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Abstract. In this paper we provide a complete characterization for when the Rees algebra and the
associated graded ring of a perfect Gorenstein ideal of grade three are Cohen—Macaulay. We also
treat the case of second analytic deviation one ideals satisfying some mild assumptions. In another
set of results we give criteria for an ideal to be of linear type. Finally, we describe the equations
defining the Rees algebras of certain Northcott ideals.
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Introduction

In this paper we investigate the Rees algel®ra= R[It¢] (+ a variable) as well

as the associated graded rigg= R/IR of an ideall in a Noetherian ringr.

Both algebras play a crucial role in the birational study of algebraic varieties in
that ProjR) is the blowup of Spe@®) alongV (1), with Proj4) corresponding to

the exceptional fiber. Although blowing up is a fundamental operation, an explicit
understanding of this process remains an open problem. In this context the Cohen—
Macaulay property of thelowup algebrasr andg is of central importance, in part
because it helps to describe these algebras in terms of generators and relations. Re-
cently numerous authors have discovered classes of ideals with Cohen—Macaulay
blowup algebras. In the present work we wish to supply necessabgufficient
conditions forR or g to be Cohen—Macaulay. The emphasis here is on establishing
the necessity of assumptions on the reduction numbdr thiat were known to

imply Cohen—Macaulayness. As a second goal we wish to describe the equations
defining certain Rees algebras.
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Usually one investigates the Cohen—Macaulaynes® @ind g by passing to
a minimal reduction off. Recall that an ideay c I is areductionof I if the
extension of Rees algebra®(J) — R(I) is module finite, or equivalently, if
't = JI" for somer > 0 ([31]). The least such is denoted by, (7). Now
assume thatR, m) is local with infinite residue field. A reduction off is minimal
if it is minimal with respect to inclusion, and ttreduction number (1) of I is
defined as mifr; (1)} whereJ ranges over all minimal reductions bfFinally, the
analytic spread’ (1) of I is the Krull dimension of the special fiber ri®® k, or
equivalently, the minimal number of generatpr&/) of any minimal reductior/
of I ([31]). Thus,£(7) indicates the size of a minimal reduction ard) measures
how closely the two ideals are related. In this vein one may expeantdg, to have
good depth properties provided!) is small.

Before describing one of the known sufficient conditions for the Cohen—
Macaulayness of blowup algebras, we recall thaatisfiesG,, s an integer, if
u(ly) < dimR, for everyp € V(1) with dmR, < s — 1, and that/ is G
if G, holds for everys. Furthermore suppos® is Gorenstein and writg =
gradel, ¢ = £(I), andn = p(I). Now assuming satisfiesG, and depthR /17 >
dmR/I—j+1forl< j < £—g+1,itwasshownin[22]thatif(l) < £—g+1,
theng is Cohen—Macaulay, and so4® in caseg > 2 (for other results, see [11]
for instance). It has been an open problem for some time as to what extent the con-
verse of this statement holds. In other words, it remains to investigate under which
circumstances the Cohen—Macaulaynes® @ § forces the reduction number of
I to be at most thexpectedne, namely — g + 1 (which, in the above setting,
is the smallest positive value the reduction number can take, [22]). One knows,
quite generally, that ifR is Cohen—Macaulay then(7) < ¢ — 1 ([3, 20, 23, 34]),
which yields the expected boundl) < ¢ — g + 1 for g = 2. But, even for perfect
Gorenstein ideals of grade 3 satisfyify, the stronger estimate was established
only in special cases ([1, 21, 29, 30, 37]). Now we are able to treat this class of
ideals in general, giving a complete characterization for when the blowup algebras
of grade 3 perfect Gorenstein ideals satisfyihgare Cohen—Macaulay. As it turns
out, R is Cohen—Macaulay if and only # is Cohen—Macaulay if and only if the
reduction number of is at most the expected one if and only if either= ¢,
or else,;n = £ 4+ 1 and/ satisfies the row condition (Theorem 3.1). Here we say
that an ideall satisfies theow conditionif for some minimal presentation matrix
¢ of I, the ideall,(¢) is generated by the entries of a single rowpof[2]). The
last equivalence in our theorem was known before ([34], [37]), and so was the fact
that the reduction number satisfies the expected bougdisf Cohen—Macaulay
andn < £+ 1 ([21]). Thus, what remained to be shown was that the Cohen—
Macaulayness of, imposes a severe restriction on the number of generators of a
grade 3 perfect Gorenstein ideal, namely¥ ¢ + 1!

In another result of this paper, we give necessary and sufficient conditions for
the blowup algebras of an ideal of arbitrary grade to be Cohen—Macas$ayning
thatn < ¢ + 1. Such ideals are said to hasecond analytic deviatiofat most)
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one the second analytic deviation of an ideal being the differenee ([38]).

More specifically, we prove: Assume that= ¢ + 1 > 2, that] satisfiesG,, that
depthR/I/ > dimR/I — j+ 1andS;(I) = I/ for1 < j < ¢ — g+ 1, and that

I ®r k does not embed intd, (¢) ®r k for a minimal presentation matrix of 7;
thenR is Cohen—Macaulay (in cage> 2) if and only if ¢ is Cohen—Macaulay if

and only if the reduction number dfis the expected one if and only ifsatisfies

the row condition (Theorem 2.1). The last equivalence being a general and known
fact about ideals of second analytic deviation one ([37]), we had to prove that the
Cohen-Macaulayness ¢gf forcesr(I) = ¢ — g + 1. The latter conclusion fails
without the assumptioh®zk > I,(¢) ®rk, i.e., without requiring that a minimal
generating set of cannot be extended to a minimal generating satk @#). This

weak condition, hardly ever violated by perfect noncomplete intersections, replaces
the stronger assumptidnc (1(¢))? under which the implication had been proved

in [21]. As to the other assumptions in our theorem, notice that an ideatisfies
depthR/I/ > dimR/I — j+1andS;(J) = [/ for1 < j < s—g+1,if I

is G, andstrongly Cohen—Macaulay.e., has Cohen—Macaulay Koszul homology
H,(I). The strong Cohen—Macaulay property, in turn, is a consequenkéaing

licci, i.e., in the linkage class of a complete intersection ([14]). Standard examples
of licci ideals include perfect ideals of grade 2 ([4], [10]), as well as perfect Goren-
stein ideals of grade 3 ([40]). Combining these facts we obtain, for instance, a
complete characterization for when Northcott ideals and perfect almost complete
intersections of grade 3 have Cohen—Macaulay blowup algebras (Corollaries 2.5
and 2.6).

