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PERMUTABLE WORD PRODUCTS IN GROUPS

P.S. KiMm AND A.H. RHEMTULLA

Dedicated to Professor B.H. Neumann
on his eightieth birthday

Let u(z1,...,Zn) = 11 ...%1m be a word in the alphabet z;,...,z, such that z;; #
zyi4r foralli=1,...,m —1. If (H,...,Hn) is an n-tuple of subgroups of a group G
then denote by u(Hy,..., Hn) theset {u(hy,...,hn) | ki € H;}. H 0 € S, then denote
by uo(Hi,...,Hn) the set u(I{,(l), ceey H,(,,)). We study groups G with the property
that for each n-tuple (Hy,..., Hy) of subgroups of G, there is some ¢ € S,, ¢ # 1 such
that u(Hy,...,Hn) = uo(Hy,...,Hn). I G is a finitely generated soluble group then G
has this property for some word u if and only if G is nilpotent-by-finite. In the paper we
also look at some specific words u and study the properties of the associated groups.

1. INTRODUCTION

Let n be a fixed positive integer, X = {z1,...,2,} a set of n symbols and F =
F(X) the free group on X. Let U = {u;,us,...} and V = {v,,vs,...} be non-empty
sets of elements in F. Define the class P(U,V) to consist of groups G such that given
an n-tuple (g1,...,9n) of elements in G, u(g1,...,9n) = v(g1,...,9n) for some u € U
and some v € V, v # u. Some examples:

1.1. Let U = {u} where u(zy,...,2,) = 2122...2, and V = {u, | ¢ € S,\1}
where S, is the symmetric group of degree n and

ua(:cl, ‘e ,zn) = u(:l:,(l), e awa(n)) = 2a(1)%o(2) ¢+ To(n)-

Then every group in P(U,V) is finite-by-abelian-by-finite. Conversely every finite-by-
abelian-by-finite group is in P(U,V) for some suitable n. This was shown by Curzio,
Longobardi, Maj and Robinson in [2]. These groups are more commonly referred to as
P, -groups.

1.2. Let v = u(zy,...,25) = 2123...25, U ={u, | 0 € S,} and V = U. Then
P(U,V)-groups, more commonly referred to as @Q,-groups or rewritable groups, are
again finite-by-abelian-by-finite groups as shown by Blyth in [1]. That an abelian-by
finite group is in @, for some n is inplicit in Theorem 1 of Kaplansky [4].
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1.3. If we take n = 2, u = u(z1,22) = (2122)", v = v(z1,22) = (x221)" where
r > 0 is fixed and U = {u}, V = {v} then G € P(U,V) if and only if G/Z(G) is of
exponent 7. This is not difficult to verify.

In general the classes P(U,V) may be viewed as generalising varieties and, except
for some specific sets U and V, it is very difficult to describe them. We now turn to
related classes of groups.

Let n > 0 be fixed, X = {21,...,z,} be a set of idempotent variables and
S = S5(X) the free semigroup generated by X. Thusforany v € S, u = u(zy,...,2,) =
Z11Ty2...T1m Where z1; € X and z1;# 23449 forall e =1,...,m - 1. I (Hy,...H,)
is an n-tuple of subgroups of a group G then denote by u(Hy,...,H,) the set
{u(hy,...,hn) | hi € H;}. Thusif u(=,...,z,) is as above then

u(I:[],...,Hn) = H11}112 IIlm

If U and V are sets of elements in § then defline the class SP(U,V) to consist of
groups G such that for any n-tuple (Hy,...,H,) of subgroups of G, u(Hy,...,H,) =
v(H1,...,H,) for some v € U and some v € V, v # u. Some examples:

1.4. Let U = {u} where u(zy,...,2,) = z123...2, and V = {u, | ¢ € S;\1}.
Asin 1.1, u,(2y,...,z5) = w(To(1)s.++sTo(n)). Finitely generated soluble SP(U,V)
groups are finite-by-abelian. Conversely every finite-by-abelian group is an SP(U,V)
group for some integer n. These results are contained in [6]. From [5] we know that pe-
riodic SP(U,V)-groups are locally finite. The structure of SP(U,V)-groups in general
seems difficult to determine.

