
ISOMORPHISMS ON COUNTABLE VECTOR SPACES

WITH RECURSIVE OPERATIONS

ROBERT I. SOARE

(Received 26 April 1972; revised 19 July 1972)

Communicated by J. N. Crossley

Terminology and notation may be found in Dekker [1] and [2]. Briefly,
we fix a recursively enumerable (r.e.) field F with recursive structure, and let
U be the vector space over F consisting of ultimately vanishing countable
sequences of elements of F with the usual definitions of vector addition and
multiplication by a scalar. A subspace V of U is called an a-space if V has a
basis B which is contained in some r.e. linearly independent set S.

DEFINITION. For subspaces V, W c fj, we write
(i) V n W if there is a 1:1 partial recursive function \j/ such that domain

ijj (denoted by dom \ji) and range \j/ (ran \ji) are subspaces of U, and i]/ is a (vector
space) isomorphism from dom \j/ to ran \j/ mapping V onto W.

(ii) V = W if V ca W via some \ji such that dom >]/ = ran i]/ = 0.
J. N. Crossley and A. G. Hamilton have asked whether the Karp-Myhill

theorem [3, p. 200] can be extended to vector spaces, namely, whether:

(1) Vl ® V2 = U = Wi ® W2, and

(2) V1^W1&V2^W2imply

(3) V, s W,.

We settle the question by proving:

THEOREM 1. (1) and (2) do not imply (3) even if both V\ and V2 are
oc-spaces, and even via the same r.e. linearly independent set S (that is S contains
bases for both Vl and V2).

The author is grateful to J. N. Crossley and A. G. Hamilton for suggesting the question
answered here, and to A. G. Hamilton for information and corrections, particularly for pointing
out that his proofs admit the last clause in Theorem 1, and require the last clause in Theorem 2.
The author is also grateful to A. B. Manaster for an improvement of his proof of Osofsky's
theorem. The research was supported by National Science Foundation Grants.
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THEOREM 2. (1) and (2) do imply (3) if V\ and V2 are a-spaces via the

same r.e. linearly independent set S, and if there exist functions \j/h for i e {1,2},
witnessing V, m W, which satisfy ijjt(S nVj) ^Wj for all i , j e{ l ,2} .

Theorem 2 follows by an extension of the standard Karp-Myhill technique.
Theorem 1 is proved by a priority argument like that which the author used in
[6, Theorem 1] to prove the failure of the Karp-Myhill analogue for partial
recursive order preserving maps on Dedekind cuts. Theorem 2 above and
Theorem 1 of [6] together suggest that while the original Karp-Myhill theorem
holds for unstructured sets, it rarely holds when the maps are required to preserve
even weak structure.

Let {4>e}eeN t>e a n acceptable numbering of all partial recursive functions
as in Rogers [5, p. 41], and let 4>s

e(x) denote the result (if any) after performing
s steps in the computation of </>e(x). Let u, v, w, x, y, z (possibly with subscripts)
denote vectors in U; a, b, c denote scalars in F; and e, i, j , k, m, n, p, q, s,
and t denote members of JV, the set of all natural numbers. Given vectors
xu x2, ••• e U, let L(x1( x2, •••) denote the subspace spanned by them, and let
Vx ® V2 = U denote the usual vector space decomposition.

1. Concerning Theorem 1

The diagonalization device to be used in the proof of Theorem 1 suggests
the following very short proof of a result of Osofsky [1, p. 385], which has been
generalized [4, p. 93].

THEOREM (Osofsky). There is a subspace V £ U which is not an tx-space.

PROOF. Let {An}neN be a (noneffective) enumeration of all infinite r.e.
linearly independent sets s [7. S° = 0 . Given S", let xn and yn be the first two
elements of An such that

L(xn,yn)nL(S") = (0),

the zero vector. Let Sn + 1 = S"u{xn, yn}. Let V= L{{xn + yn}n,N). Clearly, V
is not an a-space since if B c An is a basis for V, then xn+yneV implies
xn, yneB, but xn, yn$V.

THEOREM 1. There exists an r.e. linearly independent set S and a-spaces
^ i . V2> wu and ^ 2 - U which satisfy (1) and (2), but not (3), and such that
S contains bases for both V\ and V2.