In another set of results we give criteria for an ideal to have reduction number
zero (Theorems 4.2, 4.4 and their corollaries). These results all deal with the natural
exact sequence 8 A — S(I) - R — 0 relating the symmetric algebsa1)
and the Rees algebr®a of 7. Under suitable assumptions, which are automatically
satisfied in casd is licci, we show that ifg is Cohen—Macaulay ang; = 0
for somei > ¢ — g + 2, then[ is of linear type i.e., A = 0 (Theorem 4.4 and
Corollary 4.5). Thus, in caskis a licci ideal satisfyingG,, not of linear type, and
g is Cohen—Macaulay, thes; = Oifand only ifi > ¢ — g + 2.

Our results also provide classes of ideals in local Gorenstein rings for which
the Cohen—Macaulay properties@fand ofg are equivalent. In general, one only
has the implication that the Cohen—Macaulayness passesfréong, (if ¢ > 0O,

[15]), whereas the converse requires an assumption on the ambient ring, such as
regularity ([28]).

Besides the Cohen—Macaulay property we are also interested in the defining
equations of blowup algebras: We wish to give an explicit description of an @eal
in a polynomial ringR[Ty, ..., T,] so thatR = R[T4, ..., T,]/ Q. In this context
we reasonably restrict ourselves to considering idéalbat satisfy a structure
theorem and whose Rees algebra is Cohen—Macaulay. On the other hand, an ex-
plicit presentation of the symmetric algebra being known, it suffices to describe
a generating set of the ideall. Vasconcelos was the first to address this question
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systematically ([39]). Later, the problem was solved for large classes of perfect
ideals of grade 2 ([29]) and for perfect Gorenstein ideals of grade 3 and second
analytic deviation one ([21]). Actually, in the light of Theorem 3.1, the latter class
of ideals is the full class of perfect Gorenstein ideals of grade 3 (with Cohen—
Macaulay Rees algebra). In this paper, we give an explicit presentati@nrothe

case of Northcott ideals (Theorem 5.4). Recall that a Northcott ideal is an ideal
I linked to a complete intersection in one step, which meansithat J: K for
complete intersection ideals C K. For our theorem we need an assumptiorf on

that is slightly stronger than the one corresponding to the Cohen—Macaulayness of
R, but does not impose any restrictionkifis prime for instance.

1. Fundamental Exact Sequences

In this section we are going to prove several technical results that will be used
throughout the paper. They are all derived in one sense or another from the exact
sequence B> A — S(I) - R — 0. Assuming that the associated graded ring

g of I is Cohen—Macaulay and that some other assumptions are satisfied, we will
estimate the annihilator of the first nonvanishing componest @#roposition 1.3),

and we will show that this component fits into an exact sequence involving the
symmetric algebr&(//J) and the canonical moduley, .2, whereJ is a minimal
reduction ofI (Proposition 1.5). Our approach is based in part on studying the
Koszul homologyH, (T, . . ., T;) of suitable elements with values ¢hand inR,
respectively.

LEMMA 1.1. Let R be a Noetherian ring, let be an integer, and lef be an
R-ideal of heightg satisfyingG, with ¢ Cohen—Macaulay. Lel = (ay, ..., ay)
be a reduction off so thathtJ:I > s. Consider theR-algebra map from the
polynomial ringB = R[Ti,...,T;]to S(I) sendingT; toa; € J C S1(1), thus
defining a graded3-module structure oeR and 4. Then for every > 1:

(@) Hi(Ty, ..., Ty; 4) is concentrated in degrees s — g;
(b) Hi(Ty, ..., Ty; R) is concentrated in degrees max{s — g, i}.

Proof. Part (a) follows by the same arguments as in the proof of [34, 3.2]. To
show (b) notice that;(Ty, ..., Ty; R) is annihilated by some power of the-
idealR, C /(Ty, ..., T,)R sinceJ is areduction of . HenceH; (T, ..., Ty; R)
is concentrated in finitely many degrees. &5(T4, ..., Ty; R) is concentrated
in degreei and H;(T, ..., Ty; $) is concentrated in degrees at mest g, the
conclusion now follows from the exact sequences

O>R, > R—>R—0
0> R (1H—->R—>4—-0
(see also [35, 3.4()])- O
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From Lemma 1.1, one easily deduces two previously known facts. The first one
(Lemma 1.2(a)) is an exact sequence that has essentially been shown in [21, the
proof of 2.5], where methods from [1], [2] were used. The second one
(Lemma 1.2(b)) deals with intersection properties of ideal powers and can be found
in [2, the proof of 5.2].

LEMMA 1.2. With the assumptions of Lemrhd and with theB-module structure
on R given by the identificatio® /B, = R, the following hold:

(a) The sequence

0— [A ®B R]}s—g—i—l - [S(I/J)]>S—g+1 — [R/JtR]ES—g-l-l —-0
is exact
(o) JI'4nI =JI'"1foreveryi > s — g+ 1.

Proof. (a) Tensor the exact sequence
Co: 0>A—>SU)—>R—>0

with _®3z R, and notice that T¢f(R, R) = Hy(Tx, ..., Ty; R). Now Lemma 1.1(b)
yields the exactness ¢€, ® R]>maxs—g+1,2)- ONn the other handC, ®3 R]1 is
trivially exact.

(b) We inducton > s — g+ 1, the caseé = s — g + 1 being trivial. Now leti >
s —g+2. By induction hypothesis] I*¢NI' = (JI*¢NI'YHNI' = JI'=2N T,
which reduces us to showing that’—?N7* ¢ JI'~1. Tothisend lek € JI'=2NI".
Write x = Y °_ bja; with b; € I'"? and set* = b; + I' ' € §,_». By Z, and
B, we denote cycles and boundaries of the Koszul complgis, ..., T;; ) =

N §e1®---@Ge,. Sincex € I', we have) _, b3T; = 0ing and so)__, bie; €
[Z1]i-1. Asi > 5 — g+ 2, Lemma l.l.ayieldy’_, ble; € [B1];-1, and thus
[b1,....01=IT1,....T;]- ¢

for some alternating by s matrix with homogeneous entries of degfee 3 in §.
Hence there exists an alternatindpy s matrix ® with entries inR and elements
c; € I'"t such that

[b1,....b]=1la1,...,as] - D +[c1,...,csl

Multiplying by the column vectofas, ..., a,]' from the right and using the fact
that® is alternating we conclude that=Y""_, bja; = Y\ _,cja; € JI'™. O

The next proposition shows that a certain Fitting ideal @nihilates the first
nontrivial component of4. Annihilators of components ok have been investig-
ated before, but only in the context of second analytic deviation one ([38, 2.5], [1,
2.1], [34, 4.2], [21, 3.1)).
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PROPOSITION 1.3.Let R be a Noetherian local ring and let be an R-ideal
of heightg and analytic spread. Assume thaf satisfiesG,, that S;(I) = I/
wheneverl < j < £ — g + 1 and thatg is Cohen—Macaulay. Thefitt,(1) C
ANN(Ag_g.2).

