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1. Introduction. There exist several different approaches to the problem of solving dual
integral equations involving Bessel Functions [1, 2,3,4, 5, 6,7], and Erdelyi and Sneddon in a
recent paper [8] have shown that the introduction of certain operators occurring in the theory
of fractional integration enables the relationships between the various methods to be clearly
demonstrated. For dual integral equations other than those involving Bessel Functions the
operators introduced by Erddlyi and Sneddon are not always the appropriate ones to use and
it seems to be of interest to consider this more general type of situation.

The crucial factor in the problem of solving dual series and dual integral equations seems to
be the fact that they can be reduced to the solution of an integral equation which can itself then
be reduced to the successive solution of two simpler integral equations. This approach seems
to have been first used by Copson [9] in obtaining the solution of the electrostatic problem for
the circular disk. The crucial factor is thus the existence of a linear operator which can be
factorised into the product of two simpler ones. The fractional integral operators introduced
by Erdelyi and Sneddon are particular examples of these simpler operators and it is of interest
to note that these fractional integral operators can also be applied to the solution of dual series
equations involving Jacobi Polynomials. Particular examples of this type of dual series
equations have been considered by Tranter [10] and Collins [11].

It has been shown [12,13] that all Wiener-Hopf problems can essentially be reduced to the
successive solution of two simpler integral equations but there exist certain operators which
possess the above factorisation property but which do not seem to be connected with Wiener-
Hopf theory. One example of an operator of this type occurs in diffraction theory [14], where
the necessary factorisation is derived from Sonine's finite integral formula.

In the present paper the consequences of the factorisation of operators connected with
dual series and integral equations into the product of simpler operators is examined from a
purely formal point of view. The advantage of a purely formal attack is that methods of
solution using particular integral representations and so on for the solution arise naturally
from the formalism and require no prior knowledge of results from special function theory.

The formal approach is applied to the two particular examples of dual series equations
involving trigonometric functions and of dual integral equations of the type occurring in
diffraction theory. From the latter equations it has been found possible to deduce, in a logical
fashion, the appropriate integral representation for disk diffraction problems.

2. General Theory. Dual series and dual integral equations may be written in a symbolic
fashion as

cl>1(x) (a<*</3) , (1)

<l>2{x) (fi<x<y). (2)
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Lj (i = 1, 2) denote linear operators which, in the case of dual integral equations, are defined by
relationships of the form

X (3)

where the kernels Kt are known. For dual series equations the integral over X in equation (3)
has to be replaced by a sum over a discrete variable nn. The operators Lt are such that either
one or both have unique inverses if Lt(x, X)A(X) is given for a < x < y, and the solution of

(<x<x<y) (4)

will be written symbolically as

We make the further assumption that

L,(x, X)L~2
1{X, t)g (0 = Mt(x, u)M2(u, v, y)g(t>) (a < x < y), (5)

where

M,(x, u)f(u) =(Nl(x, «)/(«) du, (6)

(u) = P NM2(x, u, S)f(u) = PN2(X, u)f(u) du ( a < ^ y ) (7)

and Nlt N2 are known functions.
The form of equation (5) appears to be somewhat specialised but all the known types of

dual integral and series equations are such that they yield an identity of this type and it is the
existence of this factorisation of the operator LJJlx which forms the basis of all methods of
solving equations (1) and (2). The existence of this type of factorisation in a particular
example is not generally obvious, but all dual integral equations which can be reduced to a
Wiener-Hopf integral equation are such that such a factorisation exists (cf. [12,13]). There
exist, however, certain integral operators involving Bessel functions for which the above type
of factorisation exists [14,15] but its existence seems to be in no way connected with Wiener-
Hopf theory.