1.5. For each positive integer = let u, = u.(z,y) = (zy)’, and v, = v.(z,y) =
(yz)". Let U = {u,, r=1,2,...} and V = {v,, r = 1,2,...}. Then the class SP(U,V)
is precisely the class of groups in which every subgroup is elliptically embedded. Groups
with this property are considered in |7, 8]. It is known that a finitely generated soluble
group G isin this class if and only if it is finile-by-nilpotent. The same is true if we
replace “soluble group” by “residually finite p-group” in the above statement.

In this paper we shall not look at P(U,V)-groups, but concentrate our attention
on SP(U,V)-groups. The itwo main resulls are as follows:

THEOREM 1. Let G be a finitely generated soluble group, U = {u} where
u = u(zy,...,T,) = (z1...2,) and V = {u, | ¢ € S,} where u,(z;,...,2,) =
u(a;,,(l),.. .,:c,,(n)). Then G is an SP(U,V) group for some n > 1, r > 0 if and only
if G is finite-by-nilpotent.

THEOREM 2. Let U = {u} where u is a word in idempotent variables z,,...,z,,
n> 1 andlet V = {u, | ¢ € S,}. If G is a finitely generated soluble group in
SP(U,V), then G is nilpotent-by-finite.

https://doi.org/10.1017/5S0004972700004354 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700004354

|4

(3] Permutable word products 245

We can not replace “nilpotent-by-finite” in Theorem 2 by the stronger condition
“finite-by-nilpotent” of Theorem 1. It is tedious, but we will show that the infinite
dihedral group Dy, lies in SP(U,V) where U = {u}, V = {u, | ¢ € S,} and
u = u(z;,22,23,%4) = T124%22322T32421 and it is well-known that D is not finite-
by-nilpotent.

At present little is known about the various classes SP(U,V) and P(U,V). The
following questions stand a good chance of getting answered, at least partially, in the

not too distant future!

QUESTION 1: Let U and V be finite sets of words in § = S(X) where X =
{z1,-..,zn} and let G be a finitely generated soluble group in the class SP(U,V). Is
G nilpotent-by-finite?

QUESTION 2: For which words v in § = §(X), X = {z1,...,2,} are the periodic
SP(U,V) groups locally finite; where U = {u} and V = {u,, o € §,}.

QUESTION 3: Let G be a finitely generated residually finite p-group, p a prime.
For which sets U,V of words in § = §(X), X = {2y,...,2,}; would G € SP(U,V)
imply G is nilpotent-by-finite?

Finally we ask if the classes SP(U, V) can contain finitely generated infinite simple
groups. |

2. PROOFS |

Since the hypothesis of Theorem 1 is a more restricted form of the hypothesis
of Theorem 2, it would be proper to prove Theorem 2 and then establish the extra
property required in Theorem 1. The reduction from soluble to nilpotent-by-finite will
be achieved using two intermediate sleps; these are dealt with in the following lemmas.

LEMMA 2.1. The wreath product of a cyclic group of order p with the infinite cyclic
group is not in the class SP(U, V) where U,V are as in the statement of Theorem 2.

LEMMA 2.2. Let G = (A,t) where A is a torsion-free abelian group of finite rank
on which (t) acts rationally irreducibly. If G € SP(U,V) where U,V are as in the
statement of Theorem 2, then for some positive integer k, (t*¥) acts trivially on A.

LEMMA 2.3. If G = (A,t), where A < G and is abelian of finite rank, and G €
SP(U,V) where U,V are as in the statement of Theorem 2, then for some £ > 0, (4, t¢)
has a non-trivial centre.

