ON A PROBLEM OF P. ERDÖS

ву I. RUZSA, JR.

P. Erdös asked the following problem: Does there exist an infinite sequence of integers $a_1 < \cdots$ satisfying for every $x \ge 1$

(1)
$$A(x) = \sum_{a_1 \le x} 1 < \frac{c_1 x}{\log x}$$

so that every integer is of the form $2^k + a_i$ [1]. The analogous questions can easily be answered affirmatively if the powers of 2 are replaced by the *r*th power.

In this note we give a simple affirmative answer to the problem of Erdös. Let c_2 be a sufficiently small absolute constant. Our sequence A consists of all the integers of the form

(2) $5^{u}v$ and $5^{u}v+1$, where $5^{u} > c_{2} \log v$, u = 1, 2, ...; v = 1, ...

(2) clearly implies that (1) is satisfied for a sufficiently large c_1 . To prove that every sufficiently large integer is of the form $2^k + a_i$ we only have to observe that for every r, 2 is a primitive root of 5^r , and choose $5^r \le \log n < 5^{r+1}$, then we can find a $k < 5^r$ so that $n-2^k$ or $n-2^k-1$ is of the form 5^rv , or $n-2^k$ is of the form (2). It is easy to see that for all n the number of solutions of

$$n=2^k+a_i$$

 a_i of the form (2) is less than an absolute constant c_3 .

In this connection the following problem is of interest: Let $b_1 < \cdots$ be an infinite sequence of integers satisfying $B(x) > c_3 \log x$ for every x. Is there then a sequence A satisfying (1) so that every n can be written in the form $a_i + b_j$? I succeeded to prove, using a result in [1], that there exists a sequence $b_1 < \cdots$ satisfying $B(x) > c_3 \log x$ so that if every n can be written in the form $a_i + b_j$ then for infinitely many x

$$A(x) > c_4 \log \log x / \log x.$$

In view of a result of [2] this is best possible. This settles the problem in the negative. I will return to this subject at another occasion.

As to the constant c_1 in (1), we must clearly have $c_1 \ge \log 2$. Erdös conjectured that $c_1 > \log 2 + \epsilon$ for some fixed $\epsilon > 0$. The analogous conjecture for *r*th powers has been proven by Moser [3].

References

1. P. Erdös, Some results on additive number theory, Proc. Amer. Math. Soc. 5 (1954), 847-853 (see p. 853). See also Proc. of the Number Theory Conf. at Boulder, Colorado, 1963, Problem 33.

I. RUZSA, J.

2. G. G. Lorentz, On a problem of additive number theory, Proc. Amer. Math. Soc. 5 (1954), 838-891.

3. L. Moser, On the additive completion of sets of integers, Proc. Symp. Pure Math., Amer. Math. Soc. 8 (1965), 175-180.

Fazekas High School, Budapest, Hungary

310