
Compositio Mathematica119: 185–207, 1999.
© 1999Kluwer Academic Publishers. Printed in the Netherlands.

185

Necessary and Sufficient Conditions for the
Cohen–Macaulayness of Blowup Algebras

CLAUDIA POLINI 1? and BERND ULRICH2??

1Department of Mathematics, Michigan State University, East Lansing, MI 48824, U.S.A.
e-mail: polini@math.msu.edu
2Department of Mathematics, Michigan State University, East Lansing, MI 48824, U.S.A.
e-mail: ulrich@math.msu.edu

(Received: 12 May 1998; accepted in revised form: 11 August 1998)

Abstract. In this paper we provide a complete characterization for when the Rees algebra and the
associated graded ring of a perfect Gorenstein ideal of grade three are Cohen–Macaulay. We also
treat the case of second analytic deviation one ideals satisfying some mild assumptions. In another
set of results we give criteria for an ideal to be of linear type. Finally, we describe the equations
defining the Rees algebras of certain Northcott ideals.
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Introduction

In this paper we investigate the Rees algebraR = R[I t] (t a variable) as well
as the associated graded ringG = R/IR of an idealI in a Noetherian ringR.
Both algebras play a crucial role in the birational study of algebraic varieties in
that Proj(R) is the blowup of Spec(R) alongV (I ), with Proj(G) corresponding to
the exceptional fiber. Although blowing up is a fundamental operation, an explicit
understanding of this process remains an open problem. In this context the Cohen–
Macaulay property of theblowup algebrasR andG is of central importance, in part
because it helps to describe these algebras in terms of generators and relations. Re-
cently numerous authors have discovered classes of ideals with Cohen–Macaulay
blowup algebras. In the present work we wish to supply necessaryand sufficient
conditions forR or G to be Cohen–Macaulay. The emphasis here is on establishing
the necessity of assumptions on the reduction number ofI that were known to
imply Cohen–Macaulayness. As a second goal we wish to describe the equations
defining certain Rees algebras.
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186 CLAUDIA POLINI AND BERND ULRICH

Usually one investigates the Cohen–Macaulayness ofR andG by passing to
a minimal reduction ofI . Recall that an idealJ ⊂ I is a reductionof I if the
extension of Rees algebrasR(J ) ↪→ R(I ) is module finite, or equivalently, if
I r+1 = J I r for somer > 0 ([31]). The least suchr is denoted byrJ (I ). Now
assume that(R,m) is local with infinite residue fieldk. A reduction ofI is minimal
if it is minimal with respect to inclusion, and thereduction numberr(I ) of I is
defined as min{rJ (I )}whereJ ranges over all minimal reductions ofI . Finally, the
analytic spread̀ (I ) of I is the Krull dimension of the special fiber ringR⊗R k, or
equivalently, the minimal number of generatorsµ(J ) of any minimal reductionJ
of I ([31]). Thus,`(I ) indicates the size of a minimal reduction andr(I )measures
how closely the two ideals are related. In this vein one may expectR andG to have
good depth properties providedr(I ) is small.

Before describing one of the known sufficient conditions for the Cohen–
Macaulayness of blowup algebras, we recall thatI satisfiesGs , s an integer, if
µ(Ip) 6 dimRp for every p ∈ V (I ) with dimRp 6 s − 1, and thatI is G∞
if Gs holds for everys. Furthermore supposeR is Gorenstein and writeg =
gradeI , ` = `(I ), andn = µ(I). Now assumingI satisfiesG` and depthR/I j >
dimR/I−j+1 for 16 j 6 `−g+1, it was shown in [22] that ifr(I ) 6 `−g+1,
thenG is Cohen–Macaulay, and so isR in caseg > 2 (for other results, see [11]
for instance). It has been an open problem for some time as to what extent the con-
verse of this statement holds. In other words, it remains to investigate under which
circumstances the Cohen–Macaulayness ofR or G forces the reduction number of
I to be at most theexpectedone, namelỳ − g + 1 (which, in the above setting,
is the smallest positive value the reduction number can take, [22]). One knows,
quite generally, that ifR is Cohen–Macaulay thenr(I ) 6 ` − 1 ([3, 20, 23, 34]),
which yields the expected boundr(I ) 6 `− g+ 1 for g = 2. But, even for perfect
Gorenstein ideals of grade 3 satisfyingG`, the stronger estimate was established
only in special cases ([1, 21, 29, 30, 37]). Now we are able to treat this class of
ideals in general, giving a complete characterization for when the blowup algebras
of grade 3 perfect Gorenstein ideals satisfyingG` are Cohen–Macaulay. As it turns
out,R is Cohen–Macaulay if and only ifG is Cohen–Macaulay if and only if the
reduction number ofI is at most the expected one if and only if eithern = `,
or else,n = ` + 1 andI satisfies the row condition (Theorem 3.1). Here we say
that an idealI satisfies therow conditionif for some minimal presentation matrix
ϕ of I , the idealI1(ϕ) is generated by the entries of a single row ofϕ ([2]). The
last equivalence in our theorem was known before ([34], [37]), and so was the fact
that the reduction number satisfies the expected bound ifG is Cohen–Macaulay
andn 6 ` + 1 ([21]). Thus, what remained to be shown was that the Cohen–
Macaulayness ofG imposes a severe restriction on the number of generators of a
grade 3 perfect Gorenstein ideal, namelyn 6 `+ 1!

In another result of this paper, we give necessary and sufficient conditions for
the blowup algebras of an ideal of arbitrary grade to be Cohen–Macaulayassuming
thatn 6 ` + 1. Such ideals are said to havesecond analytic deviation(at most)
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one, the second analytic deviation of an ideal being the differencen − ` ([38]).
More specifically, we prove: Assume thatn = ` + 1 > 2, thatI satisfiesG`, that
depthR/I j > dimR/I − j + 1 andSj (I ) ∼= I j for 1 6 j 6 ` − g + 1, and that
I ⊗R k does not embed intoI1(ϕ)⊗R k for a minimal presentation matrixϕ of I ;
thenR is Cohen–Macaulay (in caseg > 2) if and only ifG is Cohen–Macaulay if
and only if the reduction number ofI is the expected one if and only ifI satisfies
the row condition (Theorem 2.1). The last equivalence being a general and known
fact about ideals of second analytic deviation one ([37]), we had to prove that the
Cohen–Macaulayness ofG forcesr(I ) = ` − g + 1. The latter conclusion fails
without the assumptionI⊗Rk 6↪→ I1(ϕ)⊗Rk, i.e., without requiring that a minimal
generating set ofI cannot be extended to a minimal generating set ofI1(ϕ). This
weak condition, hardly ever violated by perfect noncomplete intersections, replaces
the stronger assumptionI ⊂ (I1(ϕ))

2 under which the implication had been proved
in [21]. As to the other assumptions in our theorem, notice that an idealI satisfies
depthR/I j > dimR/I − j + 1 andSj (I ) ∼= I j for 1 6 j 6 s − g + 1, if I
isGs andstrongly Cohen–Macaulay, i.e., has Cohen–Macaulay Koszul homology
H•(I ). The strong Cohen–Macaulay property, in turn, is a consequence ofI being
licci, i.e., in the linkage class of a complete intersection ([14]). Standard examples
of licci ideals include perfect ideals of grade 2 ([4], [10]), as well as perfect Goren-
stein ideals of grade 3 ([40]). Combining these facts we obtain, for instance, a
complete characterization for when Northcott ideals and perfect almost complete
intersections of grade 3 have Cohen–Macaulay blowup algebras (Corollaries 2.5
and 2.6).

