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Let u ( x i , . . . , ! „ ) = i n . . . x i m be a word in the alphabet xi,... ,xn such that xn ^
xii+i for all i = 1 , . . . , m — 1. If {Hi,..., Hn) is an n-tuple of subgroups of a group G
then denote by u{Hi,...,Hn) the set {u(hi,..., hn) | ht 6 Hi}. If a 6 S n then denote

by ua(Hi Hn) the set u{jla^,..., #„.(„)). We study groups G with the property

that for each n-tuple {Hi,..., Hn) of subgroups of G, there is some <r 6 Sn, <r ^ 1 such
that u( . f f i , . . . , Hn) — Ua{H\,..., Hn)- If C? is a finitely generated soluble group then G
has this property for some word u if and only if G is nilpotent-by-finite. In the paper we
also look at some specific words u and study the properties of the associated groups.

1. INTRODUCTION

Let n be a fixed positive integer, X = {xi,..., xn} a set of n symbols and F =
F(X) the free group on X. Let U = {U1,M2> • • • } and V = {fi, t>2> • • • } be non-empty
sets of elements in F. Define the class P(U, V) to consist of groups G such that given
a n n - t u p l e (gi,..-,gn) o f e l e m e n t s i n G, u(gi,...,gn) — v(gi,...,gn) f o r s o m e u £ U

and some v € V, v ̂  u. Some examples:
1.1. Let U = {u} where u{x\,..., xn) = xlx2 • • • xn and V = {uff | a 6 5'n\l}

where Sn is the symmetric group of degree n and

Ua(x\,. . . , ! „ ) = u(xa(i'),. . . ,:Cff(n)) = Xo(l)Xo(2) • ••x<j(n)-

Then every group in P(U, V) is finite-by-abelian-by-finite. Conversely every finite-by-
abelian-by-finite group is in P{U, V) for some suitable n. This was shown by Curzio,
Longobardi, Maj and Robinson in [2]. These groups are more commonly referred to as
Pn-groups.

1.2. Let u = u(xi,... ,xn) = X\Xi ... xn, U = {u, | a € Sn} and V = U. Then
P(U, F)-groups, more commonly referred to as <3n-groups or rewritable groups, are
again finite-by-abelian-by-finite groups as shown by Blyth in [1]. That an abelian-by
finite group is in Qn for some n is implicit in Theorem 1 of Kaplansky [4].
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1.3. If we take n = 2, u = u(zi,;C2) = {xiX2)
r, v = v(xi,x2) = {x2xi)r where

r > 0 is fixed and U = {«}, V = {v} then G £ P{U,V) if and only if G/Z(G) is of
exponent r. This is not difficult to verify.

In general the classes P(U, V) may be viewed as generalising varieties and, except
for some specific sets U and V, it is very difficult to describe them. We now turn to
related classes of groups.

Let n > 0 be fixed, X — {xi,.. .,xn} be a set of idempotent variables and
5 = S(X) the free semigroup generated by X. Thus for any u € 5, u = u(xi , . . •, xn) =

IHX12 .. .xim where xu € X and xn ^ xn+i for all i = 1 , . . . , m — 1. If {Hi,.. . .ffn)
is an n-tuple of subgroups of a group G then denote by u{H\,... ,Hn) the set
{u(/ii , . . . ,/in) | hi € Hi}. Thus if u{x\,..., xn) is as above then

If J7 and V are sets of elements in 5 then define the class SP{U, V) to consist of
groups G such that for any n-tuple {Hi ,•••, Hn) of subgroups of G, u{Hi,..., Hn) —

v{Hi,..., Hn) for some u E U and some v € V, v ^ u. Some examples:

1.4. Let U — {u} where u{xi,. ..,xn) — xix2 • • -xn and V = {ua \ a € 5 n \ l } .
As in 1.1, uc{xi,.. .,xn) — u{xa(i),... ,sca(n)). Finitely generated soluble SP{U,V)

groups are finite-by-abelian. Conversely every finite-by-abelian group is an SP{U, V)

group for some integer n. These results are contained in [6]. From [5] we know that pe-
riodic SP{U,V)-gioups are locally finite. The structure of SP{U, F)-groups in general
seems difficult to determine.