LEMMA 2.4. Let G = (A,t) where A is a torsion-free abelian group of finite rank
on which (t) acts rationally irreducibly. If G € SP(U,V) where U,V are as in the
statement of Theorem 1, then (t) acts trivially on A.
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PROOF OF THEOREM 2: By hypothesis, X = {z1,...,z,} v=u(X) =z11212...
T1m where z;; € X forall i =1,...,m and z,; # zy44y forall e = 1,...,m ~ 1.
Let G be a finitely generated soluble group such that for any n-tuple (Hi,..., H,) of
subgroups of G, there is a permutation o # 1 in S, such that

u(IIl, .o ,]In) = IIHII” oo IIlm = u(.H,(I), v ,II,(n)) = II‘,(H) e Ha(lm)-

We need to show that G is nilpotent-by-finite, and we proceed by induction on the
solubility length of G. If G is abelian then there is nothing to prove. Let G be soluble
of length d and assume that the result holds for soluble groups of simaller length. Since
the class SP(U,V) is subgroup and quotient closed, we may suppose that G has a
pnormal abelian subgroup A such that G/A is nilpotent-by-finite. In particular G is
abelian by polycyclic. If G dues not have finite rank then it has a section isomorphic
to the wreath product of a cyclic group of prime order p and the infinite cyclic group.
This is not possible by Lemma 2.1. Hence we conclude that G has finite rank.

As G is finitely generated abelian-by-polycyclic, it satisfies the maximal condition
for normal subgroups. If G is not nilpotent-by-finite, then let B be a maximal normal
subgroup of G such that G/B is not nilpotent-by-finite. Now we replace G by G/B
and hence assume that every proper quotient of G is nilpotent-by-finite.

Let T be the torsion subgroup of A. Then T has finite rank and is of bounded
exponent since G satisfies the maximal condition for normal subgroups. Thus T' is
finite, and C = Cg(T'"), the centraliser of T' in G, is of finite index in G. I{ T' # 1 then
G/T is nilpotent-by-finite and hence C/T is nilpotent-by-finite. Since T < Z(C), the
centre of C, then C and hence G would be nilpotent-by-finite. Thus we assume 1" =1
and hence A is torsion-free, and by passing to a suvitable subgroup of finite index in
G, il necessary, we may assutne further that G/A is a finitely generated torsion-free
nilpotent group. Thus there exists a finite set T = {¢,,...,%,} of elements in G such

that G = (4,T) and
A - Go S (Go,t1> = Gl S S (G,-_l,t,.) =Gr =G

is a central series from A to G with torsion-free factors.
If r =1 then G = (4,%1). By Lemma 2.3 Z((A,t:‘)) # 1 for some £; > 0 and

hence D = AN Z((A,t:‘)) is a non-trivial normal subgroup of G. By our choice of
G, G/D is nilpotent-by-finite and hence G is nilpotent-by-finite.

Now suppose we have established the result for the case r < d and suppose r = d.
Then Gg_; is nilpotent-by-finite and G = (G4_1,t4). Let H = (A,G5_,) for some
suitable £ > 0 so that H is nilpotent. Let ¥ = AN Z(H) then Y is normal in

(H,t4) which is of finite index in G. Moreover Z((Y, t;‘)) # 1 for some ¢; > 0 by
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Lemma 2.3, so that D; =Y N Z((Y,ti‘)) is a non-trivial subgroup of G contained
in the centre of (H,tﬁ‘) which is of finite index in G. We may replace (H, tﬁ‘) by its

normal interior in G, if necessary; it still contains 4 and hence D;. Now (H, tfi‘)/Dl
is nilpotent-by-finite, D; < Z((H, ti‘)) and (H, tf{‘) is of finite index in G. Thus G is

nilpotent-by-finite, as required. 0

PROOF OF THEOREM 1: Since the hypotheses of Theorem 2 are satislied by the
group of Theorem 1, we may assume G to be finitely generated nilpotent-by-finite.
Let T be the maximal finite normal subgroup of G. Since we wish to show that G is
finite-by-nilpotent we may look at G /T, if necessary, and hence assume that G has no
non-trivial finite normal subgroup. Let I be the Fitting subgroup of G. If F #£ G
then pick any t € G\F such that t{? € F. Clearly it is sufficient to show that (F,f) is
nilpotent for G/ F is finite and soluble, we can reach G from F by a subnormal series
with factors of prime order. Thus we assume G = (F,t), t? € F and F is torsion-free.