In another set of results we give criteria for an ideal to have reduction number
zero (Theorems 4.2, 4.4 and their corollaries). These results all deal with the natural
exact sequence 0→ A → S(I ) → R → 0 relating the symmetric algebraS(I )
and the Rees algebraR of I . Under suitable assumptions, which are automatically
satisfied in caseI is licci, we show that ifG is Cohen–Macaulay andAi = 0
for somei > ` − g + 2, thenI is of linear type, i.e.,A = 0 (Theorem 4.4 and
Corollary 4.5). Thus, in caseI is a licci ideal satisfyingG`, not of linear type, and
G is Cohen–Macaulay, thenAi 6= 0 if and only if i > `− g + 2.

Our results also provide classes of ideals in local Gorenstein rings for which
the Cohen–Macaulay properties ofR and ofG are equivalent. In general, one only
has the implication that the Cohen–Macaulayness passes fromR to G (if g > 0,
[15]), whereas the converse requires an assumption on the ambient ring, such as
regularity ([28]).

Besides the Cohen–Macaulay property we are also interested in the defining
equations of blowup algebras: We wish to give an explicit description of an idealQ

in a polynomial ringR[T1, . . . , Tn] so thatR ∼= R[T1, . . . , Tn]/Q. In this context
we reasonably restrict ourselves to considering idealsI that satisfy a structure
theorem and whose Rees algebra is Cohen–Macaulay. On the other hand, an ex-
plicit presentation of the symmetric algebra being known, it suffices to describe
a generating set of the idealA. Vasconcelos was the first to address this question
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systematically ([39]). Later, the problem was solved for large classes of perfect
ideals of grade 2 ([29]) and for perfect Gorenstein ideals of grade 3 and second
analytic deviation one ([21]). Actually, in the light of Theorem 3.1, the latter class
of ideals is the full class of perfect Gorenstein ideals of grade 3 (with Cohen–
Macaulay Rees algebra). In this paper, we give an explicit presentation ofR in the
case of Northcott ideals (Theorem 5.4). Recall that a Northcott ideal is an ideal
I linked to a complete intersection in one step, which means thatI = J :K for
complete intersection idealsJ ⊂ K. For our theorem we need an assumption onI

that is slightly stronger than the one corresponding to the Cohen–Macaulayness of
R, but does not impose any restriction ifK is prime for instance.

1. Fundamental Exact Sequences

In this section we are going to prove several technical results that will be used
throughout the paper. They are all derived in one sense or another from the exact
sequence 0→ A → S(I ) → R → 0. Assuming that the associated graded ring
G of I is Cohen–Macaulay and that some other assumptions are satisfied, we will
estimate the annihilator of the first nonvanishing component ofA (Proposition 1.3),
and we will show that this component fits into an exact sequence involving the
symmetric algebraS(I/J ) and the canonical moduleωR/J : I2, whereJ is a minimal
reduction ofI (Proposition 1.5). Our approach is based in part on studying the
Koszul homologyH•(T1, . . . , Ts) of suitable elements with values inG and inR,
respectively.

LEMMA 1.1. Let R be a Noetherian ring, lets be an integer, and letI be an
R-ideal of heightg satisfyingGs with G Cohen–Macaulay. LetJ = (a1, . . . , as)

be a reduction ofI so thathtJ : I > s. Consider theR-algebra map from the
polynomial ringB = R[T1, . . . , Ts] to S(I ) sendingTi to ai ∈ J ⊂ S1(I ), thus
defining a gradedB-module structure onR andG. Then for everyi > 1:

(a) Hi(T1, . . . , Ts;G) is concentrated in degrees6 s − g;
(b) Hi(T1, . . . , Ts;R) is concentrated in degrees6 max{s − g, i}.

Proof. Part (a) follows by the same arguments as in the proof of [34, 3.2]. To
show (b) notice thatHi(T1, . . . , Ts;R) is annihilated by some power of theR-
idealR+ ⊂ √(T1, . . . , Ts)R sinceJ is a reduction ofI . HenceHi(T1, . . . , Ts;R)
is concentrated in finitely many degrees. AsHi(T1, . . . , Ts;R) is concentrated
in degreei andHi(T1, . . . , Ts;G) is concentrated in degrees at mosts − g, the
conclusion now follows from the exact sequences

0→ R+ → R→ R→ 0

0→ R+(1)→ R→ G→ 0

(see also [35, 3.4(i)]). 2
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From Lemma 1.1, one easily deduces two previously known facts. The first one
(Lemma 1.2(a)) is an exact sequence that has essentially been shown in [21, the
proof of 2.5], where methods from [1], [2] were used. The second one
(Lemma 1.2(b)) deals with intersection properties of ideal powers and can be found
in [2, the proof of 5.2].

LEMMA 1.2. With the assumptions of Lemma1.1 and with theB-module structure
onR given by the identificationB/B+ ∼= R, the following hold:

(a) The sequence

0→ [A⊗B R]>s−g+1→ [S(I/J )]>s−g+1→ [R/J tR]>s−g+1→ 0
is exact;

(b) J I s−g ∩ I i = J I i−1 for everyi > s − g + 1.

Proof. (a) Tensor the exact sequence

C•: 0→ A→ S(I )→ R→ 0

with −⊗BR, and notice that TorB1 (R, R) ∼= H1(T1, . . . , Ts;R). Now Lemma 1.1(b)
yields the exactness of[C• ⊗B R]>max{s−g+1,2}. On the other hand,[C• ⊗B R]1 is
trivially exact.

(b) We induct oni > s−g+1, the casei = s−g+1 being trivial. Now leti >
s−g+2. By induction hypothesis,J I s−g∩I i = (J I s−g∩I i−1)∩I i = J I i−2∩I i,
which reduces us to showing thatJ I i−2∩I i ⊂ J I i−1. To this end letx ∈ J I i−2∩I i.
Write x = ∑s

j=1 bjaj with bj ∈ I i−2 and setb∗j = bj + I i−1 ∈ Gi−2. By Z• and
B• we denote cycles and boundaries of the Koszul complexK•(T1, . . . , Ts;G) =•∧

Ge1⊕· · ·⊕Ges . Sincex ∈ I i, we have
∑s

j=1 b
∗
j Tj = 0 in G and so

∑s
j=1 b

∗
j ej ∈

[Z1]i−1. As i > s − g + 2, Lemma 1.1.a yields
∑s

j=1 b
∗
j ej ∈ [B1]i−1, and thus

[b∗1, . . . , b∗s ] = [T1, . . . , Ts] · ϕ
for some alternatings by s matrix with homogeneous entries of degreei − 3 in G.
Hence there exists an alternatings by s matrix8 with entries inR and elements
cj ∈ I i−1 such that

[b1, . . . , bs] = [a1, . . . , as] ·8+ [c1, . . . , cs].

Multiplying by the column vector[a1, . . . , as]t from the right and using the fact
that8 is alternating we conclude thatx =∑s

j=1 bjaj =
∑s

j=1 cjaj ∈ J I i−1. 2
The next proposition shows that a certain Fitting ideal ofI annihilates the first

nontrivial component ofA. Annihilators of components ofA have been investig-
ated before, but only in the context of second analytic deviation one ([38, 2.5], [1,
2.1], [34, 4.2], [21, 3.1]).
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PROPOSITION 1.3.Let R be a Noetherian local ring and letI be anR-ideal
of heightg and analytic spread̀ . Assume thatI satisfiesG`, that Sj (I ) ∼= I j

whenever1 6 j 6 ` − g + 1 and thatG is Cohen–Macaulay. ThenFitt`(I ) ⊂
Ann(A`−g+2).

