𝜕𝑤𝑖

)
,

and

Ψ∗

(
𝜕

𝜕𝑤𝑖

)
(𝑒𝑧 , 𝑤) = Ψ̃∗

(
𝜕

𝜕𝑤𝑖

)
(𝑧, 𝑤) := (𝐿exp(

∑𝑝
𝑖=1 (𝑆𝑖+𝑁𝑖)𝑧𝑖) )∗Φ∗

(
𝜕

𝜕𝑤𝑖

)
(𝑧, 𝑤).

Since Φ∗( 𝜕
𝜕𝑤𝑖

) is horizontal, by Lemma 2.7,

Ψ̃∗

(
𝜕

𝜕𝑤𝑖

)
(𝑧, 𝑤) := (𝐿exp(

∑𝑝
𝑖=1 (𝑆𝑖+𝑁𝑖)𝑧𝑖) )∗Φ∗

(
𝜕

𝜕𝑤𝑖

)
(𝑧, 𝑤)

is horizontal, and thus Ψ∗( 𝜕
𝜕𝑤𝑖

) (𝑒𝑧 , 𝑤) is horizontal. Letting �𝑧𝑖 → −∞ for 𝑖 = 1, . . . , 𝑝, we conclude
that

Ψ∗

(
𝜕

𝜕𝑤𝑖

)
(0, 𝑤) = 𝑎∗

(
𝜕

𝜕𝑤𝑖

)
is also horizontal. We apply Lemma 2.7 again to conclude that 𝜗∗( 𝜕

𝜕𝑤𝑖
) is horizontal. In conclusion, 𝜗

is a horizontal mapping. We proved Theorem B.(ii). �

The rest of the paper is devoted to the proof of Theorem B.(iii). We will only deal with the case of one
variable. We first start a lemma in linear algebra whose proof is direct (cf. [9, §7.5] for a detailed proof).

Lemma 2.10. Let 𝑆 ∈ End(𝑉∇) be semisimple with real eigenvalues. Then there exists a constant𝐶 > 0
such that

‖Ad 𝑒𝑥𝑆 ‖ ≤ 𝐶 exp((𝜆max − 𝜆min) · |𝑥 |) for all 𝑥 ∈ R,

where 𝜆max and 𝜆min are the largest and smallest eigenvalue of S. Let 𝑁 ∈ End(𝑉∇) be nilpotent. Then

‖Ad 𝑒𝑥𝑁 ‖ ≤ 𝐶 ′ |𝑥 |𝑚

for some 𝐶 ′, 𝑚 > 0.
Here, we fix a reference polarized Hodge structure 𝑜 ∈ 𝒟which induces metrics for𝑉∇ and End(𝑉∇).

‖Ad 𝑒𝑥𝑆 ‖ is the operator norm with respect to such metric of End(𝑉∇).
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The following two lemmas are due to Schmid [10, Lemmas 8.12 & 8.19]. They are stated for period
domains of real Hodge structures. However, their proofs can be generalized to period domains of
complex polarized Hodge structures verbatim, and we thus omit their proofs here.

Lemma 2.11. If 𝑔 ∈ GL(𝑉∇), then for some natural distance 𝑑�̌� of �̌�, we have

𝑑�̌�(𝑔𝑎, 𝑔𝑏) ≤ ‖Ad 𝑔‖𝑑�̌� (𝑎, 𝑏)

for any points 𝑎, 𝑏 ∈ �̌�.

Lemma 2.12. Let Φ : H→ 𝒟 be the period map associated to a complex polarized variation of Hodge
structure on Δ∗. Fix 𝛼, 𝑘 > 0 and a reference point 𝑜 ∈ 𝒟. Choose 𝑔(𝑧) ∈ 𝐺 = 𝑈 (𝑉∇, 𝑄) such that
𝑔(𝑧) · 𝑜 = Φ(𝑧). Then there exist 𝐶, 𝛽 > 0 such that if |�𝑧 | ≤ 𝑘 , one has

‖Ad 𝑔(𝑧)−1‖ ≤ 𝐶 |�𝑧 |𝛽

for �𝑧 < −𝛼. Here, ‖Ad 𝑔(𝑧)−1‖ is the operator norm defined in Lemma 2.10.

