ON A STRUCTURE DEFINED BY A TENSOR FIELD F OF TYPE (1, 1) SATISFYING $F^2 = 0$

BY C. S. HOUH

Professor Eliopoulous studied almost tangent structure on manifolds M_{2n} in [1], [2], [3]. An almost tangent structure F is a field of class C^{∞} of linear operations on M_{2n} such that at each point x in M_{2n} , F_x maps the complexified tangent space T_x^e into itself and that F_x is of rank n everywhere and satisfies $F^2=0$. The present author in [4] studied a (1, 1) tensor F on a riemannian manifold M_{2n} which satisfies $F^2=0$ and is such that the rank of F is n everywhere. In this paper we study a differentiable manifold M_n with a (1, 1) tensor field F so that $F^2=0$ and that the rank of F is a constant r everywhere. A positive definite riemannian structure always exists on M_n . Such a riemannian structure is an 0(n)-structure, thus the structural group of the tangent bundle TM_n is reduced to 0(n). We shall prove the following:

THEOREM. A necessary and sufficient condition for M_n to admit a (1, 1) tensor field F with constant rank r > 0 such that $F^2 = 0$ is that the structural group of tangent bundle of M_n be reduced to the group $0(r) \ge 0(r) \times 0(n-2r)$, where $0(r) \times 0(r)$ denotes the group of diagonal product of 0(r) [5], that is

$$0(r) \underset{=}{\times} 0(r) \colon \begin{pmatrix} A & 0 \\ 0 & A \end{pmatrix}, \qquad A \in 0(r).$$

1. Let T_x be the tangent space of M_n at x; $F_xT_x = B_x$ and B'_x be the orthogonal distribution to B_x with respect to a chosen riemannian metric. Thus $T_x = B_x \oplus B'_x$. Since $F^2 = 0$ we have $F_xB_x = 0$ and $B_x = F_xT_x = F_x(B_x \oplus B'_x) = F_x(B'_x)$. This shows that dim $B'_x \ge \dim B_x$ and hence $r = \operatorname{rank}$ of $F \le n/2$. There is a subdistribution D_x of B'_x , dim $D_x = n - 2r$, such that $F_xD_x = 0$. Let C_x be the subdistribution in B_x orthogonal to D_x . Then $B'_x = C_x \oplus D_x$ and $FC_x = B_x$. In a local coordinate neighbourhood at the point x one can write the operator F and distributions B, C and D by

$$F_{i}^{j} \quad (i, j = 1, 2, ..., n)$$

$$B_{a}^{j} \quad (a, b = 1, 2, ..., r)$$

$$C_{\bar{a}}^{j} \quad (\bar{a} = a + r)$$

$$D_{\alpha}^{j} \quad (\alpha, \beta = 2r + 1, ..., n).$$
at $F_{i}^{i}C_{i}^{j} = B_{i}^{i}$.

One can further assume that $F_j^i C_{\bar{a}}^j = B_a^i$

447

C. S. HOUH

[September

The matrix $(B_a^j, C_{\bar{a}}^j, D_{\alpha}^j)$ has an inverse. Let

$$(B_a^j, C_{\bar{a}}^j, D_{\alpha}^j)^{-1} = \begin{pmatrix} B^a \\ C_i^{\bar{a}} \\ D_i^{\alpha} \end{pmatrix}$$

and

$$B_{ji} = B_j^a B_i^a, \qquad C_{ji} = C_j^a C_i^a, \qquad D_{ji} = D_j^a D_i^a;$$
$$A_{ji} = B_{ji} + C_{ji} + D_{ji}.$$

The following statements are justified by calculations, almost identical to those in [4].