Proof.Let f1, . . . , fn be a generating sequence ofI , letX be ann by n matrix
of indeterminates, and write[a1, . . . , an] = [f1, . . . , fn] ·X. We may replaceR by
R(X). Since

Fitt`(I ) =
∑

16i1<···<i`6n
Fitt0(I/(ai1, . . . , ai` ))

⊂
∑

16i1<···<i`6n
Ann(I/(ai1, . . . , ai`)),

it suffices to show thatJ : I annihilatesA`−g+2 for anyJ = (ai1, . . . , ai`). By the
general choice ofa1, . . . , an, the idealJ is a reduction ofI and htJ : I > ` because
I satisfiesG` (see [19, the proof of 3.2]). We use the notation of Lemma 1.2 with
s = `. SinceAi = 0 for i 6 ` − g + 1, A`−g+2 = [A ⊗B R]`−g+2. On the
other hand, by the same lemma,[A⊗B R]`−g+2 embeds intoS`−g+2(I/J ), which
is annihilated byJ : I . 2
To make use of the full strength of Proposition 1.3, we need a result about the
canonical module of rings defined by certain residual intersections. For the proof
and for future reference we recall that a proper idealK in a Noetherian ringR is
an s-residual intersectionof anR-ideal I , if htK > s > htI andK = J : I for
somes-generatedR-ideal J ⊂ I . An s-residual intersection isgeometricin case
htI +K > s + 1.

LEMMA 1.4. Let R be a local Gorenstein ring of dimensiond, let I be anR-
ideal of gradeg satisfyingGd , and assume thatdepthR/I j > d − g − j + 1
whenever1 6 j 6 d − g. Further, letJ be anR-ideal contained inI so that
µ(J ) 6 d 6 htJ : I . If for somei > d − g + 1, J I d−g ∩ I i = J I i−1, then
ωR/J : I i−d+g ∼= I i/J I i−1 (using the convention that the canonical module of the
zero ring is zero).

Proof.First notice that(J : I i−d+g)I i = (J : I i−d+g)I i−d+gI d−g ⊂ J I d−g∩I i =
J I i−1, by our assumption. ThereforeM = I i/J I i−1 is a module overR/J : I i−d+g.
In particular, ifJ : I i−d+g = R thenM = 0. Thus we may assume thatJ : I i−d+g 6=
R. SinceK = J : I ⊂ J : I i−d+g, it follows thatR/J : I i−d+g is Artinian and that
K 6= R is a d-residual intersection ofI . Hence,ω = ωR/K = I d−g+1/J I d−g
by [36, 2.9(b)]. Now again by our assumption,M = I i/J I i−1 = I i/(J I d−g ∩
I i) = I i−d+g−1 (I d−g+1/J I d−g) ∼= I i−d+g−1ω. In particular,M is a submodule
of ω, hence type(M) 6 1. Thus it suffices to show thatM is faithful over the
Artinian ring R/J : I i−d+g (see, for instance, [6, 3.2.12(e)]). Indeed, 0: RM =
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0: R(I i−d+g−1ω) = (0: Rω): R I i−d+g−1 = K: RI i−d+g−1 = (J : R I ): R I i−d+g−1 =
J : R I i−d+g. 2
When combined with Lemma 1.2, Lemma 1.4 leads to the two fundamental exact
sequences we will need later.

PROPOSITION 1.5.LetR be a local Gorenstein ring of dimensiond with infinite
residue field and letI be anR-ideal of gradeg satisfyingGd with G Cohen–
Macaulay. Assume thatdepthR/I j > d − g − j + 1 for 1 6 j 6 d − g and
Sj (I ) ∼= I j for 1 6 j 6 d − g + 1. Let J be a minimal reduction ofI and set
K = J : I .

(a) There is an exact sequence

0→ Ad−g+2→ Sd−g+2(I/J )→ ωR/K : I → 0.

(b) If d > 0 there is an exact sequence

0→ R/K: I → ExtdR(Sd−g+2(I/J ), R)→ ExtdR(Sd−g+2(I ), R)→ 0.

Proof. Notice that htK > d sinceI is of linear type locally in codimension
d − 1 (see [36, 2.9(a) and 1.11]). We may use the notation of Lemma 1.2 with
s = d. SinceAi = 0 for i 6 d − g + 1 we haveAd−g+2 = [A ⊗B R]d−g+2.
By Lemma 1.2(b),J I d−g ∩ I d−g+2 = J I d−g+1, henceωR/K : I ∼= ωR/J : I2 ∼=
I d−g+2/J I d−g+1 = [R/J tR]d−g+2 by Lemma 1.4. Now Lemma 1.2(a) yields (a).

If d > 0 then ExtdR(I
d−g+2, R) = 0, therefore the exact sequence defining

Ad−g+2 induces an isomorphism Extd
R(Ad−g+2, R) ∼= ExtdR(Sd−g+2(I ), R). On the

other hand the modules occurring in (a) are annihilated byK and, hence, have finite
length. Now applying ExtdR(−, R) to this sequence we obtain (b). 2
Notice that if in the above proposition,I has second analytic deviation at most one,
thenI/J is cyclic and thereforeSd−g+2(I/J ) ∼= R/K.

2. Second Analytic Deviation One Ideals

Now we are ready for our first main result. To prove it, we compute annihilators
along the exact sequence of Proposition 1.5(a) and invoke Proposition 1.3.

THEOREM 2.1. Let R be a local Gorenstein ring of dimensiond with infinite
residue fieldk and letI be anR-ideal of gradeg, analytic spread̀ , minimally
generated byn = ` + 1 > 2 elements. Suppose that I satisfiesG` and that
depthR/I j > d − g − j + 1 and Sj(I ) ∼= I j whenever1 6 j 6 ` − g + 1.
Letϕ be a matrix withn rows presentingI . Further assume thatI ⊗R k does not
embed intoI1(ϕ)⊗R k (i.e., that a minimal generating set ofI cannot be extended
to a minimal generating set ofI1(ϕ)). The following are equivalent:
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(a) After elementary row operations,I1(ϕ) is generated by the last row ofϕ;
(b) The reduction number ofI is `− g + 1;
(c) G is Cohen–Macaulay.

Furthermore, ifg > 2 the above conditions are equivalent to
(d) R is Cohen–Macaulay.

Proof. The equivalence of (a) and (b) is proved in [37, 5.1], while the fact that
these imply (c) and (d) is given by [22, 3.1 and 3.4]. Furthermore (c) follows from
(d) by [15, Prop. 1.1]. We are left to prove that (c) implies (b).

Let m be the maximal ideal ofR. By the Cohen–Macaulayness ofG one has
grademG = d − `. Since furthermoreI satisfiesG`, there exists anR-regular
sequencex = x1, . . . , xd−` so thatx is regular onG and the image ofI in R/(x)
still satisfiesG`. Our assumptions and conclusions are preserved if we replaceR

byR/(x). Thus we may assume that` = d.
By assumption there exists anα ∈ mI1(ϕ) that is part of a minimal generating

set ofI . As n = `+ 1, using a general position argument one may find a minimal
reductionJ of I so thatI = (J, α). LetK = J : I . Notice that htK > ` sinceI is
of linear type locally in codimensioǹ− 1 ([36, 2.9(a) and 1.11]). ThereforeR/K
is an Artinian Gorenstein ring becauseK is a residual intersection of height` = d
andI/J is cyclic ([36, 2.9(b)]). Combining Proposition 1.3 and Proposition 1.5(a)
we see thatI1(ϕ)(K: I ) ⊂ Ann(S`−g+2(I/J )). Since I/J ∼= R/K we obtain
I1(ϕ)(K: I ) ⊂ K or, equivalently,I1(ϕ) ⊂ K: (K: I ). As R/K is an Artinian
Gorenstein ring it follows that

I1(ϕ) ⊂ I +K = (K, α) ⊂ K +mI1(ϕ).