1.5. For each positive integer r let ur = uT{x,y) = {xy)r, and vr = vr{x,y) =

{yx)r. Let U = {ur, r = 1,2,... } and V = {vr, r = l , 2 , . . . } . Then the class SP{U,V)

is precisely the class of groups in which every subgroup is elliptically embedded. Groups
with this properly are considered in [7, 8]. It is known that a finitely generated soluble
group G is in this class if and only if it is finile-by-nilpotent. The same is true if we
replace "soluble group" by "residually finite p-group" in the above statement.

In this paper we shall not look at P{U, K)-groups, but concentrate our attention
on SP{U, K)-groups. The two main results are as follows:

THEOREM 1. Let G be a finitely generated soluble group, U = {u} where

u = u{xi,...,xn) = {xi...xn)
r and V = {u^ | a 6 5n} where ua{xu... ,xn) =

U(X<T(I)I- • • )x<r(n))- Then G is an SP(U,V) group for some n > 1, r > 0 if and only

if G is Rnite-by-nilpotent.

THEOREM 2. Let U = {«} where u is a word in idempotent variables Xi,..., xn,

n > 1; and let V = {ua \ <r G Sn}. If G is a finitely generated soluble group in

SP{U,V), then G is nilpotent-by-iinite.
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We can not replace "nilpotent-by-finite" in Theorem 2 by the stronger condition
"finite-by-nilpotent" of Theorem 1. It is tedious, but we will show that the infinite
dihedral group Dx lies in SP{U,V) where U = {«}, V = {ua | <r € Sn} and
u = •u(z1)a;2)a!3)a;4) = SiX4X2J'3a;2K3X4Xi and it is well-known that D<x> is not finite-
by-nilpotent.

At present little is known about the various classes SP(U, V) and P(U,V). The
following questions stand a good chance of getting answered, at least partially, in the
not too distant future!

QUESTION 1: Let U and V be finite sets of words in 5 = S(X) where X =
{x-i,..., xn} and let G be a finitely generated soluble group in the class SP(U, V). Is
G nilpoteiit-by-finite?

QUESTION 2: For which words u in 5 = S(X), X = {xlt... ,a;n} are the periodic
SP{U,V) groups locally finite; where U = {u} and V - {ua , <r € S n } .

QUESTION 3: Let G be a finitely generated residually finite p-group, p a prime.
For which sets U, V of words in 5 = S(X), X = {xu... ,Xl}; would G € SP(Z7, V)
imply G? is nilpotent-by-finite?

Finally we ask if the classes SP(U, V) can contain finitely generated infinite simple
groups. (

2. P R O O F S '

Since the hypothesis of Theorem 1 is a more restricted form of the hypothesis
of Theorem 2, it would be proper to prove Theorem 2 and then establish the extra
property required in Theorem 1. The reduction from soluble to nilpotent-by-finite will
be achieved using two intermediate steps; these are dealt with in the following lemmas.

LEMMA 2.1. The wreath product of a cyclic group otorder p with the infinite cyclic

group is not in the class SP(U, V) wLere U, V are as in the statement of Theorem 2.

LEMMA 2.2. Let G = (A, t) where A is a torsion-free abeh'an group of finite rank

on wliich (t) ads rationally irreducibly. If G £ SP(U, V) where U, V are as in the

statement of Theorem 2, then for some positive integer k, (tk) acts trivially on A.

LEMMA 2.3. If G = (A,t), where A <3 G and is abelian of finite rank, and G €
SP{U, V) where U, V are as in the statement of Theorem 2, then for some I > 0, (A, tl)

has a non-trivial centre.

