
J. Functional Programming 9 (6): 675–698, November 1999. Printed in the United Kingdom

c© 1999 Cambridge University Press

675

T H E O R E T I C A L P E A R L S

Type-checking injective pure type systems

G I L L E S B A R T H E

INRIA Sophia Antipolis, 2004 Route des Lucioles,

BP 93, 06902 Sophia Antipolis Cedex, France

(e-mail: Gilles.Barthe@sophia.inria.fr)

In memory of Yossi Shamir

Abstract

Injective pure type systems form a large class of pure type systems for which one can compute

by purely syntactic means two sorts elmt(Γ|M) and sort(Γ|M), where Γ is a pseudo-context

and M is a pseudo-term, and such that for every sort s,

Γ ` M : A ∧ Γ ` A : s ⇒ elmt(Γ|M) = s

Γ ` M : s ⇒ sort(Γ|M) = s.

By eliminating the problematic clause in the (abstraction) rule in favor of constraints over

elmt(.|.) and sort(.|.), we provide a sound and complete type-checking algorithm for injective

pure type systems. In addition, we prove expansion postponement for a variant of injective

pure type systems where the problematic clause in the (abstraction) rule is replaced in favor

of constraints over elmt(.|.) and sort(.|.).

1 Introduction

Pure type systems provide an elegant and general framework for the definition and

study of typed λ-calculi (Barendregt, 1992; Berardi, 1990; Geuvers, 1993; Geuvers

& Nederhof, 1991; Terlouw, 1989). One central issue in the theory of pure type

systems is the problem of type-checking. Given a pure type system λS, type-checking

consists in deciding whether a judgment Γ ` M : A is derivable according to

the rules of pure type systems. Although type-checking is undecidable in general

(Coquand & Herbelin, 1994; Pollack, 1992), most systems of interest have decidable

type-checking (Benthem Jutting, 1993). For such systems, the question remains of

whether it is possible to find reasonable, sound and complete algorithms for type-

checking. One crucial phase in the design of such algorithms is to find sound

and complete syntax-directed presentations of pure type systems (Pollack, 1995);

informally, a set of rules is syntax-directed if, using this set of rules, there is at most

one way to derive a type for a given expression in a given context – and the type is

unique.

https://doi.org/10.1017/S0956796899003573 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003573

676 G. Barthe

Over the last few years, several authors have proposed such syntax-directed

presentations for some specific classes of pure type systems (Barthe, 1998; Benthem

Jutting et al., 1994; Poll, 1993; Pollack, 1994; Severi, 1996; Severi, 1998). However,

the situation is in our view unsatisfactory because:

• these presentations either impose strong restrictions on the Pure Type Systems

or make use of a complex derivability relation – see section 6;

• the completeness of the most natural syntax-directed presentation, as formu-

lated in (Pollack, 1992; Pollack, 1994), remains an open problem – see section

3.

The aim of this paper is to show that a simplified variant of Pollack’s natural syntax-

directed presentation is sound and complete for injective pure type systems, a class

of pure type systems that includes many of the systems occurring in the literature, in

particular the systems of Barendregt’s λ-cube (Barendregt, 1991; Barendregt, 1992).

The idea is to define for every pseudo-context Γ and pseudo-term M two sorts

elmt(Γ|M) and sort(Γ|M), which may be computed easily and without invoking

conversion or substitution, and such that for every sort s,

Γ ` M : A ∧ Γ ` A : s ⇒ elmt(Γ|M) = s

Γ ` M : s ⇒ sort(Γ|M) = s

Then we use elmt(.|.) and sort(.|.) to eliminate the problematic clause in the (abstrac-

tion) rule of Pure Type Systems and obtain a sound and complete syntax-directed

presentation. Besides, we show that the same idea also applies to the problem of

Expansion Postponement (Barthe et al., 1998; Poll, 1998; Pollack, 1994).

The remainder of the paper is organized as follows: in section 2, we provide a

brief overview of pure type systems. In section 3, we present two motivating open

problems, namely the completeness of Pollack’s ‘natural’ syntax-directed presentation

and expansion postponement. In section 4, we present a new derivability relation

for injective pure type systems, and in section 5, we show that this relation is the

key to a neat syntax-directed presentation. Section 6 establishes a comparison with

related work. Finally, we conclude in section 7.