HenceI1(ϕ) = K, which gives (a), and the equivalence of (a) with (b) yields the
conclusion. 2
In the above theorem we assume that there exists an element contained inmI1(ϕ)

which is part of a minimal generating set ofI , a condition that is certainly satisfied
if I ⊂ mI1(ϕ). Generalizing [1], M. Johnson had shown a result similar to The-
orem 2.1 requiring the stronger conditionI ⊂ (I1(ϕ))

2 ([21, 3.6.b]). The above
proof shows that one can weaken the assumptionI ⊗R k 6↪→ I1(ϕ) ⊗R k even
further by only requiring thatI ⊂ K +mI1(ϕ), whereK is the ideal generated by
the entries of a general row ofϕ. On the other hand, the theorem is no longer true
without any such assumption, as can be seen by takingI to be the maximal ideal
of a local hypersurface ring of positive dimension and multiplicity at least 3.

We pause for a further discussion of the propertyI ⊗R k 6↪→ I1(ϕ) ⊗R k. Al-
though this condition is quite common, it may fail to hold even in the case of perfect
non complete intersection ideals: For instance letR = k[x1, . . . , x4] be a polyno-
mial ring over an infinite field and letI be anR-ideal generated by five general
quadrics; thenI has no linear relations by [13], and henceI⊗R k ↪→ I1(ϕ)⊗R k. In
fact even the weaker conditionI ⊂ K+mI1(ϕ) fails in this case, whereas we do not
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know of any licci non complete intersection ideal exhibiting this behaviour. On the
other hand, there exist licci non complete intersections withI ⊗R k ↪→ I1(ϕ)⊗R k:
Examples are given by the ideals of [25, 5.7], which are grade 4 licci almost com-
plete intersections (but not complete intersections). (We are grateful to Matthew
Miller for pointing this out to us.) Our next results will illustrate how tight these
counterexamples are.

REMARK 2.2. LetR be a Noetherian local ring with residue fieldk, let I be an
R-ideal minimally presented by a matrixϕ with n rows, and write0• for the graded
k-algebra TorR• (R/I, k). If for some 0 6= e ∈ 01, dimk e01 6 n − 2, thenI ⊗R k
does not embed intoI1(ϕ)⊗R k.

Proof. Let m denote the maximal ideal ofR and notice thatn > 2. Con-
sider the exact sequence 0→ Z → Rn = ⊕n

i=1 Rei → I → 0, with ei
mapping tofi in I . We may assume thate is the image ofen. By our assump-
tion, the images in02 of the Koszul relations{fnei − fien|1 6 i 6 n − 1}
are linearly dependent overk. Hence for somej , 1 6 j 6 n − 1, we have
fnej − fjen ∈ ({fnei − fien|1 6 i 6 n − 1, i 6= j}) + mZ. Now, reading the
coefficient ofej , we conclude thatfn ∈ mI1(ϕ). 2
PROPOSITION 2.3.Let R be a Noetherian local ring with residue fieldk, and
let I be a non complete intersectionR-ideal minimally presented byϕ. Assume
either thatI is perfect of grade6 3, or else thatR is Gorenstein andI is perfect
Gorenstein of grade4. ThenI ⊗R k does not embed intoI1(ϕ)⊗R k.

Proof. The assertion follows from Remark 2.2 and the classification of the al-
gebras TorR• (R/I, k) as given in [5, 2.1] and in [26, 2.2], [24], respectively (we
may assume thatk is algebraically closed). 2
For our next observation we recall that two proper idealsI andK of a Noetherian
ringR are said to be (directly)linked, I ∼ K, if K = J : I andI = J :K for some
complete intersectionR-idealJ ⊂ I ∩K.

PROPOSITION 2.4.LetR be a local Gorenstein ring with infinite residue fieldk
and letI be a Cohen–MacaulayR-ideal minimally presented byϕ. If there exists
anR-idealH doubly linked toI , I ∼ K ∼ H , so thattype(R/H) < type(R/I),
thenI ⊗R k does not embed intoI1(ϕ)⊗R k.

Proof. First notice thatµ(I) > g = gradeI > 0. Let J andL be complete
intersection ideals defining the linksI ∼ K andK ∼ H , respectively. By [18, 2.5]
we may pass to a new double link so thatJ ⊗R k ↪→ I ⊗R k. NowK = J : I ⊂
I1(ϕ), which yields a commutative diagram

J ⊗R k ⊂ - I ⊗R k

K ⊗R k
?

- I1(ϕ)⊗R k.
?
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Suppose thatI ⊗R k ↪→ I1(ϕ)⊗R k, thenJ ⊗R k ↪→ K ⊗R k. Thus type(R/I) =
µ(K/J ) = µ(K)− g 6 µ(K/L) = type(R/H), which is a contradiction. 2
We now return to the study of blowup algebras. First recall that an idealI in a
Noetherian local ring is calledequimultipleif `(I ) = htI . Second, an idealI of a
Noetherian ringR is called aNorthcott idealif it is directly linked to a complete
intersection, or equivalently, ifI = J :K whereJ ⊂ K areR-ideals generated by
regular sequencesa = a1, . . . , ag andx = x1, . . . , xg, respectively. Writing8 for
ag by g matrix witha= x ·8, one easily sees thatI = I1(x ·8)+ Ig(8).

COROLLARY 2.5. Let R be a local Gorenstein ring with infinite residue field
and letI be a Northcott ideal of gradeg that is not a complete intersection. The
following are equivalent:

(a) For somex and8, Ig−1(8) ⊂ (x);
(b) I is equimultiple with reduction number1;
(c) I is equimultiple andR is Cohen–Macaulay(respectivelyG is Cohen–

Macaulay).

Proof. First notice thatg > 2. Let k denote the residue field ofR and letϕ be
a matrix presentingI with respect to the minimal generatorsa1, . . . , ag,det(8).
Now I1(ϕ) = (x)+ Ig−1(8). Also,I1(ϕ) is independent of the chosen presentation
matrix.