Proof. Let f1, ..., f, be a generating sequencelgfiet X be ann by n matrix
of indeterminates, and wrifey, ..., a,] = [f1, ..., f»]- X. We may replace by
R(X). Since

Fitt, (1) = Y Fitto(I/(ayy. ... a;,)

1<iz<-<ig<n

c > AN(/(ay. ... a)),

1<iz<<ig<n

it suffices to show thaf: I annihilatesA,_,., for anyJ = (a,,, ..., a;). By the
general choice afy, ..., a,, the ideal/ is a reduction of and ht/: I > ¢ because

I satisfiesG, (see [19, the proof of 3.2]). We use the notation of Lemma 1.2 with
s = L. SinceA; = 0fori < €—g+1, A0 = [A ®p Rli—g42. On the
other hand, by the same lemniay ® 3 R1;—,1» embeds intaS,_,,»(//J), which

is annihilated by/: 1. O

To make use of the full strength of Proposition 1.3, we need a result about the
canonical module of rings defined by certain residual intersections. For the proof
and for future reference we recall that a proper id€ah a Noetherian ringr is

an s-residual intersectiorof an R-ideal I, if ht K > s > htl andK = J: I for
somes-generatedR-ideal / C I. An s-residual intersection igeometricin case

ht7 + K > s+ 1.

LEMMA 1.4. Let R be a local Gorenstein ring of dimensiah let I be anR-
ideal of gradeg satisfyingG,, and assume thadepthR/I’/ > d —g — j + 1
wheneverl < j < d — g. Further, letJ be anR-ideal contained in/ so that
wlJ) < d < htJ: 1. Ifforsomei >d—g+ 1, JI NI = JI'! then
WRy . [i-dts = I'/JI'~* (using the convention that the canonical module of the
zero ring is zerp.

Proof. First notice thatJ: I'=4+8) ' = (J: ['=4+8)[i=d*s[d=¢ c jri=sn] =
JI'=%, by our assumption. Thereford = 1'/JI'~'is a module oveR/J: I'~9+¢,
In particular, if J: I'=4*¢ = R thenM = 0. Thus we may assume that/'—4+s £
R. SinceK = J:I C J:I'~9*¢ it follows thatR/J: I'~¢*¢ is Artinian and that
K # R is ad-residual intersection of. Hence,w = wg/x = 19781/ J197¢
by [36, 2.9(b)]. Now again by our assumptiol, = I'/JI'" = I'/(JI?¢ N
Iy = [i—d+s=1 (pd=s+l) g d=¢) = [i—d+¢=1y In particular,M is a submodule
of w, hence typeM) < 1. Thus it suffices to show tha/ is faithful over the
Artinian ring R/J:1'~*$ (see, for instance, [6, 3.2.12(e)]). Indeedz® =

https://doi.org/10.1023/A:1001704003619 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001704003619

SUFFICIENT CONDITIONS FOR THE COHEN-MACAULAYNESS OF BLOWUP ALGEBRAS 191

0: g4 ) = (0: g): g 7987 = K gl 0H8 L = (Jig D g I8 =
J: R Ii7d+g' O

When combined with Lemma 1.2, Lemma 1.4 leads to the two fundamental exact
sequences we will need later.

PROPOSITION 1.5Let R be alocal Gorenstein ring of dimensianwith infinite
residue field and lef be an R-ideal of gradeg satisfyingG, with ¢ Cohen—
Macaulay. Assume thatepthR/I/ > d —g— j+1for1 < j < d — g and
S;(I) = I/ forl < j <d-— g+ 1 LetJ be a minimal reduction of and set
K=1J:1I

(a) There is an exact sequence
0— Ay_gi2—> Si—gr2(I/J) = wg/k.1 — 0.
(b) If d > Othere is an exact sequence
0— R/K:I — EXt4(Sq_gs2(1/J), R) — Extg(Sy_g42(I), R) — 0.

Proof. Notice that htK > d sincel is of linear type locally in codimension
d — 1 (see [36, 2.9(a) and 1.11]). We may use the notation of Lemma 1.2 with
s = d. SinceA; = 0fori < d—g+1wehavet; g2 = [A ®p Rlg—g42.

By Lemma 1.2(b),J 1978 N [978%2 = J[97¢*L hencewg/k.; = wgpz =
197872/ J[9=8F1 = [R/JtR]4—g+2 Dy Lemma 1.4. Now Lemma 1.2(a) yields (a).

If d > 0 then Ext(I97¢2, R) = 0, therefore the exact sequence defining
Aq—g+2 induces an isomorphism ExtA g2, R) = EXt4(Sy—e42(1), R). On the
other hand the modules occurring in (a) are annihilate® land, hence, have finite
length. Now applying EX1(_, R) to this sequence we obtain (b). O

Notice that if in the above propositio,has second analytic deviation at most one,
thenl/J is cyclic and therefore;_,o(1/J) = R/K.

2. Second Analytic Deviation One Ideals

Now we are ready for our first main result. To prove it, we compute annihilators
along the exact sequence of Proposition 1.5(a) and invoke Proposition 1.3.

THEOREM 2.1. Let R be a local Gorenstein ring of dimensieghwith infinite
residue fieldk and let/ be anR-ideal of gradeg, analytic spread, minimally
generated by» = ¢ + 1 > 2 elements. Suppose that | satisfi@g and that
depthR/I/ > d —g— j+1andS;(I) = I/ wheneverl < j < £ —g+ 1
Lety be a matrix withn rows presenting. Further assume that ® z k does not
embed intd;(p) ®k k (i.e., that a minimal generating set Hicannot be extended
to a minimal generating set df(¢)). The following are equivalent:
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(a) After elementary row operationg,(¢) is generated by the last row ¢f
(b) The reduction number dfis¢ — g + 1;
(c) 4 is Cohen—Macaulay.
Furthermore, ifg > 2 the above conditions are equivalent to
(d) R is Cohen—Macaulay.

Proof. The equivalence of (a) and (b) is proved in [37, 5.1], while the fact that
these imply (c) and (d) is given by [22, 3.1 and 3.4]. Furthermore (c) follows from
(d) by [15, Prop. 1.1]. We are left to prove that (c) implies (b).

Let m be the maximal ideal oR. By the Cohen—Macaulayness $fone has
grademg = d — £. Since furthermord satisfiesG,, there exists arR-regular
sequenc& = xj, ..., xy_¢ SO thatx is regular ong and the image of in R/(X)
still satisfiesG,. Our assumptions and conclusions are preserved if we re@ace
by R/(X). Thus we may assume that= d.