Let H be the hypercentre of G. Then HN F is isolated in F. This may be seen by
first checking it for Z(G) N F and then by taking the quotient of G by this subgroup,
and using induction. Observe that if H £ F then G = HF and G is nilpotent.
So assume H  F. Next we look at G/H. If G/H is nilpotent then so is G. So we
assume I = 1. Let A be a non-trivial normal subgroup of G of least Hirsch length
and A € Z(F). Since (4,t) € SP(U,V), (t) acts trivially on A by Lemma 2.4. Thus
A £ Z(G) contradicting the assumption that Z(G) = 1. This concludes the proof that
if G € SP(U,V) then G is finite-by-nilpotent.

Now suppose that G is a finitely generated finite-by-nilpotent group. For any
subgroup L of G let y(L) denote the nilpotent residual of L. Thus y(L) is the in-
tersection of the terms of the lower central series of L. Let F' = 4(G). It is finite by
hypothesis and G/F is nilpotent of class ¢; for some ¢; > 0. Thus y(L) = v.(L)
for all L € G where ¢ = |F| + ¢;. We show, by induction on |y(H, K)| = s, that
(HK)* = (KH)* = (H,K) for all subgroups H, K of G where d; = (4r)°, » = rank
of G; di = di_; + 2i(i + dy), ¢ > 1. In particular (HK)d = (KH)* = (H,K) for all
H,K where d = dg, and f = |F|.

By Proposition 2 of [7], I(HK)' = T(KH)' = (K,H) where I = y(K,H), t =
(4r)°, and = is the rank of G. Thus if I' = 1 then d; =t will suffice.

For any a € (HK)‘, a = gb for some g € T' and b € (KH)‘ so that ab~! =
geTN(HK)". U I N(KH)* =1, then a = b and (HK)' = (KH)'. This implies
(H,K) = (HK), and again d; =t suffices.

I, =In (HK)“ # 1, then for each integer m > 1 let T'pmyy = ', UTHK o
that T\, C (HK)?**?™. Observe that I'y, = I'ynyy implies (Ty) = (I'H) = (TX). Since

m

lm €T and |I'} =3, T, =T,4,. Also note that (I'y,) € I'2.. Thus the normal closure
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N of Ty in (I, K) lies in (HK)* where A = X, = 2(s® + ts).

Now NH and NK both lie in (HK)* and (NHNK)™ C (HK)**™ for all
m > 0. Rank of (H,K)/N is no greater than r,y((H,K)/N) = ~.((H,K)/N)
and |y((H,K)/N)| < |y({H,K))|. Thus by the induction hypothesis, N(HK)dl =
NUKCH) = (H,K) where d' = t + Xy + -+ Ap_y = dy_;. Since (HK)* > N, we
obtain (HK)* = (KH)" = (H,K) where d, = d,_y + A,.

Now that we have shown that for a finitely generated finite-by-nilpotent group G
there is an integer d such that (HK)d =(KH )d for all subgroups H,K of G, we let
u = u(z,y) = (zy)?, v = v(z,y) = (yz)* then G € SP(u,v). This completes the proof
of the second part of the theorem. 0

PROOF OF LEMMA 2.1: Let G be the wreath product of a cyclic group of order
p and an infinite cyclic group (t). Then we can identify each element of G by a pair
(f(2), t*) where f(t) € Fp(t), the additive group of the group ring of the infinite cyclic
group (t) over the field F, of p elements, and a € Z. The product of two such elements
is then given by the rule: (f(t), t“)(g(t),tﬁ) = (f(t) +t* . g(t), t"‘+ﬁ). The elements
of the base group correspond to those pairs where a = 0 and the elements of the top

group correspond to those pairs where f(t) = 0.