PROOF OF THEOREM 1. We must construct partial recursive functions i/' and
9, and a-spaces Vu V2, W\, W2 such that F , ^ Wt via \j/ and V2 ^ W2 via
6, but V x % Wx via any 4>e- Let {wn}nsN be a recursive basis for U. Define
S = {">n}neN- Let xn = w2n, yn = w2n+l, for all n e N .
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For F ( we shall define below a basis A which contains exactly one of xn, yn

for each neN. We then let B = S - A be a basis for V2. Clearly Vx = L(4)
and F 2 = L(B) are oc-spaces via S, and F t © V2 = U.

We let 0 be the identity map, and W2 = L(B). We shall define \p(xn) = xn,
for all neN, and in addition if yne A, then ij/(yn) is defined and in L(xn, yn) but
not in L(xn). Note that \j/(yn) $ L(xn) insures that \// (canonically extended to
L(dom \j/)) is an isomorphism, and that W\ © W2 = 0.

We shall define A and î  by a sequence of stages during which we may remove
from A some xa, replace it by yn, and define \//(yn). Let As and \j/s denote the
approximations to A and \j/ at the end of stage s. Once added to A, yn is never
removed, so A = lims As is well-defined. Define W\ = L("^s(^0)-

To insure that V v% W x via <j>e we shall select at each stage 5 a certain index
y(s,e) and attempt to arrange that if <t>'e(yy^e)) is defined then either:

(4) yiM £AS& 4>s
e(yy(s,e)) e W\; or

(5) > W ) e

in which case we say that the eth requirement (denoted by Re) is satisfied at stage s.
Once requirement Re is satisfied at some stage s +1 we must attempt to

preserve the second clause of (4) or (5) by preventing W\+' from later changing
with respect to members relevant to <ps

e
+1 (yV(S,e)). We cannot accomplish this

absolutely, but it will suffice to prevent any requirements Rt of lower priority
namely, i > e, from causing such a change. This is easily accomplished by
defining y(s + 1, i), for all i > e, to be sufficiently large. It is helpful to visualize
a sequence of movable markers {ry}jeJV resting on distinct integers, such that
y(s, e) denotes the integer occupied by r e at the end of stage s.

Stage s = 0. Define A0 = {xn}nsN, ij/0(xa) = xn and y(0, n) = n, for all
neN.

Stage s + 1. Let e be the least i ^ s such that 0*+ 1(>;
T(J,,)) is defined, but

requirement Rt is not satisfied at stage s. If no such i exists, let As + i = As,
ij/s+1 = \j/

s
> and y(s + 1, n) = y(s, n), for all neN. Otherwise, we say that

requirement Re receives attention at stage s + 1. Relative to our basis S for U,
choose scalars {a;, feJ,eW such that

(6) #+1Gw> = Xan + bM.
i = 0

(Since each vector v e U is ultimately vanishing, such m exists.) For notational
convenience, abbreviate y(s, e) by y. Define ips+1(yy) to be any vector t; in L(xy, yy)
but not in

L(xy) U L{ayx.t + bryy).
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Let n be the greatest i such that yteAs, and let p = 1 + max{n, m}. For all
i g e leave marker F( fixed. For each i > e, move marker Ff in order of i to an
integer q, such that q^ p, q^ y(s, i), the integer previously occupied by F;, and
for all j < i, q ^ y(s + 1, 7), the integer now occupied by F,-.

Case 1. # + 1 G \ ) G » F I . Define ,4S+1 = A5. (Note

Case 2. <^+1Ov>£ ^ 1 - Define ,4S + 1 = {>>r} u(As- {xy}). To complete
the construction, define A = lims As, and ^ = Us'A*-

In most constructions it is obvious that the action taken at stage 5 + 1
succeeds (at least temporarily) in satisfying the requirement being considered.
Here, it is not obvious because in Case 2, As+1 # A" implies W\+1 ^ Wt. The
following lemma is the crux of the whole argument.

LEMMA 1. / / requirement Re receives attention at stage 5 + 1, then Re

is satisfied at stage s + 1.

PROOF. If Case 1 applies in the above definition of As+1, clearly Re is satisfied
at stage s + 1, since W\+1 = W\. If Case 2 applies, note that our choice of
ll/S + i(yr) has insured that adding yy to As+l and removing xy will not cause
<pe(yy)eW\+1. For suppose to the contrary that

where As + 1 = {ut}ieN, and ut = x( or yt, all ieN, and where uy = yr Then
there exist scalars {c,},-^, such that

(7) # + 1 0 \ ) = cyy
+\uy) + 1 c^ + 1 (« ( ) , where cy # 0.