First assume that (a) holds. ThenI1(ϕ) = (x) = J : I , hence by [32, 3.6],
I 2 = J I , which gives (b). Next, the equivalence of (b) and (c) follows from
Theorem 2.1. Indeed, the assumptionI ⊗R k 6↪→ I1(ϕ) ⊗R k of the theorem is
satisfied by Proposition 2.4, becauseR/I is not Gorenstein, butI is doubly linked
to a complete intersection (alternatively, one can use a direct computation). Finally,
to see that (b) implies (a) notice thatI is g-balanced in the sense of [37, 3.1] since
I is equimultiple of reduction number 1 ([37, 2.6]). Thus, after adjoining a finite
setX of indeterminates,I1(ϕ)R(X) is a first universal linkL1(I ) of I as in [17,
2.12(b)]. However,I being directly linked to a complete intersection,L1(I ) has
to be a complete intersection ([17, 2.14(b) and 2.3(b)]), which forcesI1(ϕ) to be
one as well. So letI1(ϕ) = (x1, . . . , xg). The g-balancedness also implies that
I1(ϕ) = J : I for someg generated idealJ = (a) = (a1, . . . , ag) ([37, 3.6(c)]),
which is necessarily a complete intersection sinceI ⊂ I1(ϕ). Thus taking8 to be a
g by g matrix witha= x·8we obtain (a), because(x) = I1(ϕ) = (x)+Ig−1(8).2
COROLLARY 2.6. Let R be a local Gorenstein ring with infinite residue field
and letI be a perfect almost complete intersectionR-ideal of grade3 that is not a
complete intersection. Letϕ be a matrix with four rows presentingI . The following
are equivalent:

(a) After elementary row operations,I1(ϕ) is generated by the last row ofϕ;
(b) I is equimultiple with reduction number1;

https://doi.org/10.1023/A:1001704003619 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001704003619


SUFFICIENT CONDITIONS FOR THE COHEN–MACAULAYNESS OF BLOWUP ALGEBRAS 195

(c) I is equimultiple andR is Cohen–Macaulay(respectivelyG is Cohen–
Macaulay).

Proof.The assertion follows from [37, 5.1], Proposition 2.3 (or Proposition 2.4
via [7, 5.3]) and Theorem 2.1. 2

3. Perfect Gorenstein Ideals of Grade Three

Now we are able to turn to our main result about grade three Gorenstein ideals. For
its proof we compare minimal numbers of generators along the exact sequence of
Proposition 1.5(b), using the resolutions worked out in [27].

THEOREM 3.1. LetR be a local Gorenstein ring with infinite residue field, letI
be a perfect GorensteinR-ideal of grade3, set` = `(I ), n = µ(I), r = r(I ), and
assume thatI satisfiesG`. The following are equivalent:

(a) R is Cohen–Macaulay;
(b) G is Cohen–Macaulay;
(c) r 6 `− 2;
(d) eithern = ` andr = 0, or n = `+ 1 andr = `− 2;
(e) eithern = `, or n = ` + 1 and I can be presented by an alternatingn by n

matrixϕ with I1(ϕ) generated by the entries of the last row ofϕ.

Proof. Clearly (a) implies (b) ([15, Prop. 1.1]). In this proof we will show that
if G is Cohen–Macaulay thenn 6 ` + 1. Combining this with Proposition 2.3
(or [7, 2.1]) and Theorem 2.1 (or [21, 3.8]) one sees that (d) follows from (b), if
n 6= `. On the other hand, ifn = ` thenr = 0 by [12, 9.1]. Furthermore, (d) is
equivalent to (e) by [7, 2.1] and [34, 4.10], and obviously implies (c). Finally, (a)
is a consequence of (c) by [22, 3.4].

Now it remains to show thatn 6 ` + 1 if G is Cohen–Macaulay. So suppose
that n > ` + 1. As in the proof of Theorem 2.1 one reduces to the case where
` = d = dimR. Now d − gradeI + 2= d − 1 andI satisfiesGd . The complexes
defined in [27, 2.15] withF = 0 (see also [27, 4.7]) yield a freeR-resolutionF•
of Sd−1(I ) by [27, 4.13(b), 4.13(d)ii, and 8.3(c)i]. By [27, 2.15(c)],F• has length
at mostd andFd has rank at most one. Hence Extd

R(Sd−1(I ), R) is cyclic. Now
Proposition 1.5(b) implies thatµ(ExtdR(Sd−1(I/J ), R)) 6 2.

On the other hand, the complexes of [27, 2.15] withF = Rd yield a resolu-
tion (H•, ∂•) of lengthd of the moduleSd−1(I/J ) by [27, 4.13(b), 4.13(d)ii, and
8.3(b)i]. The last map in this resolution is of the form

0→ Hd =
⊕ s∧

F
∂d- Hd−1,

with s ranging over all integers so thats − d is even and 06 s 6 d ([27, 2.15(c)]).
Let m denote the maximal ideal ofR, let ϕ be an alternatingn by n matrix with
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entries inm presentingI , letf1, . . . , fn be the signedn−1 byn−1 Pfaffians ofϕ,
let a1, . . . , ad be elements generatingJ , and letψ be ann by d matrix with entries
in R so that[a1, . . . , ad ] = [f1, . . . , fn] ·ψ . Finally, consider the alternatingn+ d
by n+ d matrix

2 =


ϕ ψ

−ψ t 0

 .

First assume thatd is odd. Definea to be theR-ideal generated by alln− d +2
by n− d + 2 Pfaffians of2 involving at most one of the lastd rows or columns of
2. Sincen > ` + 2 = d + 2 we havea ⊂ m. On the other hand,F = ∧1

F is a
direct summand ofHd , and the description of the differential in [27, 2.15(f)] shows
that∂d(F ) ⊂ aHd−1 ⊂ mHd−1. Thusµ(ExtdR(Sd−1(I/J ), R)) > rankF = d > 2,
which yields a contradiction.

Next assume thatd is even, in which case we definea to be theR-ideal gener-
ated by alln−d+3 byn−d+3 Pfaffians of2 involving at most two of the lastd
rows or columns of2. As n is odd, it follows thatn > d + 3 and thereforea ⊂ m.
Now

∧2
F is a direct summand ofHd , and∂d(

∧2
F) ⊂ aHd−1 ⊂ mHd−1 ([27,

2.15(f)]). Henceµ(ExtdR(Sd−1(I/J ), R)) > rank
∧2

F = (d2) > 2, again yielding
a contradiction. 2

4. Ideals of Linear Type

In this section we are going to prove several criteria for an ideal to have reduction
number zero. For this we need to recall the notion of a deformation: A pair(R̃, Ĩ )

consisting of a Noetherian local ring̃R and anR̃-ideal Ĩ is adeformationof a pair
(R, I ) if there exists a sequencez⊂ R̃ regular onR̃ and onR̃/Ĩ so thatR ∼= R̃/(z)
andI = ĨR. We show first a result relating syzygetic and intersection properties
to the geometricity of residual intersections.

PROPOSITION 4.1. Let R be a local Gorenstein ring, letI be anR-ideal of
grade g, let s be an integer and assume thatI satisfiesGs and depthR/I j >
dimR/I − j + 1 whenever16 j 6 s − g. Suppose that(R, I ) has a deformation
(R̃, Ĩ ) such that̃I satisfiesGs+1 and depthR̃/Ĩ j > dim R̃/Ĩ − j + 1 whenever
1 6 j 6 s − g + 1. Further, assume that there exists ani > s − g + 2 such that
Ai = 0 andJ I s−g ∩ I i = J I i−1 for somes-residual intersectionK = J : I . Then
K is a geometrics-residual intersection ofI ; in particular I satisfiesGs+1.

Proof. Let p ∈ V (I ) with dimRp = s. Suppose thatK = J : I ⊂ p. Locali-
zing R at p and R̃ at the preimage ofp, we may assume that dimR = s. Since
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Ai = 0 we have thatSi(I/J ) ∼= I i/J I i−1. On the other hand, sinceJ I s−g ∩ I i =
J I i−1, Lemma 1.4 yieldsI i/J I i−1 ∼= ωR/J : I i−s+g ∼= ωR/K : I i−s+g−1. Therefore we
obtain the equality of lengths,λ(Si(I/J )) = λ(R/K: I i−s+g−1). We will arrive
at a contradiction once we have shown thatλ(Si(I/J )) > λ(R/K), since then
K: I i−s+g−1 = K, which is impossible becauseI i−s+g−1 6= R andR/K 6= 0 is
Artinian.