LEMMA 2.4. Let G = {A,t) where A is a torsion-free abelian group of finite rank

on wliich (t) acts rationally irreducibly. If G G SP(U, V) where U,V are as in the

statement of Theorem 1, then (t) acts trivially on A.
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PROOF OF THEOREM 2: By hypothesis, X = {xi,...,xn} u = u(X) = xnx12...
Xim where xn 6 X for all i = l , . . . ,m and xn ^ xn+i for all i = l , . . . ,m— 1.
Let G be a finitely generated soluble group such that for any n-tuple {Hi,..., Hn) of
subgroups of G, there is a permutation a ^ 1 in Sn such that

We need to show that G is nilpotent-by-finite, and we proceed by induction on the
solubility length of G. If G is abelian then there is notliing to prove. Let G be soluble
of length d and assume that the result holds for soluble groups of smaller length. Since
the class SP{U,V) is subgroup and quotient closed, we may suppose that G has a
normal abelian subgroup A such that G/A is nilpotent-by-finite. Ill particular G is
abelian by polycyclic. If G does not have finite rank then it has a section isomorpliic
to the wreath product of a cyclic group of prime order p and the infinite cyclic group.
This is not possible by Lemma 2.1. Ileuce we conclude that G has finite rank.

As G is finitely generated abelian-by-polycyclic, it satisfies the maximal condition
for normal subgroups. If G is not nilpotcnt-by-finite, then let B be a maximal normal
subgroup of G such that G/B is not nilpotent-by-finite. Now we replace G by G/B
and hence assume that every proper quotient of G is nilpotent-by-finite.

Let T be the torsion subgroup of A. Then T has finite rank and is of bounded
exponent since G satisfies the maximal condition for normal subgroups. Thus T is
finite, and C — Co{T), the centraliser of T in G, is of finite index in G. If T ^ 1 then
G/l' is nilpotent-by-finite and hence C/T is nilpotent-by-finite. Since T Sj Z{C), the
centre of C, then C and hence G would be nilpotent-by-finite. Thus we assume T = 1
and hence A is torsion-free, and by passing to a suitable subgroup of finite index in
G, if necessary, we may assume further that G/A is a finitely generated torsion-free
nilpotent group. Thus there exists a finite set T = {t\,... ,tr] of elements in G such
that G = (A,T) and

A = G0 ^ (G0,ti) = d < ... «S (Gr-i,tr) = Gr = G

is a central series from A to G with torsion-free factors.

If r = 1 then G = {A,^. By Lemma 2.3 z({A,t[l)\ £ 1 for some £x > 0 and

hence D = A D Zi{A,t\l)\ is a non-trivial normal subgroup of G. By our choice of

G, G/D is nilpotent-by-finite and hence G is nilpotent-by-finite.

Now suppose we have established the result for the case r < d and suppose r — d.

Then Gd-i is nilpolent-by-finile and G = (Gd-i,id)- Let H = (^4,GJ_J) for some

suitable I > 0 so that H is nilpolent. Let Y = A C\ Z{H) then Y is normal in

(//, td) which is of finite index in G. Moreover z((Y,tl
d

1}} ^ 1 for some lt > 0 by
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Lemma 2.3, so that Di - Y D z((Y, tl
d

l)j is a non-trivial subgroup of G contained

in the centre of (H, td) which is of finite index in G. We may replace (H, td) by its

normal interior in G, if necessary; it still contains A and hence D\. Now (H,td)/Di

is nilpotent-by-finite, Dx < z((H,tl
d

1)) and (H,td
l) is of finite index in G. Thus G is

nilpotent-by-finite, as required. D

PROOF OF THEOREM 1: Since the hypotheses of Theorem 2 are satisfied by the
group of Theorem 1, we may assume G to be finitely generated nilpotent-by-finite.
Let T be the maximal finite normal subgroup of G. Since we wish to show that G is
finite-by-nilpotent we may look at G/T, if necessary, and hence assume that G has no
non-trivial finite normal subgroup. Let F be the Fitting subgroup of G. If F ^ G

then pick any t € G\F such that tp € F. Clearly it is sufficient to show that (F, t) is
nilpotent for G/F is finite and soluble, we can reach G from F by a subnormal series
with factors of prime order. Thus we assume G — (F,t), V £ F and F is torsion-free.