We are given X = {z1,...,2,}, v = u(X) = 1212+ . Ty} ©1s € X, =z #
Z1i41,t = 1,...,m — 1 and we are required to show that there exist subgroups
H,y,...,lI, of G such that HyyHyz...Hym # Hy11)Hy12)--- Hy(aim) for any ¢ £ 1
in S,.

Take H; = (h;) where h; = ((1 —t%)f;,t%); f; = fi(t) and a; are to be cho-
sen appropriately. Note that h* = (- t’“"")f.-, t"""), and a general element of
w(Ha,...,Hy)is B . BEm <

1m

((1 _ t’"a”)fn,tk‘a“) L ((1 _ tkmalm).flm) tkmalm)
(L= threan) fig 4 2 (L= th2%02) fry oo g ot (1= ghmeim) £y gAm)

~where A\; = kyayy +---+kjoqg, ©=1,...,m. Partition the set {1,...,m} as the union
S1U- - US where S; = {j | z;j = i}. Then a general element of u(Hi,...,H,) is of the

form (L (f, Z (tAJ -t tA!) t""‘) with the understanding that Ay = 0. Likewise
=1 JES;

w(Hy(1ys-- - II,,(,,)) consists of elementsof the form (Z Foti) Z (tri-t—¢#i ), t“"‘)
i=1 JES;
where p; = biogr)+- - +liagiy, 1 =1,...,m and po = 0. If ¢ denotes the inverse
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n

of ¢, then we may write these elements as (Z (f: Z (t#i-r - t“i)), t“m).
i=1 JGS,(‘)

n

Now (D (fi D (N1 —e4)),8) = (Y (i D (141 —t#9)), t7)

=1 JES; i=1 J'GS,(,')

implies A, = u,, and

(1) Z f'-(Z(tAj—l —tN)) = Zf'( Z (t#i-1 — ¢#7)).
=1 jES; =1 jES,)

Let pi,...,pn be distinct primes, each greater than m. Put p=p1...ps, ki =1 and
a; =p/pi,t =1,...,n. Then for each 7 > 0, A; = oy + -+ + ay;. Let f; = t*". Note
that A; < p for all j and they are all distinci. Also note that fithi = fut"s' implies
P4 = p" +pjr. Hence pjy = Aj mod p so that pjr # A mod p for any ¢ # j. Thus
each }A; is congruent modulo p to precisely one p;r.

Now 1 € Sg(x) for some k. Thus fi(t#° —t#t) is a term on the right hand side of
(1). Since py = 0 and the only A; equal to zerois Ag, fi (t"° - t)‘l) appears on the left
hand side of (1). In particular 1 € Sg. Since Sj,...,Sn partition the set {1,...,m}
and 1 € Sk N Sy(x), it follows that o(k) = k. Hence p; and A; are both congruent to
zero mod p/pi; it follows that uy = A,.

Suppose, by way of induction, that we have established that p; = A; for all j <e.
Then po—pre—1 = £eay() whichis congruent to zero mod all primes p; except possibly
one namely. pg(ie). Now we look at {A; — A1, j=¢,...,m}. Ae = Aec1 = g is
congruent to zero mod all primes p;, p; # p1.. For each of the other A; — A._1, we can
find at least two primes amongst {p;,...,p.} such that A; — A._; is not congruent to
zero mod either of them. Hence 0 # a;e = Leay(i) mod pie. But aye) # @1e implies
ag(1e) =0 mod pie. Thus ay(ye) = a1e, and 2y = z4(1) = T/, say. Thus o (k') = &'
and e € Syr. Thus fy (t“=-1 - t“') = frr (t’\=-l - t"‘) and A, = p..