To estimate the length ofSi(I/J ), let f̃1, . . . , f̃n be a generating set of̃I map-
ping to a generating setf1, . . . , fn of I . Let a1, . . . , as be generators ofJ and
write

[a1, . . . , as] = [f1, . . . , fn] · ψ
for somen by s matrixψ = (ψij ) with entries inR. LetX = (Xij ) be a genericn
by s matrix overR̃, let m̃ be the maximal ideal of̃R, setS = R̃[{Xij }](m̃,{Xij−ψij }),
and

[̃a1, . . . , ãs] = [f̃1, . . . , f̃n] ·X.
Further define theS-idealsJ̃ = (̃a1, . . . , ãs) andK̃ = J̃ : SĨ . Letπ : S → R be the
composition of thẽR-algebra epimorphism sendingX to ψ with the epimorphism
R̃→ R, and letz be theS-regular sequence generating kerπ .

First, notice thatz is regular onS/SĨ , hence(SĨ /J̃ )⊗S R ∼= I/J and therefore
Si(SĨ/J̃ ) ⊗S R ∼= Si(I/J ). Second,K̃ is a geometrics-residual intersection of
SĨ since Ĩ satisfiesGs+1 ([19, 3.2]), andK̃ is unmixed of grades ([36, 2.9(a)
and 1.7(a)]). ThusSĨ/J̃ has rank one as a module overS/K̃ , and hence the same
holds true forSi(SĨ /J̃ ). Third, z form a system of parameters onS/K̃, because
π(K̃) ⊂ K ⊂

√
π(K̃) ([19, 4.1]) and hence htπ(K̃) = s = htK̃. Furthermore

S/K̃ is Cohen–Macaulay ([36, 2.9(a)]).
Now comparing lengths and multiplicities, we obtain

λ(Si(I/J )) = λ(Si(SĨ/J̃ )⊗S R) > e(z;Si(SĨ /J̃ ))
= e(z;S/K̃) · rankS/K̃Si(SĨ/J̃ ) = λ(S/K̃ ⊗S R) · 1
= λ(R/π(K̃)) > λ(R/K)

(cf. [6, 4.6.9 and 4.6.11]). 2

THEOREM 4.2. LetR be a local Gorenstein ring with infinite residue field, letI
be anR-ideal of gradeg and analytic spread̀, and assume thatI satisfiesG` and
depthR/I j > dimR/I − j +1 whenever16 j 6 `−g. Suppose that(R, I ) has
a deformation(R̃, Ĩ ) such that̃I satisfiesG`+1 anddepthR̃/Ĩ j > dim R̃/Ĩ−j+1
whenever16 j 6 `− g + 1. The following are equivalent:

(a) G is Cohen–Macaulay andAi = 0 for somei > `− g + 2;
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(b) J I `−g ∩ I i = J I i−1 andAi = 0 for somei > ` − g + 2 and some minimal
reductionJ of I ;

(c) I satisfiesG∞.

In either caseI is strongly Cohen–Macaulay and of linear type.
Proof. First notice that htJ : I > ` for every minimal reductionJ of I , sinceI

is of linear type locally in codimensioǹ− 1 ([36, 2.9(a) and 1.11]). Now part (b)
follows from (a) by Lemma 1.2(b).

Next, to show that(b) implies (c) it suffices to verify the equalityI = J .
So suppose thatI 6= J . ThenJ : I is an`-residual intersection ([36, 1.11]) with
htJ : I = ` ([36, 1.7(a)]). On the other hand by Proposition 4.1,I satisfiesG`+1,
which implies htJ : I > `+ 1 ([36, 1.11]).

Finally, if (c) holds, thenn = l by the above and henceI is strongly Cohen–
Macaulay by [36, 2.13]. ThereforeI is of linear type andG is Cohen–Macaulay by
[12, 9.1], which yields (a). 2
For the next result recall that an idealI is called syzygeticif S2(I ) ∼= I 2 or,
equivalently,A2 = 0.

COROLLARY 4.3. Let R be a local Gorenstein ring with infinite residue field
and letI be a syzygetic equimultipleR-ideal of gradeg that has a deformation
satisfyingGg+1. The following are equivalent:

(a) G is Cohen–Macaulay;
(b) J ∩ I 2 = J I for some minimal reductionJ of I ;
(c) I is a complete intersection.

Proof. To prove that (a) or (b) implies (c) it suffices to check thatI satisfies
Gg+1 ([9]). For this one applies Theorem 4.2 toIp for p ∈ V (I )with dimRp = g.2
THEOREM 4.4. LetR be a local Gorenstein ring, letI be anR-ideal of gradeg
and analytic spread̀, and assume that(R, I ) has a deformation(R̃, Ĩ ) such that
Ĩ satisfiesG`+1 and the Koszul homology modulesHj(Ĩ ) are Cohen–Macaulay
whenever06 j 6 `− g. The following are equivalent:

(a) G is Cohen–Macaulay andAi = 0 for somei > `− g + 2;
(b) I satisfiesG∞.

In either caseI is strongly Cohen–Macaulay and of linear type.
Proof.After a purely transcendental extension if needed we may assume that the

residue field ofR is infinite. Also notice thatHj(I ) are Cohen–Macaulay modules
whenever 06 j 6 ` − g. Indeed, letz = z1, . . . , zt be a sequence regular on
R̃ and R̃/Ĩ that generates the kernel of the map̃R → R. For 0 6 j 6 ` − g,
eitherHj(Ĩ ) = 0 or z is regular onHj(Ĩ ) since the latter module is a maximal
Cohen–Macaulay module over̃R/Ĩ . Now inducting ont and using the long exact
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sequence of Koszul homology one sees thatHj(Ĩ )⊗R̃ R ∼= Hj(I ). ThusHj(I ) is
Cohen–Macaulay as well.

Now our assertions follow from Theorem 4.2 once we have shown that part (a)
forcesI to satisfyG`. To this end we prove by induction ons, g 6 s 6 `, thatI
hasGs . The cases = g being trivial, assume thatGs holds forg 6 s < `. Let
p ∈ V (I ) with dim Rp = s. Applying Theorem 4.2 to the idealIp, we conclude
thatµ(Ip) 6 s. ThusI satisfiesGs+1. 2
COROLLARY 4.5. LetR be a local Gorenstein ring and letI be a licciR-ideal
of gradeg and analytic spread̀. The following are equivalent:

(a) G is Cohen–Macaulay andAi = 0 for somei > `− g + 2;
(b) I is of linear type.

Proof.By [14, 1.14] and [19, the proof of 5.3], the assumptions of Theorem 4.4
are satisfied. Now the assertion follows from that theorem. 2

5. Equations of Blowups of Northcott Ideals

Let R be a Gorenstein ring. Forg > 2 let J , K be complete intersectionR-ideals
of gradeg with J ⊂ K ⊂ Rad(R), and consider the Northcott idealI = J :K. In
this section we wish to find the equations defining the Rees algebraR of I .

As before leta = a1, . . . , ag and x = x1, . . . , xg be R-regular sequences
generatingJ andK, respectively, let8 = (8ij ) be ag by g matrix with entries in
R so that

[a1, . . . , ag] = [x1, . . . , xg] ·8,
and write1 = det8. Then

I = (a1, . . . , ag,1),

and we obtain a presentation ofS(I ) as an epimorphic image of the polynomial
ringR[T1, . . . , Tg+1] by mappingTi to ai for 16 i 6 g andTg+1 to1. The kernel
of this map is generated by the entriesl1, . . . , lg of the product matrix

[T1, . . . , Tg+1] ·
[

adj8

−x1 · · · − xg

]

and the elementsaiTj − ajTi, 1 6 i < j 6 g. Thus, to find the defining ideal of
R, it actually suffices to describe a generating set of the idealA of the symmetric
algebraS(I ) that fits into the exact sequence

0→ A→ S(I )→ R→ 0.
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We will do this in Theorem 5.4. First however, we need to prove several lemmas.