Let / / be the hypercentre of G. Then H n F is isolated in F. This may be seen by
first checking it for Z(G) D F and then by taking the quotient of G by this subgroup,
and using induction. Observe that if H ^ F then G = HF and G is nilpotent.
So assume II ^ F. Next we look at G/II. If G/II is nilpotent then so is G. So we
assume II = 1. Let A be a non-trivial normal subgroup of G of least Hirsch length
and A ^ Z(F). Since (A,t) G SP{U,V), (t) acts trivially on A by Lemma 2.4. Thus
A ^ Z(G) contradicting the assumption that Z(G) = 1. This concludes the proof that
if G e SP(U, V) then G is finite-by-nilpotent.

Now suppose that G is a finitely generated finite-by-nilpotent group. For any
subgroup L of G let 'y(L) denote the nilpotent residual of L. Thus j(L) is the in-
tersection of the terms of the lower central series of L. Let F = f(G). It is finite by
hypothesis and G/F is nilpotent of class ci for some Ci > 0. Thus j(L) = fc(L)

for all L < G where c = |.F| + C\. We show, by induction on \-y(H,K)\ = s, that
{HK)d' = {KH)dt = (H,K) for all subgroups H,K of G where dy = (4r)c , r = rank
of C; di = <*;_! + 2i(i + di),i>l. In particular (//A') ' ' = ( t f t f ) d = (//,A") for all

H, K where d = df, and / = |F|.
By Proposition 2 of [7], TillK)* = T^II)1 = (K,H) where T = -y(K,H), t =

(4r)c, and r is the rank of G. Thus if T = 1 then dY = t will suffice.

For any a 6 {UK)*, a = gb for some g € V and 6 € ( # # ) ' so that ah'1 =

g € r 0 ( / / /C)2 ' . I i m ( t f t f ) 2 ' = 1, then a = 6 and ( # # ) ' = {KU)\ This implies
(II, K) = (HK) , and again di = t suffices.

If Ti = T D (HK)21 ^ 1, then for each integer m ^ 1 let T m + 1 = Tm U T%K so
that Tm C (HK)2t+2m. Observe that Tm - T m + 1 impUes (rm> = (P£) = (T*). Since
Tm C T and |1 ' | = 3, T, = T,+1. Also note that ( r m ) C l1^. Thus the normal closure
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N of Ti in (II,K) lies in (HK)X where A = A, = 2(s2 + ts).

Now NH and NK both lie in (HK)X and {NHNK)m C {HK)x+m for all
m > 0. Raids of (H,K)/N is no greater than r, j((H,K)/N) = ye((H,K)/N)
and |7((J/,/0/JV)| < |7«IT,/0)| . Thus by the induction hypothesis, N(HK)d' =
N(KH)d' = (H,K) where rf' = t + A2 + • • • + A._x - <f._i. Since ( # # ) * ^ TV, we
obtain (IIK)da = (KH)d' = (H,K) where d. = d.^ + A,.

Now that we have shown that for a finitely generated finite-by-nilpotent group G
there is an integer d such that (HK) = {KH)d for all subgroups H,K of G, we let
u — u(x,y) — (xy) , v = v(x,y) = (yx) then G 6 SP(u,v). This completes the proof
of the second part of the theorem. U

PROOF OF LEMMA 2.1: Let G be the wreath product of a cyclic group of order
p and an infinite cyclic group (t). Then we can identify each element of G by a pair
(/(<), ta) where /( /) € Fp(<), the additive group of the group ring of the infinite cyclic
group (t) over the field Fp of p elements, and a 6 Z. The product of two such elements
is then given by the rule: (/(<), ta)(g{t),t^) = (/(<) + ta -g(t), ta+P). The elements
of the base group correspond to those pairs where a = 0 and the elements of the top
group correspond to those pairs where f{t) — 0.