By assumption there exists ane m/I;(¢) that is part of a minimal generating
set ofI. Asn = ¢ + 1, using a general position argument one may find a minimal
reductionJ of I sothatl = (J, ). Let K = J: I. Notice that htK > ¢ sincel is
of linear type locally in codimensiof— 1 ([36, 2.9(a) and 1.11]). Therefor/ K
is an Artinian Gorenstein ring becaus&eis a residual intersection of height= d
and//J is cyclic ([36, 2.9(b)]). Combining Proposition 1.3 and Proposition 1.5(a)
we see thatl1(¢)(K: 1) C Ann(S;_,42(1/J)). Sincel/J = R/K we obtain
L(p)(K:I) C K or, equivalently,I;(¢) C K:(K:I). As R/K is an Artinian
Gorenstein ring it follows that

L) C I+ K =(K,a) C K+mli(p).

Hencel,(¢) = K, which gives (a), and the equivalence of (a) with (b) yields the
conclusion. a

In the above theorem we assume that there exists an element containédgi
which is part of a minimal generating sethfa condition that is certainly satisfied

if I C ml1(¢). Generalizing [1], M. Johnson had shown a result similar to The-
orem 2.1 requiring the stronger conditidncC (I1(¢))? ([21, 3.6.b]). The above
proof shows that one can weaken the assumptia®dy; k > I(¢) ®f k even
further by only requiring thal c K + mI;(¢), whereK is the ideal generated by
the entries of a general row @f On the other hand, the theorem is no longer true
without any such assumption, as can be seen by takiagbe the maximal ideal

of a local hypersurface ring of positive dimension and multiplicity at least 3.

We pause for a further discussion of the propdrigpg k > I1(¢) ®g k. Al-
though this condition is quite common, it may fail to hold even in the case of perfect
non complete intersection ideals: For instanceRlet k[x1, ..., x4] be a polyno-
mial ring over an infinite field and let be anR-ideal generated by five general
guadrics; thed has no linear relations by [13], and hena@z k <— I,(¢) Qrk. In
fact even the weaker conditidnC K +ml/(p) fails in this case, whereas we do not
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know of any licci non complete intersection ideal exhibiting this behaviour. On the
other hand, there exist licci non complete intersections With k — I1(¢) Qg k:
Examples are given by the ideals of [25, 5.7], which are grade 4 licci almost com-
plete intersections (but not complete intersections). (We are grateful to Matthew
Miller for pointing this out to us.) Our next results will illustrate how tight these
counterexamples are.

REMARK 2.2. LetR be a Noetherian local ring with residue fididlet I be an
R-ideal minimally presented by a matgxwith » rows, and writd", for the graded
k-algebra Tof (R/1, k). If for some 0# e € I'y, dimg e’y < n — 2, thenl ®z k
does not embed inth (¢) R k.

Proof. Let m denote the maximal ideal ak and notice tha: > 2. Con-
sider the exact sequence 8 Z — R" = @', Re — I — 0, with ¢
mapping tof; in I. We may assume thatis the image of,. By our assump-
tion, the images i, of the Koszul relationd f,e; — fie,|]1 < i < n— 1}
are linearly dependent ovér Hence for somej, 1 < j < n — 1, we have
fuej — fien € U fuei — fienll < i < n—1i # j})+ mZ. Now, reading the
coefficient ofe;, we conclude thaf, € m/;(¢). O

PROPOSITION 2.3.Let R be a Noetherian local ring with residue fiekd and
let I be a non complete intersectiaR-ideal minimally presented by. Assume
either that! is perfect of grade< 3, or else thatR is Gorenstein and is perfect
Gorenstein of gradd. Thenl ®x k does not embed inth (¢) ®x k.

Proof. The assertion follows from Remark 2.2 and the classification of the al-
gebras Tof(R/1, k) as given in [5, 2.1] and in [26, 2.2], [24], respectively (we
may assume thdtis algebraically closed). O

For our next observation we recall that two proper iddadgsd K of a Noetherian
ring R are said to be (directlyjnked, 7 ~ K, if K = J: T andl = J: K for some
complete intersectioR-idealJ c I N K.

PROPOSITION 2.4.Let R be a local Gorenstein ring with infinite residue fild
and let! be a Cohen—Macaulag-ideal minimally presented by. If there exists
an R-ideal H doubly linked tof, I ~ K ~ H, so thattype(R/H) < type(R/I),
then! ®z k does not embed inth (¢) ®x k.

Proof. First notice thatu(/) > g = gradel > 0. LetJ and L be complete
intersection ideals defining the links~ K andK ~ H, respectively. By [18, 2.5]
we may pass to a new double link so tha®z k <— I Qg k. Now K = J: I C
I, (), which yields a commutative diagram

J®ch—>I®Rk

|

K Qg k — I1(p) Qg k.
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Suppose that @ k — I1(p) Qg k, thenJ Qg k — K ®r k. Thus typéR/I) =
w(K/J)=u(K)—g < u(K/L) =type(R/H), which is a contradiction. O

We now return to the study of blowup algebras. First recall that an itléala
Noetherian local ring is calledquimultipleif ¢(7) = ht/. Second, an idedl of a
Noetherian ringR is called aNorthcott idealif it is directly linked to a complete
intersection, or equivalently, f = J: K whereJ C K are R-ideals generated by
regular sequences= ay, ..., a, andx = x1, ..., x,, respectively. Writingd for
ag by g matrix witha = x - ®, one easily sees that= I;(X - ®) + I,(P).

COROLLARY 2.5. Let R be a local Gorenstein ring with infinite residue field
and let/ be a Northcott ideal of grade that is not a complete intersection. The
following are equivalent:

(a) For somex and @, /,_1(P) C (X);

(b) I is equimultiple with reduction numbér,

(c) I is equimultiple andR is Cohen—Macaulay(respectivelyg is Cohen—
Macaulay.

Proof. First notice thaig > 2. Letk denote the residue field & and lety be
a matrix presenting with respect to the minimal generatars, . .., a,, det(®).
Now I1(p) = (X) + I,—1(®). Also, I1(p) is independent of the chosen presentation
matrix.