By [9, §4.1], we know that 𝐺 := 𝑈 (𝑉∇, 𝑄) acts transitively on the period domain 𝒟, and 𝒟 admits
a natural G-invariant distance 𝑑𝒟.

Proof of Theorem B.(iii). Let 𝑇 ∈ GL(𝑉∇) be the monodromy operator associated to the counter-
clockwise generator of 𝜋1 (Δ∗). Note that 𝑇 ∈ 𝐺 := 𝑈 (𝑉∇, 𝑄). Recall that there exist commuting
𝑆, 𝑁 ∈ GL(𝑉∇) such that

◦ exp(2𝜋𝑖(𝑆 + 𝑁)) = 𝑇 ;
◦ S is semisimple with eigenvalues lying in (𝛼 − 1, 𝛼];
◦ N is nilpotent.

Denote by 𝑎 = Ψ(0). Then for |𝑡 | small enough, one has

𝑑�̌�(𝑎,Ψ(𝑡)) < 𝐶 |𝑡 | for some 𝐶 > 0,

which is equivalent to that

𝑑�̌�(𝑎,Ψ(𝑒𝑧)) < 𝐶𝑒𝑥 (2.15)

when 𝑥 ≤ −𝑀 for some 𝑀 > 0. Here, we write 𝑧 = 𝑥 + 𝑖𝑦. Assume now |𝑦 | ≤ 2𝜋 and 𝑥 ≤ −𝑀 . Then

𝑑�̌� (exp(−(𝑆 + 𝑁)𝑧)𝑎,Φ(𝑧)) ≤ ‖Ad exp((𝑆 + 𝑁)𝑧)‖ · 𝑑�̌� (𝑎,Ψ(𝑒𝑧))
≤ ‖Ad exp(𝑁𝑥)‖ · ‖Ad exp(𝑖(𝑆 + 𝑁)𝑦)‖ · ‖Ad exp(𝑆𝑥)‖ · 𝑑�̌�(𝑎,Ψ(𝑒𝑧))
≤ 𝐶1‖Ad exp(𝑁𝑥)‖ · ‖Ad exp(𝑆𝑥)‖ · 𝑑�̌�(𝑎,Ψ(𝑒𝑧))
≤ 𝐶2 |𝑥 |𝑚 · exp((𝜆max − 𝜆min) · |𝑥 |) · 𝑑�̌�(𝑎,Ψ(𝑒𝑧))
≤ 𝐶3 |𝑥 |𝑚 · exp((𝜆max − 𝜆min) · |𝑥 |) · 𝑒𝑥 ≤ 𝐶3 |𝑥 |𝑚𝑒𝛿𝑥 . (2.16)

The first inequality is due to Lemma 2.11, the third one holds since |𝑦 | ≤ 2𝜋, the fourth one follows
from Lemma 2.10, and the fifth one follows from Equation (2.15). Here, 𝜆max and 𝜆min are the largest
and smallest eigenvalue of S. Therefore, 𝜆max − 𝜆min < 1, and thus the last inequality can be achieved
for some 𝛿 > 0. Here, 𝐶1, . . . , 𝐶3 > 0 are some positive constants.