W e a r e g i v e n X = {xL,... ,xn},u = u(X) = x n x 1 2 . . . x l m ; x u € X, Xli ^
xU+ii * — l , - . - ,m — 1 and we are required to show that there exist subgroups
Hi,--Jin of G such that Hn H12 .. .Hlm ^ ^ n ) ^ ( i 2 ) - - . % i m ) for any <j> ^ 1
in Sn.

Take Hi = (hi) where h{ = ((1 -tai)futai); fi = /,(«) and a{ are to be cho-
sen appropriately. Note that /i* = ((l — tka')fi, tkai), and a general element of
u(tf, , . . . ,#„) is fcfi...fcf™ =

((1 -

((1 - <*lQll

where Aj = ktan H t-Aja^, i — l , . . . , m . Partition the set { 1 , . . . ,m} as the union

SiU- • -U5n where Si = {j | a;̂ - — Xi}. Then a general element of u(Hi,..., Hn) is of the
n

form (£, (fi Y2 (<AJ~1 ~ tXj)),tXm) with the understanding that Ao = 0. Likewise

w(^<7(i).---,-ff<7(n)) consists of elements of the form ( ^ ( / ^ ( i ) ^2 ('"'~l ~('V))> </i

where /x,- = ^ia^(n) + • —\-£i<*4>(H), i — 1,.. • ,rn and fio = 0. If cr denotes the inverse
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n
of (j>, then we may write these elements as ( ] T (/; ] T (t^-1 - V1')), <Mm).

n n

implies Am = fim and

E
«=i jest »=i

Let p i , . . . ,pn be distinct primes, each greater than m. Put p = pi .. . p n , fcj = 1 and
a, = p/pi, i — 1 , . . . ,n. Then for each i > 0, Aj = a n + • • • + a n . Let fi = tp . Note
that Xj < p for all j and they are all distinct. Also note that /;<*•> = fi't^i' implies
p1 + Xj = p* + fly. Hence fiji = Xj mod p so that fiji ^k A; mod p for any i ^ j . Thus
each Xj is congruent modulo p to precisely one fly.

Now 1 6 "Ŝ jfc) for some k. Thus /fc(</i° — i**1) is a term on the right hand side of
(J). Since /z0 = 0 and the only Aj equal to zero is Ao, /fc(<A° — t*1) appears on the left
hand side of (1). In particular 1 G 5jfe. Since 5 i , . . . , 5 n partition the set { l , . . . , m }
and 1 £ 5fc PI 5<T(j.), it follows that (r(k) = k. Hence /xi and Ai are both congruent to
zero mod p/pk', it follows that /ij = Ax.

Suppose, by way of induction, that we have established that /x;- — A;- for all j < e.
Then fie — /ie_i = ^e<*0(ie) which is congruent to zero mod all primes p< except possibly
one namely. p^(ie)- Now we look at {A;- — Ae_i, j = e , . . . ,m} . Ae — Ae_i = a.\e is
congruent to zero mod all primes Pi, Pi ^ Pie- For each of the other A?- — Ae_1; we can
find at least two primes amongst {p i , . . . ,pn} such that Aj — Ae_i is not congruent to
zero mod either of them. Hence 0 ^ a i e = £e«^(ie) mod pi e . But a-<j,(\e) ^ aie implies
a0(1(.) = 0 mod p l e . Thus a^ie) = ale, and xle - x^(ie) = xki, say. Thus <r{k') - k'

and e € Sk>. Thus J v ^ " — 1 - f « ) = /fc'(<A'-x - tx«) and Ae = /ze.