It will also be assumed that the equations

Mi (x,«)/, (M) = gi(x) (a < x < 5),

M2(x,u,S)f2(u)=g2(x) (a<x<<5)

possess unique explicit solutions which will be denoted symbolically by

fl(u) = M;1(u,x)g1(x) (a<x<d),

/.(«) = M2~ \u,x, S)g2{x) (a < x < 5).
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Replacingg(t) in equation (5) by L2(t, X)h(X) and multiplying both sides of the resulting
equation by the operator Mf1, we obtain

Mfl («, x)Lt (x, X)h (A) = M2 («, v, y)L2 (», X)h (X) (a < u < y). (8)

Replacing g in equation (5) by M2
 1f and multiplying both sides of the resulting equation by

Z-i"1, we obtain
U[\X, x)Af !(*, «)/(«) = I72\X, x)M2\x, u, y)f(u). (9)

We now examine the three different methods of approach which have been used to solve
equations (1) and (2). The first method is that of reducing the dual integral equations to the
successive solution of two simple integral equations. This approach was first used by Copson
[9] in considering the electrostatic problem for the circular disk.

A function h(x) is defined in a < x < /? by the equation

L2(x, X)A(X) = h(x) (a <*</?) (10)
and hence

<t>i(x) (<x<x<P), (11)

where g = h, a. < x < /?, g = (j>2, /? < x <y. It now follows from equations (5) and (11) that

Mx(x, u)M2(u, v, fih(v) = </.1(x)-M1(x, u)fV2(«, v)4>2{v) dv (a < x < /S). (12)
Jv

Two successive inversions of equation (12) give h(x) for a < x < /?; hence L2(x, X)A(X) is
known for a < x < y and hence A (A) may be found by a further inversion. The approach
seems somewhat cumbersome and is not the best method of finding A; in physical problems,
however, the quantity h is generally more useful than A and the third inversion to find A can
generally be avoided.

The second method of solution is the " multiplying-factor " method which seems to have
been first introduced by Noble [12] in connection with certain Wiener-Hopf problems. The
basis of this approach is to find two operators M*, M* such that the products M*Llt M*L2 are
both equal to the same linear operator L3. It follows immediately from equation (8) that
M\ = Mi\Ml = M2{x, u, y) and hence that

M2(x, t, y)L2(t, X)A(X) = J M i ^ WM <a<X< »• (13)
(M2(x, t, y)<f>2(t) (P<x< y).

The determination of A(X) from equation (13) would appear to be just as laborious as the first
integral equation method but in most examples the product M2L2 (i.e. L3) can be transformed
into a simple operator whose inverse can be obtained explicitly. Thus, in general, only two
explicit inversions are necessary to give A (X).

The third approach is that of assuming an integral representation of some unknown
quantity; there are two slightly different variations of this approach. The first method is that
adopted by Tranter [16] who uses an integral representation for the function h{x) defined in
equation (10). The second method is that adopted by Gordon [3], Sneddon [5] and Copson
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[4], who assume an integral representation for A (X). Both approaches involve an unknown
function which can be shown to satisfy a simple integral equation.

It follows immediately from equation (12) that the appropriate representation for h(x) is
M2l(x, t, P)g(t) and g(t) will be determined by

M,(x, 03(0 = * i (*) - \'N2(X, t#2(i>) dv (a < x < P). (14)-J,
From equation (9) it follows that the appropriate representation for A(X) is given by

A(X) = L[\k, x)Ml{x, u)j{u) = L-2\X, x)MJ \x , u, ?)/(«) (15)

and hence, from equations (1) and (2),

M,{x, «)/*«) = tfi(x) (<x<x</Q,

f(u) = M2 («, x, y)4>2 (JC) OS < u < y).

In certain cases involving dual series equations the derivation of equation (14) by using
an appropriate integral representation can be very involved and require a considerable amount
of manipulation involving special functions. This type of situation occurs in trigonometrical
dual series considered by Tranter [10]. The operators Mlt M2 and hence equation (12) can
be derived in a very elementary fashion, but an approach based on an integral representation
method yields some complicated analysis involving the summation of a series of products of
Jacobi Polynomials. For dual integral equations, however, the integral representation
approach seems to be more direct [4, 5].