Fix a reference point 𝑜 ∈ 𝒟, and let 𝑔(𝑧) ∈ 𝐺 such that 𝑔(𝑧) · 𝑜 = Φ(𝑧). By Lemmas 2.11 and 2.12
together with Equation (2.16), one gets

𝑑�̌�(𝑔(𝑧)−1 exp(−(𝑆 + 𝑁)𝑧)𝑎, 𝑜) ≤ ‖Ad 𝑔(𝑧)−1‖ · 𝑑�̌�(exp(−(𝑆 + 𝑁)𝑧)𝑎,Φ(𝑧)) (2.17)

≤ 𝐶4 |𝑥 |𝑚+𝛽𝑒𝛿𝑥
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if |𝑦 | ≤ 2𝜋 and 𝑥 < −𝑀2 for some 𝑀2 ≥ 𝑀 and 𝐶4, 𝛽 > 0. Pick a small neighborhood U of o in 𝒟

such that the distance functions 𝑑𝒟 and 𝑑�̌� are mutually bounded over U. By Equation (2.17) when
|𝑦 | ≤ 2𝜋, 𝑥 ≤ −𝑀3 for some 𝑀3 ≥ 𝑀2, 𝑔(𝑧)−1 exp(−(𝑆 + 𝑁)𝑧)𝑎 will be entirely contained in U. Note
that 𝑔(𝑧) ∈ 𝐺, it follows that exp(−(𝑆 + 𝑁)𝑧)𝑎 ∈ 𝒟 if |𝑦 | ≤ 2𝜋 and 𝑥 ≤ −𝑀3. When |𝑦 | > 2𝜋 and
𝑥 ≤ −𝑀3, we find some integer ℓ such that |𝑦 − 2𝜋ℓ | ≤ 2𝜋. Then exp(−(𝑆 + 𝑁) (𝑧 − 2𝜋𝑖ℓ))𝑎 ∈ 𝒟. Since
exp(−(𝑆 + 𝑁)𝑧)𝑎 = 𝑇−ℓ exp(−(𝑆 + 𝑁) (𝑧 − 2𝜋𝑖ℓ))𝑎 and 𝑇 ∈ 𝐺, it follows that exp(−(𝑆 + 𝑁)𝑧)𝑎 ∈ 𝒟.
In conclusion, exp(−(𝑆 + 𝑁)𝑧)𝑎 ∈ 𝒟 if 𝑥 ≤ −𝑀3. We prove the first claim in Theorem B.(iii).

Recall that the distance functions 𝑑𝒟 and 𝑑�̌� are mutually bounded over U. By Equation (2.17) again
for some 𝐶5 > 0 we have

𝑑𝒟(𝑔(𝑧)−1 exp(−(𝑆 + 𝑁)𝑧)𝑎, 𝑜) ≤ 𝐶5 |𝑥 |𝑚+𝛽𝑒𝛿𝑥

for |𝑦 | ≤ 2𝜋, 𝑥 ≤ −𝑀3. Since the action of 𝑔(𝑧) is 𝑑𝒟-distance invariant, we obtain the distance estimate

𝑑𝒟 (exp(−(𝑆 + 𝑁)𝑧)𝑎,Φ(𝑧)) ≤ 𝐶5 |𝑥 |𝑚+𝛽𝑒𝛿𝑥

for |𝑦 | ≤ 2𝜋, 𝑥 ≤ −𝑀3. When |𝑦 | > 2𝜋 and 𝑥 ≤ −𝑀3, one picks some integer ℓ such that |𝑦−2𝜋ℓ | ≤ 2𝜋.
Then

𝑑𝒟(exp(−(𝑆 + 𝑁) (𝑧 − 2𝜋𝑖ℓ))𝑎,Φ(𝑧 − 2𝜋𝑖ℓ)) ≤ 𝐶5 |𝑥 |𝑚+𝛽𝑒𝛿𝑥 .

In other words,

𝑑𝒟(𝑇ℓ exp(−(𝑆 + 𝑁)𝑧)𝑎, 𝑇ℓΦ(𝑧)) ≤ 𝐶5 |𝑥 |𝑚+𝛽𝑒𝛿𝑥 .

As T is also 𝑑𝒟-distance invariant, it follows that

𝑑𝒟(exp(−(𝑆 + 𝑁)𝑧)𝑎,Φ(𝑧)) ≤ 𝐶5 |𝑥 |𝑚+𝛽𝑒𝛿𝑥 .

for 𝑥 ≤ −𝑀3. The distance estimate is obtained. �
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