It is now clear that ¢(j) = j for all j = 1,...,n and hence ¢ is the identity
permutation of the set {1,...,n} as required. a0

ProOF oF LEMMA 2.2: We are given a group G = (A4,t) where A is torsion-
free abelian of finite rank on which (t) acts rationally irreducibly. Let us assume,
if possible, that [A,t] # 1. Then V = A ®z Q is an irreducible Q(t)- module and by
Schur’s Lemma, the centraliser ring I' = Endg,)V is a division ring of finite dimension
over Q. The image of (t) in EndgV clearly lies in and spans I' so that T' is an algebraic
number field. Moreover, regarded as a I'-space, V is one-dimensional. Thus we may
consider A to be an additive subgroup of Q(7) for some algebraic number 7 and the

action of conjugation by t as multiplication by .
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Let h; = bi(1 — 7%)t*¢ for suitable integer a,; and b;(1 — 7%¢) € A. Let H; = (h;).
Note that hf = b,-(l — ‘rk""')t"“".

As in Lemma 2.1, we are given v = u(zy,...,25) = Z11%12...T1m; 2T1i €
{z1,-. 2o}, 21i # T1i41, ¢ = 1,...,m —1; and we need to show that with proper
choice of b; and «;, subgroups Hy,...,H, can be found such that Hy,...H;,, #
Hy11y-- - Hy(am) for any ¢ # 1 in S,. Now

hf} . .hfm = bu (1 _ Tklau)thau . blm(l _ Tkmalm)tkmalm
= bll(l — Txl) -+ blz(TAl —_ TA’) 4+ .. 4 blm(TAm_l _ TAm)tAm

where Ai=kay +- -+ kay;, i=1,...,m.

We shall put Ay = 0 and write 1 = 7° = 70,

Thus a general element of u(Hy,...,H,) has the form

S (bi Z (T)‘J'-‘ — T)‘j))tAm
JES;

=1

where S; = {j; ¢1; = =i} so that {1,...,m} is the disjoint union of Sy,...,S,.

Likewise the general element of u(II¢(1) e H¢(n)) has the form

n

Z(bi Z (T“J'-l —T“i))t“"'

i=1 J€Sa(iy

where i = biogy+ - +Licgiiy, t=1,...,m;pup =0 and o = ¢~1. This is shown

in the same way as in the proof of Lemma 2.1. In particular g,, = A,,, and

n

@) Su(X (=) - Y (e ) =0,

i=1 JES; J€S,(i)

Now we return to pick b; and a; appropriately. For each integer » > 1, pick
primes py,...,Prn to salisfy 27 < p,y and p%; < prit1, 1 =1,...,n—1. Put ¢, =
Pr1 - Prny  briy) = y* and ap = ¢/pri, i = 1,...,n. To make the notation
simpler, we shall write b; for b,; and a; for a,;, where there is no ambiguity. Since
there are infinitely many choices of ¢, and each choice of ¢, determines the sequence
H,,...,H, of subgroups which in turn corresponds to some permutation ¢ # 1 such
that w(H,...,Hn) = w(Hg1),- -1 Hyn)), there is an infinite number of choices of =
such that g, correspond to the same permutation ¢.

https://doi.org/10.1017/5S0004972700004354 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700004354

19] Permutable word products 251

If, for some value of r, we have the following stronger version of (2):

Y bi(y)Liy) - }:b(yM(y)—O
where =1
Li(y) = Y Y- —yY), My)= ) (y"-1 —y*)
JES; J'Esa(,-)
and y is an indeterminant; then px; = A; for all j and ¢ = 1. This is seen using

arguments similar to those in the proof of Lemma 2.1. Thus we may suppose that for

every r,
n

= Z bi(y)Li(y) — Z bi(y)Mi(y)
i=1 i=1

is not zero but P(7) = 0. If @(y) is any nou-trivial segment of P(y) such that Q(r) =0,
then Q'(y) = P(y) — Q(y) is a segment of P(y) with @'(r) = 0. Moreover one or both

of Q(y) or Q'(y) contains at least as many monomials from Y b;(y)L;(y) as from

=1
En: b;(y)Mi(y). Let Q(y) be such a segment of P(y) of shortest length. Thus
=1
L Q(y) #0
II. Q(r) =0