First assume that (a) holds. Thén(p) = (X) = J:I, hence by [32, 3.6],
1> = JI, which gives (b). Next, the equivalence of (b) and (c) follows from
Theorem 2.1. Indeed, the assumptib®r k 4> I1(¢) ®z k of the theorem is
satisfied by Proposition 2.4, becauggl is not Gorenstein, but is doubly linked
to a complete intersection (alternatively, one can use a direct computation). Finally,
to see that (b) implies (a) notice thats g-balanced in the sense of [37, 3.1] since
I is equimultiple of reduction number 1 ([37, 2.6]). Thus, after adjoining a finite
setX of indeterminates/1(¢)R(X) is a first universal linkL(1) of I as in [17,
2.12(b)]. However, being directly linked to a complete intersectiait(/) has
to be a complete intersection ([17, 2.14(b) and 2.3(b)]), which fofggs) to be
one as well. So lefi(¢) = (x1,...,x,). The g-balancedness also implies that
I1(¢p) = J: I for someg generated ideal = (a) = (a1, ..., a,) ([37, 3.6(c)]),
which is necessarily a complete intersection sihee I1(¢). Thus takingd to be a
g by g matrix witha = x- & we obtain (a), becaus®) = I1(¢) = (X)+1;_1(P).O

COROLLARY 2.6. Let R be a local Gorenstein ring with infinite residue field
and let! be a perfect almost complete intersectiRfideal of grade3 that is not a
complete intersection. Letbe a matrix with four rows presenting The following
are equivalent:

(a) After elementary row operationg,(¢) is generated by the last row ¢f
(b) I is equimultiple with reduction numbér,
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(c) I is equimultiple andR is Cohen—Macaulay(respectivelyg is Cohen—
Macaulay.

Proof. The assertion follows from [37, 5.1], Proposition 2.3 (or Proposition 2.4
via [7,5.3]) and Theorem 2.1. O

3. Perfect Gorenstein Ideals of Grade Three

Now we are able to turn to our main result about grade three Gorenstein ideals. For
its proof we compare minimal numbers of generators along the exact sequence of
Proposition 1.5(b), using the resolutions worked out in [27].

THEOREM 3.1. Let R be a local Gorenstein ring with infinite residue field, fet
be a perfect GorensteiR-ideal of grade3, set¢ = ¢(I),n = u(Il),r =r(I), and
assume thaf satisfiesG,. The following are equivalent:

(a) R is Cohen—Macaulagy

(b) g is Cohen—Macaulagy

©r<i-2

(d) eithern = ¢andr =0,orn =¢+ landr = ¢ — 2;

(e) eithern = ¢, 0orn = £ + 1 and I can be presented by an alternatingoy n
matrix ¢ with I,(¢) generated by the entries of the last rowgof

Proof. Clearly (a) implies (b) ([15, Prop. 1.1]). In this proof we will show that
if ¢ is Cohen—Macaulay them < ¢ + 1. Combining this with Proposition 2.3
(or [7,2.1]) and Theorem 2.1 (or [21, 3.8]) one sees that (d) follows from (b), if
n # £. On the other hand, it = ¢ thenr = 0 by [12, 9.1]. Furthermore, (d) is
equivalent to (e) by [7, 2.1] and [34, 4.10], and obviously implies (c). Finally, (a)
is a consequence of (c) by [22, 3.4].

Now it remains to show that < ¢ + 1 if § is Cohen—Macaulay. So suppose
thatn > ¢ 4+ 1. As in the proof of Theorem 2.1 one reduces to the case where
¢ =d =dimR.Nowd — gradel + 2 =d — 1 and] satisfiesG,. The complexes
defined in [27, 2.15] withF = O (see also [27, 4.7]) yield a freR-resolutionF,
of S;_1(I) by [27, 4.13(b), 4.13(d)ii, and 8.3(c)i]. By [27, 2.15(c}}, has length
at mostd and ¥, has rank at most one. Hence £&§, 1(), R) is cyclic. Now
Proposition 1.5(b) implies that(Ext4(S,_1(I/J), R)) < 2.

On the other hand, the complexes of [27, 2.15] with= R yield a resolu-
tion (#,, 9,) of lengthd of the moduleS,_,(1/J) by [27, 4.13(b), 4.13(d)ii, and
8.3(b)i]. The last map in this resolution is of the form

O—>J€d=€B/S\Fi>J€d—1,

with s ranging over all integers so that- d is even and &< s < d ([27, 2.15(c))).
Let m denote the maximal ideal @?, let ¢ be an alternating by n matrix with
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entries inm presenting/, let f1, ..., f, be the signed — 1 byn — 1 Pfaffians ofp,
letas, ..., a; be elements generating and letyr be ann by d matrix with entries
in R sothatfay, ..., a4 = [f1,..., fu]- ¥. Finally, consider the alternating+ d
by n + d matrix

_,/,t 0

First assume that is odd. Definer to be theR-ideal generated by ail — d + 2
by n — d + 2 Pfaffians of® involving at most one of the lagtrows or columns of
®. Sincen > £+ 2 =d + 2 we havea C m. On the other handf’ = /\1F isa
direct summand of¢;, and the description of the differential in [27, 2.15(f)] shows
thatd, (F) C aHty_1 C mH,y_1. Thusp(Exts(Sy_1(1/J), R)) = rankF =d > 2,
which yields a contradiction.

Next assume that is even, in which case we defindo be theR-ideal gener-
ated by alln — d + 3 by n — d + 3 Pfaffians of® involving at most two of the last
rows or columns oB. Asr is odd, it follows that: > d + 3 and therefora C m.
Now A?F is a direct summand of¢,, andd,(A? F) C aH,_1 C mH,_1 (27,
2.15(f)]). Henceu (Ext(S,_1(1/J), R)) > rank A\’ F = (‘é) > 2, again yielding
a contradiction. O

4. ldeals of Linear Type

In this section we are going to prove several criteria for an ideal to have reduction
number zero. For this we need to recall the notion of a deformation: A(Raif)
consisting of a Noetherian local ringand anR-ideal I is adeformationof a pair

(R, 1) if there exists a sequeneeC R regular onk and onR/I so thatR = R/(2)

and/ = IR. We show first a result relating syzygetic and intersection properties
to the geometricity of residual intersections.

PROPOSITION 4.1.Let R be a local Gorenstein ring, lef be an R-ideal of
grade g, let s be an integer and assume thatsatisfiesG, and depthR/1/ >
dmR/I — j +1wheneved < j < s — g. Suppose thatr, 1) has a deformation
(R, I) such that! satisfiesG,,,; anddepthR/I/ > dimR/I — j + 1 whenever
1< j < s — g+ 1 Further, assume that there existsa s — g + 2 such that
A; =0andJ I8N 1" = JI'~1 for somes-residual intersectiork = J: 1. Then
K is a geometric-residual intersection of ; in particular I satisfiesG, .