The above analysis is purely formal and in particular cases one would have to verify the
validity of all the operations. In certain cases the integral (or series) defining LtL2

 l may not
exist, but in cases where this occurs it has been found that L2L1x exists and obvious modifica-
tions of the above analysis indicate the steps to be taken.

3. Applications. We shall consider briefly two applications of the above formal analysis.
The first problem considered is one first solved by Tranter [10] and is the determination of the
solution of

n = l
(0 < x < c), (16)

n = l
An sin nx = 0 (c < x < n). (17)

In the notation of the previous section the left hand side of equation (17) is defined to be
equal to h(x) (0 < x < c) and hence

r
Jo

dt = nf(x) (0<x<c) . (18)
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Elementary integration gives

x + y
log

x-y

and hence, from equations (17), (18),

puin (x, y) j fo
= 2Jo Oc'-lW-l')*'

. fx tan+fS(0^' , /•/ ^ m \ n m

cos ix T w = i;r/(x) (0 < x < c), (20)
J o (cos f—cos x)*where

, (cos f-cosx)*

Equations (20) and (21) are equivalent to equation (5), the operator Mt being defined in
equation (20) and M2 in equation (21). Inversion of equation (21) gives

/i(x) cos ix = - - — —K-L - , (22)
7idxJx(c

sin t dt
(cos x — cos /)*'

thus defining M2
 J (x, t, c). Equation (22) is essentially the starting point of Tranter's solution

and equation (20) is deduced from it after considerable manipulation.
As a second example we shall consider dual integral equations of a type which occurs in

diffraction theory. The equations to be solved are:

j;
r
Jo

A(X)J0(Xx) dX = 4>(x) (0 < x < 1),

2 f X = O (x > 1).

In the notation of §2 we have that

L.LVf = f" Jo(^) f" n / , 2 / o W / ( 0 dt dX, (23)

Jk J o l / " ^ , )

and it has been shown [14] that the right hand side of equation (23) may be factorised to give

. . _ , , 2 fxcos/c(x2-t2)* C* cos kiw2-?)* „ w ,t nA.
^iWf=^ / 2 2^ ~ r r— j z r - v fM d*> dt, (24)

n Jo (x2-*2)* J, (w2-t2)*
which is of the same form as equation (5). We shall now show that the formal analysis of §2
enables an appropriate integral representation for A to be deduced in a logical fashion.The solution of

f(u)du =i («2-x2)*
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is known to be [17]

coshk(u 2 -x 2 )*
( a 2 - * 2 ) * U9{u)du-

Thus, in the notation of the previous section, the operator M^ix, u, 1) is defined by the right
hand side of equation (25). It thus follows from equations (15) and (25) that a suitable choice
for A (X) is given by

where g(«) = 0 (u > 1). Integration by parts in (26) and slight manipulation shows that

For k = 0 the representation of equation (27) reduces to that used by Sneddon [5], and
starting from equation (25) one can obtain an elementary solution of the above equations in
exactly the same manner as Sneddon [5] obtained such a solution for the case k = 0.

In diffraction problems the dual integral equations arise from imposing certain boundary
conditions at z = 0 on the function

V =T e-\-^xl-kl)t'1A(X)JnaP)dX.= f
J

If the above form for A (A) is now substituted in the expression for V, it follows after slight
manipulation that

f Xexp ,-fc{(z-H02 + p2}* exp ik{(z - it)2 + p

J 9 U L {( + -02 + 2}* { ( » ) 2
p 2 } * !

* J '
The above form of V is essentially the starting point of the work of Bazer and Brown, and
Collins, in treating various diffraction problems.

From Sonine's second finite integral formula and the Hankel inversion theorem, a
generalisation of the factorisation of equation (24) may be obtained [15]. From this general
factorisation, dual integral equations of the above type with Bessel functions of non-zero order
may be solved [15]. Equations of this type also appear to have been considered independently
by Peters in some unpublished work (cf. [8,18]).
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