It is now clear that <j>(j) = j for all j — l , . . . , n and hence <j> is the identity
permutation of the set { 1 , . . . ,n} as required. D

PROOF OF LEMMA 2.2: We are given a group G = (A,t) where A is torsion-
free abelian of finite rank on which (t) acts rationally irreducibly. Let us assume,
if possible, that [A,t] ^ 1. Then V — A ®z Q is an irreducible Q(<)- module and by
Schur's Lemma, the centraliser ring F = EndQ^jF is a division ring of finite dimension
over Q. The image of (t) in EndQ^ clearly lies in and spans F so that F is an algebraic
number field. Moreover, regarded as a F-space, V is one-dimensional. Thus we may
consider A to be an additive subgroup of Q(r) for some algebraic number T and the
action of conjugation by t as multiplication by T.
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Let hi = &i(l - Tai)ta* for suitable integer a{ and 6^(1 - ra') G A. Let H{ = (hi).

Note that hki = 6,(1 - T*Q«)<*«•.

As in Lemma 2.1, we are given u = u(x\,.. .,xn) = i n i u . . . ajiml xu €

{xi,... ,xn},xn jt xu-n, i — 1 , . . . ,m — 1; and we need to show that with proper

choice of 6; and a<, subgroups H\,... ,Hn can be found such that Hn .. .Him ^

• • ^ ( i m ) for any <f> ^ 1 in Sn. Now

where Xi — kian + • • • + kiau, i = 1 , . . . ,m.

We shall put Ao = 0 and write 1 = r° = T V

Thus a general element of u(Hi,... ,Hn) has the form

where 5"< = {j; xij = x{] so that { 1 , . . . , m} is the disjoint union of Si,..., 5 n

Likewise the general element of t t ( /J^(i) . . . //^(n)) has the form

where /Xj = ^ia^(j) + l-^t«0(i;), * = 1 , . . . ,rn; /io = 0 and <7 = <p~x. Tliis is shown
in the same way as in the proof of Lemma 2.1. In particular fim = Am and

Now we return to pick bi and c«j appropriately. For each integer r > 1, pick

primes p r i , - - , P r n to satisfy 2 r < p r l and p ^ < p r ; + i , i = l , . . . , n - 1. Put qr =

Pri •••Prn, &ri(j/) = y ' r and a r i = qr/pri, i — l , . . . , n . To make the notation

simpler, we shall write bi for &H and a; for a r j , where there is no ambiguity. Since

there are infinitely many choices of qr and each choice of qr determines the sequence

Hi,...,//„ of subgroups which in turn corresponds to some permutation <f> ^ 1 such

that u(Hi,... ,Un) = u(-H^(i), • • • )-ff̂ (n))> there is an infinite number of choices of r

such that qT correspond to the same permutation <j>.

https://doi.org/10.1017/S0004972700004354 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700004354


[9] Permutable word products 251

If, for some value of r, we have the following stronger version of (2):

i(y) = 0

where

Hv) = E (y^-1 - yXj)' M*fo) = E fa"'-1 - »My

and y is an indeterrninant; then fij = Xj for all j and <f> = 1. This is seen using

arguments similar to those in the proof of Lemma 2.1. Thus we may suppose that for

every r,
n n

P(y) — E bi{y)L{{y) — E bi(y)Mi(y)

is not zero but P{T) — 0. If Q(y) is any non-trivial segment of P(y) such that Q(T) = 0,

then Q'(y) = P{y) — Q{y) is a segment of P(y) with Q'{T) — 0. Moreover one or both
n

of Q(y) or Q'(y) contains at least as many monomials from 53 bi(y)Li(y) as from
t=i

n
53 bi(y)Mi(y). Let Q(y) be such a segment of P(y) of shortest length. Thus

" i - Q(y) * o
II. Q{T) = 0

n n
III. Q(y) contains at least as many monomials from J3 ^i(y)it(y) as from 53 bi(y)Ati(y)