Proof. Letp € V (/) with dimR, = s. Suppose thak = J:I C p. Locali-
zing R atp and R at the preimage aof, we may assume that difR = s. Since
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A; = 0 we have thas;(1/J) = I'/JI'~1. On the other hand, sincel* s NI =
JI'1, Lemma 1.4 yieldd'/J 1™ = wg) ;. ji-s+: = wg/k. ji-s+s-1. Therefore we
obtain the equality of lengths,(S;(1/J)) = A(R/K:I'**¢~1). We will arrive
at a contradiction once we have shown thas;(//J)) > A(R/K), since then
K:I'=sts~1 = K, which is impossible becaugé—**¢~1 £ R andR/K # O is

Artinian.

To estimate the length of;(1/J), let f1, ..., f. be a generating set ¢fmap-
ping to a generating sefy, ..., f, of I. Letay, ..., a, be generators of and
write

lag, ....a ] =[f1,.... ful - ¥

for somen by s matrix ¢y = (¢;;) with entries inR. Let X = (X,,) be a generia
by s matrix overR, let i be the maximal ideal oR, setS = R[{X;;}]. (Xij— i)
and

(@1 Gl =[f1s s ful - X

Further define thé-idealsJ = (@, ..., d,) andK = J:SI.Letn:S — R be the
composition of theR-algebra epimorphism sendidgto ¢ with the epimorphism
R — R, and letz be thes- -regular sequence generating ker

First, notice thar is regular onS/SI hence(SI/J) ®s R = I/J and therefore
S; (SI/J) ®s R = Si(1/J). SecondX is a geometric-residual intersection of
ST sincel satisfiesG, 1 ([19, 3.2]), andk is unmixed of grade ([36, 2.9(a)
and 1.7(a)]). Thu§l/J has rank one as a module 0\83/rK and hence the same
holds true forS;(S7/J). Third, z form a system of parameters oy K, because
m(K) ¢ K ¢ yx(K) ([19, 4.1]) and hence ht(K) = s = htK. Furthermore
S/K is Cohen—Macaulay ([36, 2.9(a)]).

Now comparing lengths and multiplicities, we obtain

AMSi(I)T)) = MS(ST/T) ®s R) > e(z: S;(ST/ D))

e(z; S/K) - rankg g S:(ST/J) = »(S/K ®s R) - 1
= AM(R/m(K)) = M(R/K)
(cf. [6, 4.6.9 and 4.6.11]). O

THEOREM 4.2. Let R be a local Gorenstein ring with infinite residue field, fet
be anR-ideal of gradeg and analytic spread, and assume that satisfiesG, and
depthR /17 > dim R/I j+1lwheneved < j < {¢—g. Suppose tha(tR I) has

a deformation(R, 7) such thatl satisfiesG,1 anddepthR/I/ >dimR/T—j+1
whenevel < j < ¢ — g + 1. The following are equivalent:

(a) 4 is Cohen—Macaulay ang; = Ofor somei > £ — g + 2;

https://doi.org/10.1023/A:1001704003619 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001704003619

198 CLAUDIA POLINI AND BERND ULRICH

(b) JI*¢N I = JI'"t and A; = Ofor somei > ¢ — g + 2 and some minimal
reductionJ of I;
(c) I satisfiesG,

In either casdl is strongly Cohen—Macaulay and of linear type.

Proof. First notice that hif: I > ¢ for every minimal reductiorny of I, sincel
is of linear type locally in codimensiof— 1 ([36, 2.9(a) and 1.11]). Now part (b)
follows from (a) by Lemma 1.2(b).

Next, to show that(b) implies (c) it suffices to verify the equality = J.
So suppose that # J. ThenJ: I is an¢-residual intersection ([36, 1.11]) with
htJ:1 = ¢ ([36, 1.7(a)]). On the other hand by Proposition 4. katisfiesG,,1,
which implies ht/: I > ¢ + 1 ([36, 1.11]).

Finally, if (c) holds, them = [ by the above and hendeis strongly Cohen—
Macaulay by [36, 2.13]. Thereforkis of linear type and; is Cohen—Macaulay by
[12, 9.1], which yields (a). O

For the next result recall that an idealis called syzygeticif S,(I) = I? or,
equivalently,A, = 0.

COROLLARY 4.3. Let R be a local Gorenstein ring with infinite residue field
and let! be a syzygetic equimultiplg-ideal of gradeg that has a deformation
satisfyingG, 1. The following are equivalent:

(a) 4 is Cohen—Macaulgy
(b) J N 1% = JI for some minimal reductiod of I;
(c) I is a complete intersection.

Proof. To prove that (a) or (b) implies (c) it suffices to check tliasatisfies
G¢+1([9]). For this one applies Theorem 4.2Rofor p € V(1) withdim R, = g.0

THEOREM 4.4. Let R be a local Gorenstein ring, let be anR-ideal of gradeg
and analytic spread, and assume thatR, 7) has a deformatlon[R T) such that
T satisfiesG,,1 and the Koszul homology modulﬁ(l ) are Cohen—Macaulay
wheneve < j < £ — g. The following are equivalent:

(a) 4 is Cohen—Macaulay ang; = Ofor somei > £ — g + 2;
(b) I satisfiesG

In either casd is strongly Cohen—Macaulay and of linear type.

Proof. After a purely transcendental extension if needed we may assume that the
residue field ofR is infinite. Also notice thatd;(/) are Cohen—Macaulay modules
whenever 0< j < ¢ — g. Indeed, lez = z3,...,z be a sequence regular on
R and R/I that generates the kernel of the mAp— R. For0< j < ¢ — g,
either H; (I) =0orzis regular onH; (I) since the latter module is a maximal
Cohen- Macaulay module oer/I Now inducting ory and using the long exact
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sequence of Koszul homology one sees ﬂﬂp(UN) ®g R=H;(I). ThusH;(I) is
Cohen—Macaulay as well.

Now our assertions follow from Theorem 4.2 once we have shown that part (a)
forces! to satisfyG,. To this end we prove by induction ang < s < ¢, that/
hasG,. The case = g being trivial, assume thaf, holds forg < s < £. Let
p € V(1) with dim R, = s. Applying Theorem 4.2 to the ided}, we conclude
thatu(1,) < s. Thus/ satisfiesG,. 1. O

COROLLARY 4.5. Let R be a local Gorenstein ring and Idtbe a licci R-ideal
of gradeg and analytic spread. The following are equivalent:

(@) g is Cohen—Macaulay ang; = 0 for somei > ¢ — g + 2;
(b) 1 is of linear type.

Proof. By [14, 1.14] and [19, the proof of 5.3], the assumptions of Theorem 4.4
are satisfied. Now the assertion follows from that theorem. O

5. Equations of Blowups of Northcott Ideals

Let R be a Gorenstein ring. F@r > 2 let J, K be complete intersectioR-ideals
of gradeg with / ¢ K ¢ RadR), and consider the Northcott ideAl= J: K. In
this section we wish to find the equations defining the Rees algelmf/ .