2 Pure type systems

In this section, we present the basics of pure type systems. Only crucial properties

are considered. Other properties can be found in standard texts on pure type systems

(Barendregt, 1992; Geuvers, 1993; Geuvers & Nederhof, 1991).

2.1 Specifications

Pure type systems provide a parametric framework for typed λ-calculi à la Church.

Parametricity is achieved through the notion of specification, which consists of a set

of universes and two relations expressing abstract dependencies between them.

Definition 1 (Specification)

A specification is a triple S = (S,A,R) where

https://doi.org/10.1017/S0956796899003573 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003573

Theoretical pearls 677

• S is a set of sorts, ranged over by s, s1, s2 . . .;

• A ⊆ S×S is a set of axioms;

• R ⊆ S ×S ×S is a set of rules; as usual, (s1, s2) meant as a rule denotes

(s1, s2, s2).

Every specification has a set of typed sorts, defined as

S• = {s ∈ S | ∃s′ ∈ S. (s, s′) ∈ A}
In this paper, we will chiefly be concerned with injective specifications, which we

introduce below. In section 6.1, we consider further classes of specifications.

Definition 2 (Injective)

Let S = (S,A,R) be a specification.

• S is functional if for every s1, s2, s
′
2, s3, s

′
3 ∈ S,

(s1, s2) ∈ A ∧ (s1, s
′
2) ∈ A ⇒ s2 = s′2

(s1, s2, s3) ∈ R ∧ (s1, s2, s
′
3) ∈ R ⇒ s3 = s′3

• S is injective if it is functional and for every s1, s
′
1, s2, s

′
2, s3 ∈ S,

(s1, s2) ∈ A ∧ (s′1, s2) ∈ A ⇒ s1 = s′1
(s1, s2, s3) ∈ R ∧ (s1, s

′
2, s3) ∈ R ⇒ s2 = s′2

2.2 Pure type systems

Every specification S yields a pure type system λS as specified below. Throughout

this section, S = (S,A,R) is a fixed specification.

Definition 3 (Pure type systems)

• The set T of pseudo-terms is given by the abstract syntax:

T = V | S | TT | λV :T.T |ΠV :T.T
where V is a fixed countably infinite set of variables. We let A,B,M . . . range

over T and x, y, z . . . range over V .

• Syntactic equality is denoted by =,

• β-reduction →β is defined as the compatible closure of the contraction

(λx:A. M) N →β M{x := N}
where •{• := •} is the standard substitution operator. The reflexive transitive

closure of →β is denoted by →→β .

• β-equality =β is the reflexive, symmetric, transitive closure of →β .

• A pseudo-context is a finite ordered list x1 : A1, . . . , xn : An where x1, . . . , xn
are pairwise distinct. The empty context is denoted by 〈〉. The domain of a

context Γ is

dom(Γ) = {x | ∃t ∈ T. x : t ∈ Γ}
The set of pseudo-contexts is denoted by G. We let Γ,Γ′, . . . range over G.

• A judgment is a triple Γ ` M : A.

https://doi.org/10.1017/S0956796899003573 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003573

678 G. Barthe

(axiom) 〈〉 ` s1 : s2 if (s1, s2) ∈ A

(start)
Γ ` A : s

Γ, x : A ` x : A
if x 6∈ dom(Γ)

(weakening)
Γ ` A : B Γ ` C : s

Γ, x : C ` A : B
if x 6∈ dom(Γ) and A ∈ V ∪S

(product)
Γ ` A : s1 Γ, x : A ` B : s2

Γ ` (Πx:A. B) : s3
if (s1, s2, s3) ∈ R

(application)
Γ ` F : (Πx:A. B) Γ ` a : A

Γ ` F a : B{x := a}

(abstraction)
Γ, x : A ` b : B Γ ` (Πx:A. B) : s

Γ ` λx:A. b : Πx:A. B

(conversion)
Γ ` A : B Γ ` B′ : s

Γ ` A : B′
if B =β B

′

Fig. 1. Rules for pure type systems.

• The derivability relation ` is given by the rules of Figure 1. If Γ ` M : A is

derivable, then Γ, M and A are legal .

Note that, contrary to usual practice, we insist on variables being declared at most

once in a pseudo-context. This is a mere technicality, adopted so as to disambiguate

the definition of sort(.|.) and elmt(.|.) in Definition 9.

2.3 Properties

Only a few properties of pure type systems will be used crucially in the sequel. The

first property ensures that the type of a term is itself typable, unless it is a sort.