III. Q(y) contains al least as many monomials from Y b;(y)L:(y) as from Y b;(y)Mi(y)
=1 =1

and

IV. No proper segment has properties I and II.
We write Q(y) = Q1(y)—Q2(y) where @:(y) is a segment z 4y of Z bi(y)Li(y),

i=1

Q:2(y) a segment Z :ty“- of Z bi(y)M;(y) and we may suppose that there is no term

in Q(y) equal to any term in Qz(y). If @;(y) has ouly one term in it, then Q(y) =
or £y* + y* where 0 # X and g # A. In both cases Q(7) = 0 implies T is a root of
unity and [t¥, A] =1 for some k > 0, as required.

u
We may therefore assume that Q,(y) = Y 4+y* has more than one term; Al =

i=1
q + 2, and 0 < A} < --- < AL, Similarly Q2(y) = 3 +y* where p! < ... <y Let
=1

vi = min{A}, 1} and v, = max{A\,,u,}.

Then y~* - Q(y) is a polynomial of degree v; — v; with non-zero constant term.
Moreover v, — vy 2> AL, — A} > 27. Thus the degree of the polynomial increases with r,
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and hence there are infinitely many expressions

utv
) .
1= e

i=1

where v; > 0, ¢; € {—1,0,1} and no subsum of the right hand side of the equation is
zero. But this is not possible by Theoreimn 1 of [8] which we state below for convenience.

T'his completes the proof. 0

TueoREM. (Van Der Poorten) Let K be a field of characteristic zero and II a
finitely generated subgroup of the multiplicative group of K. Then for each integer
m > 0 there are only finitely many relations u; + --- + ¥y, = 1 with each v, € H and

no subsum of the left hand side is zero.

A result very similar to the above was proved by Evertse in [3]. One can avoid
using the above deep result and use Lemma 1 and 2 of {7] and modify the argument

slightly to get the required contradiction.

PPrOOF OF LEMMA 2.3: If the torsion subgroup of A is non-trivial then it has a
non-trivial normal subgroup A; of exponent p for some prime p. This is finite since A4
has finite rank, hence it is centralised by t¢ for some £ > 0 and A, lies in the centre of
(A,t%). We may thus assume that A is torsion-free. Let D be a non-trivial subgroup
of A of least rank subject to D 9 G. Lemma 2.2 applies to (D,t) and we conclude
that (D,t*) is abelian for some k > 0. Ilence D lies in the centre of (4,t*). 1]

PROOF OF LEMMA 2.4: As the hypothesis of Theorem 1 is stronger than that of
Theorem 2, Lernma 2.2 and its proof applies. We follow the proof of Lemma 2.2 and
reach the situation where we may assume A to be an additive subgroup of Q(7) for
some algebraic number 7 and the action of ¢ under conjugation is that of multiplication
by 7. Furthermore we may assume 7 to be a primitive kth root of unity and we need
to show that r = 1.

Let h; = (ki(1 —T),t_l), and IT; = (h;). Observe that h} = (k*(1 —'r'\),t"’\)
and hf = t7*. Let X = (II,...H,)" and suppose that for some ¢ # 1 in Sp, X =
(Hgry - .Hd,(,,))r. If ¢(1) # 1, then (H;, Hyy)) € X. But this is not possible since
X is the union of a finite number of cosets of (t¥) whereas (H;, Hy(;)) contains the
subgroup generated by (k%) — k)(1-7), an infinite cyclic subgroup of Q(r), not
contained in any finite union of cosets of (¢*). Hence ¢(1) =1 and similarly ¢(n) = n.