LEMMA 5.1. With the above assumptions,htIt (8) > g − t + 1 for 16 t 6 g.
Proof. For any minimal primeq of It (8) choose a maximal idealm of R

containingq and observe thatK ⊂ m. Thus we may replaceR by Rm to as-
sume that(R,m) is local. Let T = T1, . . . , Tg be variables. Modulo the ideal
(T1− x1, . . . , Tg − xg), the local ringR[T](m,T)/(T ·8) specializes toR/J . Thus
dimR[T]/(T · 8) = dimR[T](m,T)/(T · 8) 6 dimR/J + g = dimR. But
R[T]/(T · 8) is the symmetric algebra of theR-moduleM = coker8, hence
dimS(M) 6 dimR. Now [16, 2.6] shows thatµ(Mp) 6 dimRp for everyp ∈
Spec(R), which yields the assertion. 2
By ‘−’ we will indicate images of elements ofR[T1, . . . , Tg+1] in S(I ).

PROPOSITION 5.2.With the above assumptions,S(I ) is Cohen–Macaulay with
dimS(I ) = dimR + 1, andT g+1 is regular onS(I ).

Proof. We may localize at any maximal ideal ofR to assume thatR is local.
Now, I being the unit ideal or a Cohen–Macaulay almost complete intersection, it
follows thatS(I ) is a Cohen–Macaulay ring of dimension dimR + 1 ([12, 10.1]
and [16, 2.6]). On the other hand, since by Lemma 5.1,1 is a nonzero divisor inR,
M = I/(1) is anR-module withµ(Mp) 6 dimRp for everyp ∈ Spec(R). There-
fore dimS(M) = dimR ([16, 2.6]). HenceS(I )/(T g+1) ∼= S(M) has dimension
dimS(I )− 1, which shows thatT g+1 is a regular element. 2
LEMMA 5.3. In addition to the above assumptions, suppose thatR is local and
let L be the ideal(l1, . . . , lg, T

g−2
g+1 ) in the polynomial ringR[T1, . . . , Tg+1]. Then

depthR[T1, . . . , Tg+1]/L > dimR.
Proof.We may assume thatg > 3. InR[T1, . . . , Tg] define the ideal

H = Ig
([

8

T1 · · · Tg

])
.

We first claim that ifH is not the unit ideal it must be perfect of grade 2. In-
deed,H contains the ideal defining the symmetric algebra of theR-moduleN =
coker(adj8). By Lemma 5.1,N is a torsionR-module that isg − 1 generated
locally in codimension one, and hence by [16, 2.6], dimS(N) 6 dimR + g − 2.
Thus htH > 2, showing thatH is a perfect ideal of grade 2 unless it is the unit
ideal.

Next, we consider the idealL = (H, Tg+1) of R[T1, . . . , Tg+1]. This ideal is
either licci or else the unit ideal, sinceH is. FurthermoreL ⊂ L = (L,1, Tg+1).

Our conclusion will follow once we have shown that

htL:L > g + 1. (1)
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Indeed, (1) yields htL:L > g + 1> µ(L). Now if L is licci andL 6= L, we may
use [19, 5.3] to deduce that depthR[T1, . . . , Tg+1]/L > dimR[T1, . . . , Tg+1] −
(g + 1) = dimR. Otherwise the assertion is obvious.

To prove (1) we first show that for every 16 i < j 6 g, 1(ajTi − aiTj ) as
well asTg+1(ajTi − aiTj )2 are inL. We may actually assume thati = 1, j = 2.
Now

1(a2T1− a1T2) = 1 · [T1, . . . , Tg] ·


a2

−a1

0
...

0

 = [T1, . . . , Tg] ·1 ·


a2

−a1

0
...

0



= [T1, . . . , Tg] · adj8 ·8 ·


a2

−a1

0
...

0



= [T1, . . . , Tg+1] ·
[

adj8

−x1 · · · − xg

]
·8 ·


a2

−a1

0
...

0

 ,
where the last equality holds since[x1, . . . , xg] · 8 = [a1, . . . , ag]. The resulting
row vector has all its entries inL, showing that1(a2T1− a1T2) ∈ L. Similarly

[T11− Tg+1a1, . . . , Tg1− Tg+1ag] = [T1, . . . , Tg+1] ·


1

.. .

1

−a1 . . . −ag


= [T1, . . . , Tg+1] ·

[
adj8

−x1 · · · − xg

]
·8.

Since this vector has all its entries inL, we conclude thatTg+1ai ∈ (L,1). Now
by the previous calculation,Tg+1(a2T1− a1T2)

2 ∈ L. Hence

L+ ({(aiTj − ajTi)2}) ⊂ L:L.
But L + ({aiTj − ajTi}) is the defining ideal ofS(I )/(T

g−2
g+1), which by Proposi-

tion 5.2 has heightg + 1. This shows (1). 2
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In order to describe a generating set of the idealA we need to assume that 2 is
invertible inR. We also suppose that for some choice ofa1, . . . , ag,

ag−1, ag ∈ K2. (2)

This type of assumption came up in [8], where links of prime ideals were studied.
It is closely related to the conditionIg−1(8) ⊂ K of Corollary 2.5 that essentially
characterizes the Cohen–Macaulayness ofR. In fact, the present condition (2)
implies the one of Corollary 2.5, and the converse holds in case(R,m) is local and
K = m, for instance. Furthermore, (2) does not pose any restriction ifK happens
to be a prime ideal; for in this case the failure of (2) implies thatI is generically a
complete intersection and henceA = 0 ([12, 9.1]).

Now assuming (2) we can write8ij = ∑g

k=1 αijkxk for g − 1 6 j 6 g. Let
R̃ be the polynomial ringR[X1, . . . , Xg] and let8̃ = (8̃ij ) be theg by g matrix
with entries inR̃ so that̃8ij = 8ij for 16 j 6 g − 2 and8̃ij =∑g

k=1 αijkXk for
g − 16 j 6 g. Define

[̃l1, . . . , l̃g] = [T1, . . . , Tg+1] ·
[

adj8̃

−X1 · · · −Xg

]
.

We can writẽlj = l̃j (1) + l̃j (2) wherẽlj (d) are homogeneous polynomials of degree
d in X1, . . . , Xg with coefficients inR[T1, . . . , Tg+1]. Consider theg by g matrix

B̃ = (̃bij ) =
(
∂l̃j (1)

∂Xi
+ 1

2

∂l̃j (2)

∂Xi

)
,

with entries inR̃[T1, . . . , Tg+1] and letB be the image of̃B in R[T1, . . . , Tg+1] as
Xi are mapped toxi for 16 i 6 g. Notice that[l1, . . . , lg] = [x1, . . . , xg] · B.

THEOREM 5.4. With the above assumptions(including 1/2 ∈ R and (2)), A is

generated bydetB/T
g−2
g+1.

Proof. First notice that by Proposition 5.2,T g+1 is a non zerodivisor onS(I ).