Lemma 4 (Correctness of types)

Γ ` A : B ⇒ B ∈ S ∨ ∃s ∈ S. Γ ` B : s

The second property ensures that types are closed under reduction.

Proposition 5 (Subject Reduction)

Γ ` M : A ∧ M →β N ⇒ Γ ` N : A

The remaining properties are concerned with specific classes of systems. The third

property states that functional pure type systems enjoy uniqueness of types.

Lemma 6 (Uniqueness of types)

Assume S is functional.

Γ ` M : A ∧ Γ ` M : B ⇒ A =β B

https://doi.org/10.1017/S0956796899003573 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003573

Theoretical pearls 679

A useful consequence of uniqueness of types is that convertible types must inhabit

the same sort.

Corollary 7 (Preservation of sorts)

Assume S is functional.

Γ ` A : s ∧ Γ ` A′ : s′ ∧ A =β A
′ ⇒ s = s′

A useful variant of the above result is

Γ ` M : A ∧ Γ ` A′ : s ∧ A =β A
′ ⇒ Γ ` A : s

The fourth and last property is the classification algorithm for injective pure type

systems. We begin with some preliminary definitions. For every set A, we let A↑
denote A ∪ {↑}, where it is assumed that ↑ is fresh. If f ∈ A → B↑ and a ∈ A, we

write f a ↓ to denote f a 6= ↑.

Definition 8

Assume S is injective.

• The map .− :S↑ → S↑ is defined by

s− =

{
s′ if (s′, s) ∈ A
↑ otherwise

• The map .+ :S↑ → S↑ is defined by

s+ =

{
s′ if (s, s′) ∈ A
↑ otherwise

• The map ρ :S↑ ×S↑ → S↑ is defined by

ρ(s1, s2) =

{
s3 if (s1, s2, s3) ∈ R
↑ otherwise

• The map µ :S↑ ×S↑ → S↑ is defined by

µ(s1, s2) =

{
s3 if (s1, s3, s2) ∈ R
↑ otherwise

The above definition and the classification algorithm, as defined below, exploit all

the properties of injectivity.

Definition 9 (Classification algorithm)

The maps sort(.|.) : G × T↑ → S↑ and elmt(.|.) : G × T↑ → S↑ are defined

https://doi.org/10.1017/S0956796899003573 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003573

680 G. Barthe

as follows:

elmt(Γ| ↑) = ↑
sort(Γ| ↑) = ↑
elmt(Γ|x) = sort(Γ0|A) if Γ = Γ0, x : A,Γ1

sort(Γ|x) = elmt(Γ|x)−
elmt(Γ|s) = (sort(Γ|s))+

sort(Γ|s) = s+

elmt(Γ|M N) = µ(elmt(Γ|N), elmt(Γ|M))

sort(Γ|M N) = (elmt(Γ|M N))−
elmt(Γ|λx:A. M) = ρ(sort(Γ|A), elmt(Γ, x : A|M))

sort(Γ|λx:A. M) = (elmt(Γ|λx:A. M))−
elmt(Γ|Πx:A. B) = (sort(Γ|Πx:A. B))+

sort(Γ|Πx:A. B) = ρ(sort(Γ|A), sort(Γ, x : A|B))

If S is injective, then sort(Γ|M) and elmt(Γ|M) are well-defined. Moreover:

Fact 10

If S is injective, sort(Γ|M) ↓ and elmt(Γ|M) ↓ then

(elmt(Γ|M))− = sort(Γ|M)

(sort(Γ|M))+ = elmt(Γ|M)

Proof

By induction on the structure of M. q

The following result justifies the name of classification algorithm and is central to

the rest of the paper.

Proposition 11 (Classification lemma)

Assume S is injective.

Γ ` M : A ∧ Γ ` A : s ⇒ elmt(Γ|M) = s

Γ ` M : A ∧ A ∈ S ⇒ sort(Γ|M) = A

Proof

First, prove by induction on the structure of M:

elmt(Γ|M) ↓ ∧ Γ ⊆ Γ′ ⇒ elmt(Γ′|M) ↓ ∧ elmt(Γ|M) = elmt(Γ′|M)

sort(Γ|M) ↓ ∧ Γ ⊆ Γ′ ⇒ sort(Γ′|M) ↓ ∧ sort(Γ|M) = sort(Γ′|M)

Then, prove by induction on the derivation of Γ ` M : A that

(1) Γ ` A : s ⇒ elmt(Γ|M) = s

(2) A ∈ S ⇒ sort(Γ|M) = A

Axiom Obvious.