But since t/fs+1(u;)e L(x,-, yf), all ieiV, there exist scalars {aj, i>J}jS^ such that

(8) r+i(ud = afa + bfaallieN.

Now by combining (7) with (8),

(9) <t>l+1(yY) = cy{a'yxy + Kyy) + I Ci(a'iXi + b'iyi).

However, comparing (9) with (6) we conclude that

(10) af = cta'i and bt = ctb'h all / e N.

By assumption uy = >>Y, but then (8) and (10) contradict our definition of i^s+l(yy)
which by construction is not in L(ayxy + byyy).

LEMMA 2. Each requirement Re receives attention at most finitely often.

PROOF OF LEMMA 2. Fix e and assume by induction that no Rh i < e,
receives attention after some stage say s'. Then Fe never moves after s' because
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Fe is moved only when some Rh i < e, receives attention. But if Re receives
attention at some stage s + 1 > s', then all F,, i > e, are moved to integers q> m,
where m is defined in (6). Now no ys, j :g m, enters A after stage s + 1, because
y((, s') > m for all t ^ s + 1 and i > e. Therefore, no peL(xj, yj) for j ^ m,
enters or leaves Wt at any stage t > s + 1 because iK*;), <K.V/)6 L(xj, yj) when
defined. Hence,

4>s
e
+Xyy)eW[+1 *> (W ^ s t f ^ O g e W n ,

so that requirement #,, is satisfied at all t ^ s + 1.

LEMMA 3. Vx% Wv

PROOF. Assume V1 = Wl via (f>e. Choose s' sufficiently large so that y(s, i)
= y(s', j). f°r aH ' ^ e, and for all 5 2i s'. Now f,()iy(l t)) will be defined for
some s ^ s'. Hence, requirement Re will become satisfied at some stage s ̂  5',
and will remain satisfied thereafter.

2. Concerning Theorem 2

THEOREM 2. For a-spaces Vu V2, Wu W2 £ U, (1) and (2) do imply

(3) i/ Fj and V2 are x-spaces via the same r.e. linearly independent set, say
S, and if there exists functions \j/t witnessing Vt ^ Wt which satisfy
il/iiSnV^^Wj for all i, je{l, 2}.

PROOF OF THEOREM 2. We only sketch the proof which is a variation of
the standard Karp-Myhill method of [3]. Let Vt ~ Wt via \jiu and V2~W2

via i/'a- Then Vl ^ W x via § which is defined as the union of finite functions
<j)s as follows. At even stages s + 1, enumerate an element xeA such that
x^L(dom <£s), and choose the first of ^ (x ) , ^2(

x) which is defined, say ip^x).
If i/^(x)£L(ran cj>s), let 0s+1(x) = «K(x). Otherwise, choose a set

of minimal cardinality n, such that \lj1(x)eL(yl, y2, •••, yn), and choose zteA

such that 0s(z.) = y;, 1 ̂  i ^ n.

The key observation is that x,zi,z2,---,zn are linked, that is all lie in Vx

or all in V2. This follows by the minimality of n; the fact that all ve A are in

Vx or K2 (and therefore, all t ) e ran i / ' 1 ( i4 )Uran i / ( 2 (^ ) lie in Wt or W2); and

because we may assume by induction on s that ^ ( ^ I ) ^ Wj , and </>s(F2) ^ W2-

Hence, just as in the standard Karp-Myhill method, either 1/̂  or i^2 must

eventually be defined on all n + 1 linearly independent vectors {x,zltz2,---,zn},

thereby producing a vector v^L(yt,y2,---,yn). If u£L( ran <j>s), let <£s+1(x) = v.

Otherwise, choose a set

{y'1,y'2,---,y'm}STan(<t>XA))
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of minimal cardinality n, such that veL(y'uy'2, ••-,}>'„), and repeat the above

process with

in place of {3 ,̂, >»2, •••»>'«}• Since L(ran <j>s) has finite dimension, the process
terminates yielding some t>£L(ran <f>s) which is an appropriate image for </>s+1(x).

On odd stages s + 1, enumerate an element x e r a n i / ' ^ U r a n ^ W
such that x $ L(ran <j>s) and proceed similarly.
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