ON A PROBLEM OF P. ERDÖS

BY
I. RUZSA, JR.

P. Erdös asked the following problem: Does there exist an infinite sequence of integers $a_{1}<\cdots$ satisfying for every $x \geq 1$

$$
\begin{equation*}
A(x)=\sum_{a_{i} \leq x} 1<\frac{c_{1} x}{\log x} \tag{1}
\end{equation*}
$$

so that every integer is of the form $2^{k}+a_{i}$ [1]. The analogous questions can easily be answered affirmatively if the powers of 2 are replaced by the r th power.

In this note we give a simple affirmative answer to the problem of Erdös. Let c_{2} be a sufficiently small absolute constant. Our sequence A consists of all the integers of the form
(2) $\quad 5^{u} v$ and $5^{u} v+1$, where $5^{u}>c_{2} \log v, \quad u=1,2, \ldots ; \quad v=1, \ldots$
(2) clearly implies that (1) is satisfied for a sufficiently large c_{1}. To prove that every sufficiently large integer is of the form $2^{k}+a_{i}$ we only have to observe that for every $r, 2$ is a primitive root of 5^{r}, and choose $5^{r} \leq \log n<5^{r+1}$, then we can find a $k<5^{r}$ so that $n-2^{k}$ or $n-2^{k}-1$ is of the form $5^{r} v$, or $n-2^{k}$ is of the form (2). It is easy to see that for all n the number of solutions of

$$
n=2^{k}+a_{i}
$$

a_{i} of the form (2) is less than an absolute constant c_{3}.
In this connection the following problem is of interest: Let $b_{1}<\cdots$ be an infinite sequence of integers satisfying $B(x)>c_{3} \log x$ for every x. Is there then a sequence A satisfying (1) so that every n can be written in the form $a_{i}+b_{j}$? I succeeded to prove, using a result in [1], that there exists a sequence $b_{1}<\cdots$ satisfying $B(x)>c_{3}$ $\log x$ so that if every n can be written in the form $a_{i}+b_{j}$ then for infinitely many x

$$
A(x)>c_{4} \log \log x / \log x .
$$

In view of a result of [2] this is best possible. This settles the problem in the negative. I will return to this subject at another occasion.
As to the constant c_{1} in (1), we must clearly have $c_{1} \geq \log 2$. Erdös conjectured that $c_{1}>\log 2+\epsilon$ for some fixed $\epsilon>0$. The analogous conjecture for r th powers has been proven by Moser [3].

References

1. P. Erdös, Some results on additive number theory, Proc. Amer. Math. Soc. 5 (1954), 847-853 (see p. 853). See also Proc. of the Number Theory Conf. at Boulder, Colorado, 1963, Problem 33.
2. G. G. Lorentz, On a problem of additive number theory, Proc. Amer. Math. Soc. 5 (1954), 838-891.
3. L. Moser, On the additive completion of sets of integers, Proc. Symp. Pure Math., Amer. Math. Soc. 8 (1965), 175-180.

Fazekas High School,
Budapest, Hungary