and

IV. No proper segment has properties I and II.
u # n

We write Q(y) = <?i(y)-<?2(y) where Qi{y) isasegment J2 ±yA- of £ bi(y)Li(y),

Q2(y) a segment 2J iy**' of / J ^i(y)^i(y) an(^ w e m a v suppose that there is no term

in Qi(y) equal to any term in <?2(y)- If Qi{y) has only one term in it, then Q(y) — ±yA

or i y ± yM where 0 ^ A and /x ^ A. In both cases Q ( T ) = 0 implies r is a root of
unity and [<*,.4] — 1 for some k > 0, as required.

We may therefore assume that Q\{y) = 53 i y * ' n a s more than one term; X'{ =

g*' + A;-. and 0 < X\ < • • • < X'u. Similarly <52(y) = 53 ±y" ' where p.\ ^ . . . < (j,'v. Let

ui=unn{X[,n'1} and «/2 = max{X'u,fi'v}.

Then y~"1 • Q(y) is a polynomial of degree 1/2 — ^I with non-zero constant term.
Moreover u2 — V\ ~^ X'u — X\ > 2 r . Thus the degree of the polynomial increases with r,
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and hence there are infinitely many expressions

where 7J ^ 0, £{ 6 {—1,0,1} and no subsum of the right hand side of the equation is
zero. But this is not possible by Theorem 1 of [9] which we slate below for convenience.
This completes the proof. U

THEOREM. (Van Der Poorten) Let K be a field of characteristic zero and II a

finitely generated subgroup of the multiplicative group of K. Then for each integer

TO > 0 there are only finitely many relations wj + • • • + um = 1 with each U{ G H and

no subsum of the left hand side is zero.

A result very similar to the above was proved by Evertse in [3]. One can avoid
using the above deep result and use Lemma 1 and 2 of [7] and modify the argument
slightly to get the required contradiction.

PROOF OF LEMMA 2.3: If the torsion subgroup of A is non-trivial then it has a
non-trivial normal subgroup Ai of exponent p tor some prime p. This is finite since A

has finite rank, hence it is centralised by tl for some I > 0 and Ai lies in the centre of
(A,tl). We may thus assume that A is torsion-free. Let I) be a non-trivial subgroup
of A of least rank subject to D < G. Lemma 2.2 applies to (D,t) and we conclude
that (D,tk) is abelian for some k > 0. Hence D lies in the centre of (A,tk). D

PROOF OF LEMMA 2.4: As the hypothesis of Theorem 1 is stronger than that of

Theorem 2, Lemma 2.2 and its proof applies. We follow the proof of Lemma 2.2 and

reach the situation where we may assume A to be an additive subgroup of Q ( T ) for

some algebraic number r and the action of t under conjugation is that of multiplication

by T. Furthermore we may assume r to be a primitive fcth root of unity and we need

to show that r = 1.

Let hi = ( ^ ( l - r ) , * - 1 ) , and //; = (In). Observe that hx = (k{(l - rx),t~x)

and hk = t~h. Let X = ( i / j . . . Hn)
r and suppose that for some <f> =fi 1 in 5 n , X =

(•ff^(i) • • -H^n^y. If </>(l) 7̂  1, then (H1,H^1)) C X. But this is not possible since

A' is the union of a finite number of cosets of (tk) whereas (Hi,-ff^(i)) contains the

subgroup generated by (fc^1) — fc)(l-r), an infinite cyclic subgroup of Q{T), not

contained in any finite union of cosets of (tk). Hence <j)(\) = 1 and similarly 4>(n) = n.