For any permutation 7 in Sy, a typical element = of Hy(;)... Hy(n) has the form

T = h:él) ... h;\rz‘n)

- (k"(l)(l — ) AT (1 = )P L kT (2 pAe) At A t—u)
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where g = A1 + .-+ + An and ); are arbitrary integers. In turn these elements may be

written as
(k’r(l)(l -7y 4 k"(z)(ra‘ -T2 )+ 4 k"(")(r°'"-1 —7%"), t_a")
where «; are arbitrary integers. In particular t~*°z has the form (h,t=*") where

ho= k"M (r% _ 7o) 4 2o _ 722) 4o 4 fT()(7@no1 _ pon)
= (k"M70 4 por (k™) _ (D) 4 ... g pon-r(f(R) _ pr(n=1)y _ penpr(n)

Thus, if ap is a given fixed integer, the real part of h is maximised by choosing
a; = 0(mod k) if x(i + 1) > 7(i), a; = g(mod k) where ¢ = [k/2] if #(i + 1) < w(3);
i=1,...n—1 and a, = q(mod k). If 7 is the identity permutation then this value is
kcos(2may)/(k) + (k™ — k) — k™ cos (2mq)/ k.

On the other hand if 7w # 1 and n(1) = 1, w(n) = n, then the maximum real part
of the value of h is

2rag n n 2mq i i 2mq
kcos 5 + (k™ —k)—k cos —= + Z (k’f( ) _ k (:+1))(1 — cos_k_)
where the sum is over all values of ¢ such that m(z) > #(i +1). This value is clearly
greater than the value obtained for the identity permutation .

Now the general element of (H,,(l) ... H,,(,,))r is (h,t~%) where h is expressible in

the form

i‘ B poio 4 pein (k7(@) _ gRD) 4Ly p@ine (k7(0) _ gr(n=1)) _ pein ()

=1

where a9 = 0, a;, = aiy10, ¢t = 1,...,7 — 1, a,, = a. By picking the values for
a;; to maximise the real part of h as above, it is clear that the value achieved when
m # 1 is greater than for # = 1. Thus (Hd:(l) .. .H¢(n))r, $(1)=1,¢(n)=n, ¢ #1,

contains elements not contained in (H; ... H,) . This completes the proof. 0
3. EXAMPLE
Let U = {u} where v = u(z;,...,24) = z12422232223242; and V = {u, |

o € S4}. Then the infinite dihedral group G is in SP(U,V).

Consider u(H,, H,, 13, 11,) for given subgroups Hy, Hy, H3, Hy of G. If H, or H,
is normal in G then w(H,,H,,Hs,Hy) = w(H,4,Hy,H3, H,). f H; or H; is normal in
G then u(H,,Hs, H3, Hy) = uw(H,, Hs, H2, Hs). So assume none of the H;’s is normal
in G. If for some ¢, H; is not of order two, then it contains a subgroup K; normal
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in G and of index two in H;. Moreover u(H,,(l).. .Ha(4)) = K‘-u(II(,(l) .. .Ha(.;)) for
all o € S,,, and we may replace G by G/K; and each of H; by H;K;/K;. Thus the
essential case to be considered is one where each H; is of order two.

Now G = (a,t) where a* = a~! and t? = 1. H; = (a*it), i = 1,2,3,4. We will
show that the set L = HyH,HyH,H3H, equals the set R = HyHsHoHsHoHy. From
this it follows that w(Hy, Hy, 3, H,) = I, LI, = HRH, = u(H,, Hs, H,, H).

Now a* € HyH3H,H; if and only if X = 0, A2 — Az, A3 — Az or
2)2 — 2)3. @™ € HyH3HyHj if and only if A = Az2,A3,20z — A3 or 2)3 — A, Hence
HyH3HyH\H3 HyH3 Hy consists of a**2~2%s only and HsH,HsH,\H,Hs H,Hy con-
sists of a2*3~2*2 only. But H, a?*2=2% H, consists of a* where
A€ {2X2-2);3, 2X3—2);} and at where A € {A4—=2X242)3, A4+2)2—2)3}. From the
symmetry between Az and )3 above itis clear that H, a?*2~2%H, = H, a?*3-222 JJ,,
Thus the sets L and R are equal and G € SP(U,V).

We have not tried to analyse conditions on words u for which Do, ¢ SP(U,V)
where U = {u} and V = {u, | o0 € Sp}.
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