As before leta = ay,...,a, andx = xi,...,x, be R-regular sequences
generating/ andK, respectively, letb = (®;;) be ag by g matrix with entries in
R so that

[al,...,ag] = [xl,~~-7-xg]'q>’

and writeA = det®. Then
I =(a,... a4, D),
and we obtain a presentation 8§/) as an epimorphic image of the polynomial

rng R(Ty, ..., T,41] by mappingl; toa; for 1 < i < g andT,;1 to A. The kernel
of this map is generated by the entrigs. . ., /, of the product matrix

adj®
(7, ..., Tgpa] | ——M8M8
_xl ... —xg

and the elements; 7, — a;7T;, 1 < i < j < g. Thus, to find the defining ideal of
R, it actually suffices to describe a generating set of the ideaf the symmetric
algebraS([1) that fits into the exact sequence

O A—>SU)—> R—0.
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We will do this in Theorem 5.4. First however, we need to prove several lemmas.

LEMMA 5.1. With the above assumptiort#,/,(®) > g —¢t+1forl <r < g.
Proof. For any minimal primeq of I;(®) choose a maximal ideah of R
containingq and observe thak C m. Thus we may replac® by R, to as-
sume that(R, m) is local. LetT = Ti,..., T, be variables. Modulo the ideal
(Ty — x1, ..., Ty — x¢), the local ringR[T ] 1)/(T - @) specializes taR/J. Thus
dimR[T]/(T - ®) = dimR[T]mn /(T - ®) < dimR/J + g = dimR. But
R[T]/(T - ®) is the symmetric algebra of thR-module M = coker®, hence
dimS(M) < dimR. Now [16, 2.6] shows that(M,) < dimR, for everyp €
SpecR), which yields the assertion. O

By ' —" we will indicate images of elements &[T, ..., Ty41]in S(I).

PROPOSITION 5.2.With the above assumptions(/) is Cohen—Macaulay with
dimS({) =dimR + 1, andTgH is regular onS (7).
Proof. We may localize at any maximal ideal & to assume thar is local.
Now, I being the unit ideal or a Cohen—Macaulay almost complete intersection, it
follows that S(7) is a Cohen—Macaulay ring of dimension div+ 1 ([12, 10.1]
and [16, 2.6]). On the other hand, since by Lemma A.1Is a nonzero divisor iR,
M = I1/(A)is anR-module withiu (M) < dim R, for everyp € SpecR). There-
fore dimS(M) = dim R ([16, 2.6]). HenceS(1)/(T ;1) = S(M) has dimension
dim S(7) — 1, which shows thaT ,,; is a regular element. O

LEMMA 5.3. In addition to the above assumptions, suppose tha local and
let L be the ideal(s, . .., I, _ng;f) in the polynomial ringR[Tx, . . ., T,41]. Then
depthR[Tx, ..., Te41]/L > dimR.

Proof. We may assume thagt> 3. In R[Ty, ..., T,] define the ideal

(%)

We first claim that if H is not the unit ideal it must be perfect of grade 2. In-
deed,H contains the ideal defining the symmetric algebra of RAmodule N =
coker(adj®). By Lemma 5.1,N is a torsionR-module that isg — 1 generated
locally in codimension one, and hence by [16, 2.6], difiV) < dmR + g — 2.
Thus htH > 2, showing thatH is a perfect ideal of grade 2 unless it is the unit
ideal.

Next, we consider the ideat = (H, T,41) of R[T4, ..., Ty41]. This ideal is
either licci or else the unit ideal, sindé is. Furthermorel C £ = (L, A, Tg41).
Our conclusion will follow once we have shown that

htL:L£>g+ 1 1)
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Indeed, (1) yields ht: £ > g +1 > w(L). Now if L is licci and L # £, we may
use [19, 5.3] to deduce that de@®iTy, ..., To11]l/L > dimR[Ty, ..., Toqq] —
(g +1) = dim R. Otherwise the assertion is obvious.

To prove (1) we first show that for everyd i < j < g, A(a;T; — a;T;) as
well asT,1(a;T; — a;T;)? are inL. We may actually assume that= 1, j = 2.

Now
Ca o
—dax —day
AlasTy—arTy) = A-[Th,....T,)-| O |=[1,....T,]-A-| O
T
—a
= [Th,....T,]-adj® - ®-| O
- o -
C
adj® _gl
:[Tl""ng+l]' - |- 5
_xl .. —_— xg :

— 0 —
where the last equality holds singey, ..., x,] - ® = [a1, ..., a.]. The resulting
row vector has all its entries ih, showing thatA (a,T, — a1 T>) € L. Similarly

- A _
[T]_A - Tg+1a1, ey TgA - Tg+1ag] = [T]_, ey Tg+1] . A
B —ay ... —Clg a
adjo
= [T, Tp1l | —— |- ®.
L —xl o .. —_— xg A

Since this vector has all its entries In we conclude thaf,1a; € (L, A). Now
by the previous calculatior, 1 (a;T1 — a1T»)? € L. Hence

L+ ({(&T; —a;T)%) C L: L.

But L + ({a;T; — a;T;}) is the defining ideal oS(I)/(Tﬁﬁ), which by Proposi-

tion 5.2 has heighg + 1. This shows (1). O
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In order to describe a generating set of the idéalve need to assume that 2 is
invertible in R. We also suppose that for some choiceof.. ., a,,

g1, 04 € K2 (2)

This type of assumption came up in [8], where links of prime ideals were studied.
It is closely related to the conditioh_1(®) C K of Corollary 2.5 that essentially
characterizes the Cohen—Macaulaynessrofin fact, the present condition (2)
implies the one of Corollary 2.5, and the converse holds in Rsen) is local and
K = m, for instance. Furthermore, (2) does not pose any restricti&@hfppens
to be a prime ideal; for in this case the failure of (2) implies th& generically a
complete intersection and hende= 0 ([12, 9.1]).

_ Now assuming (2) we can writ®;; = Zlegijkxkjor g—1<j<g. Let
R be the ponrLomiaI rirlge[xl, ..., Xl and letd = (®:)) be theg by g matrix
with entries inR so thatd;; = ®;; for 1 < j < g —2and®;; = > 5_; o Xy for

g — 1< j < g.Define

(A, ....I,] =T, Tyi1] adi®
1y e eenlgl — 15 cees Lg41] _Xl _Xg .

We can writel; = I3, + ;2 wherel ;) are homogeneous polynomials of degree
din Xy, ..., X, with coefficients inR[Tx, ..., T,41]. Consider the by g matrix

~ ;1 10l
B =)= J( =9t ,
i) < AX; 2 0X;
with entries inR[Ty, ..., T,,1] and letB be the image oB in R[Tx, ..., T,,1] as

X, are mapped ta; for 1 <i < g. Notice thatl/y, ..., l,] = [x1,...,x,]- B.