For any permutation n in Sn, a typical element x of -ff,r(i) • • • Hn(n) has the form

x - hn{1)... nn{n)

( ^ (1 - T*l ) + fc^2) ( 1 - TX*)TX1 +•••+ * * » > (1 - T * » ) T * l + - + * « - l , <
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where fi — Xi + • • • + An and X, are arbitrary integers. In turn these elements may be

written as

{1){l - r a i ) + Jfe*(2)(Tai -Tai)+.-- + ...klr(-n\ra"-1 - r a " ) , <-

where a* are arbitrary integers. In particular t~a°x has the form (h,t~an) where

h = fc^^r"0 - r"1)

Thus, if cxo is a given fixed integer, the real part of h is maximised by choosing
Qj = 0(mod k) if 7r(i + 1) > 7r(i), a; = q(mod k) where g = [k/2] if 7r(i + 1) < 7r(i);
i = 1 , . . . n — 1 and an = g(mod A;). If re is the identity permutation then this value is
k cos (27rao)/(Jfc) + (kn - k) - kn cos {2irq)/k.

On the other hand if w ^ 1 and 7r(l) = 1, 7r(n) = n, then the maximum real part

of the value of h is

k c o s ^ + (*" - Jfe) - fcn cos ^ + y (*-W - Jfc^'+1)) (1 - cos £

where the sum is over all values of i such that TT(I) > w(i + 1). This value is clearly

greater than the value obtained for the identity permutation ir.

Now the general element of (^-n-(i) • • • ^ ( n ) ) is CM~ a ) where h is expressible in
the form

where a10 = 0, a j n = a;+10, i = l , . . . , r — 1, arn = a. By picking the values for

otij to maximise the real part of h as above, it is clear that the value achieved when

7r ^ 1 is greater than for ir = 1. Thus (#^(i) .. .H^n))
T', 0(1) = 1, <p(n) = n, <j> ^ 1,

contains elements not contained in {H\ ... Hn)
T'. This completes the proof. U

3. EXAMPLE

Let U = {u} where u = u(xi,... ,xt) = xix±X2X3X2XzXiXx and V = {ua \

a 6 5 4 } . Then the infinite dihedral group G is in SP(U, V).

Consider u(H1,H2jIh,Ih) for given subgroups Hi,H2,H3,Hi of G. If Hi or 7/4
is normal in G then u(Hi,H2,H3,Hi) = u(H^,ll2,H3,Hi). If JJ2 or H3 is normal in
G then u(Hi, H?, Hz,H4) = u(Hi,H3,H2,Hi). So assume none of the Hi's is normal
in G. If for some i , Hi is not of order two, then it contains a subgroup Ki normal
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in G and of index two in Hi. Moreover u(ff(7(1)... Ha^f) = Kiu{lla^)... Ha{4)) for

all a G 5 n , and we may replace G by G/Kt and each of Hj by HjKi/Ki. Thus the

essential case to be considered is one where each Hi is of order two.

Now G = (a,t) where a1 = a"1 and t2 = 1. H{ = (aA'<), i = 1,2,3,4. We will

show that the set L = H4H2H3H2H3HA equals the set R = H4H3H2H3H2H4. From

this it follows that u(HuH2,113,11^ = UxLlh = H^RH-i, = u{Hi,II3,H2,H4).

Now ax 6 H2H3H2H3 if and only if A = 0, A2 - A3, A3 - A2 or

2A2 - 2A3. axi € H2H3H2H3 if and only if A = A2,A3,2A2 - A3 or 2A3 - A2. Hence

H2H3II2H3\H3H2IhH2 consists of a2A'-2A=> only and H3H2H3H2\H2H3H2H3 con-

sists of a2*3"2*2 only. But H4 a2*2-2As#4 consists of aA where

A G {2A2-2A3, 2A3-2A2} and axt where A € {A4-2A2+2A3, A4 + 2A2-2A3}. From the

symmetry between A2 and A3 above it is clear that / / 4 o
2A2~2A3//4 = H4 a2Xz~2X<1 H\.

Thus the sets L and R are equal and G € SP{U, V).

We have not tried to analyse conditions on words u for which D,*, £ SP(U, V)

where U = {u} and V = {ua | <r 6 5n}.
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