 $(B_a^j, C_{\bar{a}}^j, D_a^j)$ are orthogonal with respect to the metric A_{ji} . For any vector fields X, Y on M_n we define \bar{A} , \bar{B} , \bar{g} as follows

$$\bar{B}(X, Y) = B_{ji}X^{j}Y^{i}, \qquad \bar{A}(X, Y) = A_{ji}X^{j}Y^{i},$$
$$\bar{g}(X, Y) = \frac{1}{2}\{\bar{A}(X, Y) + \bar{A}(FX, FY) + \bar{B}(X, Y)\}.$$

Then B, C, D are orthogonal with respect to \bar{g} and

$$\bar{g}(X, Y) = \bar{g}(FX, FY)$$
 for any $X, Y \in C$.

Thus we have proved

LEMMA. If in M_n there is a (1, 1) tensor field F of constant rank r > 0 which satisfies $F^2=0$ then $2r \le n$ and there exist complementary distributions B, C, and D of dimensions r, r and n-2r and a positive definite riemannian metric \overline{g} with respect to which B, C, and D are mutually orthogonal and such that (i) $\overline{g}(X, Y) = \overline{g}(FX, FY)$ for any $X, Y \in C$, (ii) F maps an orthonormal basis of C onto an orthonormal basis of B.

2. **Proof of the theorem.** With respect to the orthonormal basis B_a , $C_{\bar{a}}$, $2^{-1/2}D^{\alpha}$ in the above lemma, the tensors \bar{g} and F have the following components:

(2.1)
$$\bar{g} = \begin{pmatrix} E_r & 0 & 0 \\ 0 & E_r & 0 \\ 0 & 0 & E_{n-2r} \end{pmatrix} \qquad F = \begin{pmatrix} 0 & 0 & 0 \\ E_r & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Where E_r , E_{n-2r} denote the $r \times r$ and $(n-2r) \times (n-2r)$ unit matrices. We call such a frame $(B_a, C_{\bar{a}}, 2^{-1/2}D_{\alpha})$ an adapted frame of the F structure. Now take another adapted frame $\{\bar{B}_a, \bar{C}_{\bar{a}}, 2^{-1/2}\bar{D}_{\alpha}\}$ to which the metric tensor \bar{g} and the tensor F have the same components as (2, 1). Put

$$\bar{e}_i = \gamma_i^j e_j, \qquad \gamma_i^j \in 0(2n) \qquad \left(e_a = B_a, e_{\bar{a}} = C_{\bar{a}}, e_a = \frac{1}{\sqrt{2}} D_a\right).$$

Then we can easily find that γ has the form

$$\gamma = \begin{pmatrix} \alpha & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & \beta \end{pmatrix} \qquad \alpha \in 0(r) \qquad \beta \in 0(n-2r).$$

448

Thus the group of the tangent bundle of M_n can be reduced to $0(r) \ge 0(r) \times 0(n-2r)$.

Conversely if the group of the tangent bundle of the manifold can be reduced to $0(r) \stackrel{\times}{=} 0(r) \times 0(n-2r)$ then we can define a positive definite riemannian metric \bar{g} and a tensor field F of type (1, 1) with constant rank r having (2, 1) as components with respect to the adapted frames. Then we have that $F^2=0$ and that the rank of F is r. This completes the proof of the theorem.

References

1. H. A. Eliopoulos, Structures presque tangentes sur les variétés différentiables, C. R. Acad. Sc. Paris, 255 (1962), 1563–1565.

2. —, Euclidean structures compatible with almost tangent structures, Acad. Roy. Belg. Bull. Cl. Sci. (5) 50 (1964), 1174–1182.

3. —, On the general theory of differentiable manifolds with almost tangent structure, Canad. Math. Bull. 8 (1965), 721–748.

4. C. S. Houh, On a Riemannian manifold M_{2n} with an almost tangent structure, Canad. Math. Bull. 12 (1969), 759–769.

5. H. Wakakuwa and S. Hashimoto, *Remark on almost tangent structure*. Tensor, 20 (1969), 270-272.

WAYNE STATE UNIVERSITY,

DETROIT, MICHIGAN