THEOREM 5.4. With the above assumptiofigicluding1/2 € R and (2)), 4 is
generated byletB /Tifj.

Proof. First notice that by Proposition 5.Z,. 1 is a non zerodivisor o15(/).
The assertion of the theorem will follow once we have shown ﬁia;ti divides
detB in S(I). To see this, notice that the equallty, ..., ] = [x1,...,x,]- B
implies that 0= x,detB = xﬁgﬁ (@/Tgﬁ) in S(I). Now asx; andT .4 are
non zerodivisors o§(1)/ 4 = R (A being a non zerodivisor oR by Lemma 5.1),
we conclude thatietB /T~ is contained inA. To prove that this element gen-

g+l . . ;
erates4, we may localize at any maximal ideal & to assume thafR, m) is

local. We may also assume that/) = g + 1 since otherwise4 = 0. Now by
Corollary 2.5 for example( (1) = g. The ideall is strongly Cohen—Macaulay and

is presented by a matrix whose ideal of enti&ss generated by the entries of one
row. Thus by [34, 4.10]4 is generated by one homogeneous element of degree
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two in the graded ring (/). Now detB/Tﬁﬁ is a form of degree two contained in
A, but not lying inmA since the polynomia{—1)¢ detB is monic in7T,1. Thus

detB /Tij generates.
To prove thatTij dividesdetB, we may assume thgt> 3. If we write ® =
[®1]P,] whered; hasg — 2 columns, then gradg_»(P1) >0 sinceA is anR-

regulgr element by Lemma 5.1. We now repl@dand® by R = R[X3, ..., X,]
and ® as above, but we revert to our original notation except that we will still

write R = R[Xq, ... , Xl Notice theR-ideal I,_»(®1) is not contained in any
minimal prime of ther[T3, . . ., Tyy1l-ideal (X, ..., X, T,11). We will be done
once we have shown that R[T7, ..., T,,1], detB is contained in the idedl =

(1. L TED).

It suffices to check this containment locally at every associated priofehe
ideal L. SinceX; detB € (I1,...,[,) for 1 <i < g, it follows that the assertion
is clear if (X1, ..., X,) ¢ p. Thus we may assumey, ..., X,) C p, and hence
(X1,...,X,, Te41) C p. Localizing at the contraction of, we may further sup-
pose that(R, m) is local withm = p N R. Since hp < ¢ + 1 by Lemma 5.3, it
follows thatp is a minimal prime of(X1, ..., X, Tg41). Thusl,_>(P1) = R by
the above, and; g pfor1 <i < g.

Hence there exist invertiblg by ¢ matricesU with entries inR and V with
entries inR so that det/ = detV = 1 and

1 007

Uq)V:CD/: 1100 y
0O --- 0 ,

| 0 .- 0 @ |

whered” is a 2 by 2 matrix with linear entries iR. Set
(X1, ..o X ] =[X1.....X,]- U,

[Ty, ..., T,)=1[T1,..., Tl V,

’

Tg+l = Tg+1’

.. ) =1l .... ] - U™"

Notice that

R[Xy,....,X,)=R[X1,....X,l.  R[TL.....T, 11 = RI[T1, ..., Tp1l,
and

[, I]=IT, T . adj &

e =T Tl | —— |
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Furthermore, if we leB’ be then by n matrix whose(i, j)-entry is

) | 100
X, 23X,

then

B — A, +} ;)
X, 2\ ax;
M\ . 1. (Lo ..
U - (Z2L). ey (Z22).pyt
( 90X ) "2 ( dX;

=U-B-UY,

where the second equality holds because the entriesafdU— are inR. Now
since deB’ = detB and since(l;. ..., (T,, )¢ = (1.....1,, Tj;f), we
may replaced by &’ and return to our original notation.

Write T = ]‘[f;;T,-. As T ¢ p it suffices to show thal’ detB € L. This will
follow once we prove thaf detB is the determinant of g by ¢ matrix whose first

g — 2 columns have entries in the ided)_1, [,, T,11).

We have
[ A 00 |
A0 O
[l1, ..., 1=1[T1, ..., Tes1]- ,
1 g 1 g+l 0 - Ola IB
O --- Oy ¢
L —X1 o _Xg |
wherea = ZleaiXi, B = leﬂ,'X,', y = f:]_)/,'X,' ands$ = le(s,'X,'

are linear forms with coefficients iR so thatad — By = A. Recursively, for
1 < j < g — 3, we multiply thejth column of B by T;,, and then subtracT;
times the(j + 1)st column from it. We also multiply thég —2)nd column byT,_1.
It follows that T detB is the determinant of a by ¢ matrix, whose'th row has the
following form modulo the ideall,_1, [,, T,+1),

10A
|:0, ...... ,0, EﬁTg_ZTg_l’ o; Tg—l + Vi Tg, Bi Tg—l + 6; Tg:| .
Since modulo the idedl,_1, l,, To11), aT,—1 + yT, = 0 andpT,_1 + 6T, = O,
we see that
10A

EﬁTg72Tg71 = %Tg728(aiTg71 + ViTg) - %Tg72y(lgiTg71 +8; Tg)-
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Thus, adding a suitable linear combination of the last two columns to the
(g—2)nd one, it follows that moduld,_1, I,, T,+1), the matrix can be transformed

into another one whose firgt— 2 columns have zero entries. O
Let (R, m) be a power series ringl[ X1, ..., X, in g > 2 variables over a
field k of characteristic zero. Consider ®&iregular sequence;, ..., a, and the

Jacobian determinadt= [0a; /0 X;|. For instance, one could choogg .. ., g, to

be the partial derivatives of a power seris= R defining an isolated singularity
R/(f), in which case is the Hessian of . As before writeJ = (ay, ..., a,) and

let 7 be the Northcott ideal: m. By [33, p. 187] one hag = (ay, ..., a,, 6). If
as-1,a, C m?, thenJ is a reduction of with r, (1) = 1 ([8, 2.1] or Theorem 5.4).
From Theorem 5.4, one can actually obtain a quadratic equation of integradity of
over J. The situation is particularly agreeable/ifis homogeneous ang= 2:

EXAMPLE 5.5. Letk[X, Y] be a polynomial ring over a field of characteristic
zero, letf, h be a regular sequence of forms of degrées: 2, d, > 2, and write

s— | x|
fy hy
Then
1 1
8% = ———(h2. — hyohy) f2+
dzz(dz—l)z( ) <2 dido(dy — D(dp— 1)

X (fochyy = 2 sy + fuyhod) f+ (f2 = fufy)h2.

d?(dy — 1)?
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