The assertion of the theorem will follow once we have shown thatT
g−2
g+1 divides

detB in S(I ). To see this, notice that the equality[l1, . . . , lg] = [x1, . . . , xg] · B
implies that 0= x1detB = x1T

g−2
g+1 (detB/T

g−2
g+1) in S(I ). Now asx1 andT g+1 are

non zerodivisors onS(I )/A ∼= R (1 being a non zerodivisor onR by Lemma 5.1),

we conclude thatdetB/T
g−2
g+1 is contained inA. To prove that this element gen-

eratesA, we may localize at any maximal ideal ofR to assume that(R,m) is
local. We may also assume thatµ(I) = g + 1 since otherwiseA = 0. Now by
Corollary 2.5 for example,̀(I ) = g. The idealI is strongly Cohen–Macaulay and
is presented by a matrix whose ideal of entriesK is generated by the entries of one
row. Thus by [34, 4.10],A is generated by one homogeneous element of degree
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two in the graded ringS(I ). Now detB/T
g−2
g+1 is a form of degree two contained in

A, but not lying inmA since the polynomial(−1)g detB is monic inTg+1. Thus

detB/T
g−2
g+1 generatesA.

To prove thatT
g−2
g+1 dividesdetB, we may assume thatg > 3. If we write8 =

[81|82] where81 hasg − 2 columns, then gradeIg−2(81) > 0 since1 is anR-
regular element by Lemma 5.1. We now replaceR and8 by R̃ = R[X1, . . . , Xg]
and 8̃ as above, but we revert to our original notation except that we will still
write R̃ = R[X1, . . . , Xg]. Notice theR-ideal Ig−2(81) is not contained in any
minimal prime of theR̃[T1, . . . , Tg+1]-ideal (X1, . . . , Xg, Tg+1). We will be done
once we have shown that iñR[T1, . . . , Tg+1], detB is contained in the idealL =
(l1, . . . , lg, T

g−2
g+1 ).

It suffices to check this containment locally at every associated primep of the
idealL. SinceXi detB ∈ (l1, . . . , lg) for 1 6 i 6 g, it follows that the assertion
is clear if(X1, . . . , Xg) 6⊂ p. Thus we may assume(X1, . . . , Xg) ⊂ p, and hence
(X1, . . . , Xg, Tg+1) ⊂ p. Localizing at the contraction ofp, we may further sup-
pose that(R,m) is local withm = p ∩ R. Since htp 6 g + 1 by Lemma 5.3, it
follows thatp is a minimal prime of(X1, . . . , Xg, Tg+1). ThusIg−2(81) = R by
the above, andTi 6∈ p for 16 i 6 g.

Hence there exist invertibleg by g matricesU with entries inR andV with
entries inR̃ so that detU = detV = 1 and

U8V = 8′ =


1 0 0

. . . ...
...

1 0 0
0
0
· · ·
· · ·

0
0

8′′

 ,

where8′′ is a 2 by 2 matrix with linear entries iñR. Set

[X′1, . . . , X
′
g] = [X1, . . . , Xg] · U−1,

[T ′1, . . . , T
′
g] = [T1, . . . , Tg] · V,

T
′
g+1 = Tg+1,

[l ′1, . . . , l
′
g] = [l1, . . . , lg] · U−1.

Notice that

R[X′1, . . . , X′g] = R[X1, . . . , Xg], R̃[T ′1, . . . , T ′g+1] = R̃[T1, . . . , Tg+1],
and

[l ′1, . . . , l
′
g] = [T

′
1, . . . , T

′
g+1] ·

[
adj8′

−X′1 · · · −X′g

]
.
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Furthermore, if we letB ′ be then by n matrix whose(i, j)-entry is

∂l
′
j (1)

∂X
′
i

+ 1

2

∂l
′
j (2)

∂X
′
i

,

then

B ′ =
(
∂l
′
j (1)

∂X
′
i

)
+ 1

2

(
∂l
′
j (2)

∂X
′
i

)

= U ·
(
∂lj (1)

∂Xi

)
· U−1+ 1

2
U ·

(
∂lj (2)

∂Xi

)
· U−1

= U · B · U−1,

where the second equality holds because the entries ofU andU−1 are inR. Now
since detB ′ = detB and since(l

′
1, . . . , l

′
g, (T

′
g+1)

g−2) = (l1, . . . , lg, T
g−2
g+1 ), we

may replace8 by8′ and return to our original notation.
Write T = ∏g−1

i=2 Ti . As T 6∈ p it suffices to show thatT detB ∈ L. This will
follow once we prove thatT detB is the determinant of ag by g matrix whose first
g − 2 columns have entries in the ideal(lg−1, lg, Tg+1).

We have

[l1, . . . , lg] = [T1, . . . , Tg+1] ·



1 0 0
. . .

...
...

1 0 0
0 · · · 0 α β

0 · · · 0 γ δ

−X1 · · · −Xg


,

whereα = ∑g

i=1 αiXi, β =
∑g

i=1 βiXi, γ =
∑g

i=1 γiXi and δ = ∑g

i=1 δiXi
are linear forms with coefficients inR so thatαδ − βγ = 1. Recursively, for
1 6 j 6 g − 3, we multiply thej th column ofB by Tj+1 and then subtractTj
times the(j+1)st column from it. We also multiply the(g−2)nd column byTg−1.
It follows thatT detB is the determinant of ag by g matrix, whoseith row has the
following form modulo the ideal(lg−1, lg, Tg+1),[

0, . . . . . . ,0,
1

2

∂1

∂Xi
Tg−2Tg−1, αiTg−1+ γiTg, βiTg−1+ δiTg

]
.

Since modulo the ideal(lg−1, lg, Tg+1), αTg−1 + γ Tg ≡ 0 andβTg−1 + δTg ≡ 0,
we see that

1

2

∂1

∂Xi
Tg−2Tg−1 ≡ 1

2Tg−2δ(αiTg−1+ γiTg)− 1
2Tg−2γ (βiTg−1+ δiTg).
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Thus, adding a suitable linear combination of the last two columns to the
(g−2)nd one, it follows that modulo(lg−1, lg, Tg+1), the matrix can be transformed
into another one whose firstg − 2 columns have zero entries. 2

Let (R,m) be a power series ringk[[X1, . . . , Xg]] in g > 2 variables over a
field k of characteristic zero. Consider anR-regular sequencea1, . . . , ag and the
Jacobian determinantδ = |∂aj/∂Xi|. For instance, one could choosea1, . . . , ag to
be the partial derivatives of a power seriesf ∈ R defining an isolated singularity
R/(f ), in which caseδ is the Hessian off . As before writeJ = (a1, . . . , ag) and
let I be the Northcott idealJ :m. By [33, p. 187] one hasI = (a1, . . . , ag, δ). If
ag−1, ag ⊂ m2, thenJ is a reduction ofI with rJ (I ) = 1 ([8, 2.1] or Theorem 5.4).
From Theorem 5.4, one can actually obtain a quadratic equation of integrality ofδ

overJ . The situation is particularly agreeable ifJ is homogeneous andg = 2:

EXAMPLE 5.5. Let k[X,Y ] be a polynomial ring over a field of characteristic
zero, letf, h be a regular sequence of forms of degreesd1 > 2, d2 > 2, and write

δ =
∣∣∣∣ fx hxfy hy

∣∣∣∣ .
Then

δ2 = 1

d2
2(d2− 1)2

(h2
xy − hxxhyy)f 2+ 1

d1d2(d1− 1)(d2− 1)
×

×(fxxhyy − 2fxyhxy + fyyhxx)f h+ 1

d2
1(d1− 1)2

(f 2
xy − fxxfyy)h2.
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