Start Assume the last rule is

Γ ` A : s

Γ, x : A ` x : A
if x 6∈ dom(Γ)

For (1), assume Γ ` A : s′ for some s′ ∈ S. By Uniqueness of Types, s = s′. By

https://doi.org/10.1017/S0956796899003573 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003573

Theoretical pearls 681

induction hypothesis, sort(Γ|A) = s. By definition,

elmt(Γ, x : A|x) = sort(Γ|A) = s

For (2), assume A ∈ S. Then A = s−. Hence

sort(Γ, x : A|x) = (elmt(Γ, x : A|x))− = s− = A

Weakening Use the result above.

Product Assume the last rule is

Γ ` A : s1 Γ, x : A ` B : s2

Γ ` (Πx:A. B) : s3
if (s1, s2, s3) ∈ R

For (2), observe that sort(Γ|A) = s1 and sort(Γ, x : A|B) = s2 by induction

hypothesis. Hence

sort(Γ|Πx:A. B) = ρ(sort(Γ|A), sort(Γ, x : A|B)) = ρ(s1, s2) = s3

For (1), assume Γ ` s3 : s for some s ∈ S. Necessarily s = s+3 . By (2),

sort(Γ|Πx:A. B) = s3. Hence

elmt(Γ|Πx:A. B) = (sort(Γ|Πx:A. B))+ = s+3 = s

Application Assume the last rule is

Γ ` F : (Πx:A. B) Γ ` a : A

Γ ` F a : B{x := a}
For (1), assume Γ ` B{x := a} : s. To show s = elmt(Γ|F a). By correctness

of types, Γ ` (Πx:A. B) : s′ for some s′ ∈ S. By generation, Γ ` A : s1 and

Γ, x : A ` B : s2 for s1, s2 ∈ S such that (s1, s2, s
′) ∈ R. By induction hypothesis,

s1 = elmt(Γ|a) and s′ = elmt(Γ|F). By substitution, Γ ` B{x := a} : s2 and by

Uniqueness of Types s2 = s. By injectivity, s2 = µ(elmt(Γ|a), elmt(Γ|F)) so we are

done.

For (2), assume B{x := a} ∈ S. Necessarily Γ ` B{x := a} : s′ for some s′ and

we can proceed as in (1) to conclude s′ = elmt(Γ|F a). Moreover, B{x := a} = s′−.

Hence

sort(Γ|F a) = (elmt(Γ|F a))− = s′− = B{x := a}
Abstraction Assume the last rule is

Γ, x : A ` b : B Γ ` (Πx:A. B) : s

Γ ` λx:A. b : Πx:A. B

For (1), assume Γ ` Πx: A. B : s′ for some s′ ∈ S. By Uniqueness of Types,

s = s′. By induction hypothesis, sort(Γ|Πx:A. B) = s. Moreover, the derivation of

Γ ` (Πx:A.B) : s must contain sub-derivations of Γ ` A : s1 and Γ, x : A ` B : s2
with (s1, s2, s) ∈ R hence by induction hypothesis sort(Γ|A) = s1. Also by induction

hypothesis, elmt(Γ, x : A|b) = s2. Hence

elmt(Γ|λx:A. b) = ρ(sort(Γ|A), elmt(Γ, x : A|b)) = ρ(s1, s2) = s

For (2), note that Πx:A. B 6∈ S.

https://doi.org/10.1017/S0956796899003573 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003573

682 G. Barthe

Conversion Assume the last rule is

Γ ` M : B Γ ` B′ : s

Γ ` M : B′
if B =β B

′

For (1), assume Γ ` B′ : s′ for some s′ ∈ S. To show elmt(Γ|M) = s′. Necessarily

Γ ` B : s′ so we may apply the induction hypothesis to conclude directly.

For (2), assume B′ ∈ S. As in (1), we may conclude elmt(Γ|M) = s. Moreover,

B′ = s− hence

sort(Γ|M) = (elmt(Γ|M))− = s− = B′

q

Corollary 12 (Extended Classification Lemma)

Assume S is injective.

1. If Γ ` M : B and elmt(Γ|M) ↓ then Γ ` B : elmt(Γ|M).

2. If Γ, x : A ` M : B then sort(Γ|A) ↓ and Γ ` A : sort(Γ|A).

Proof

(1) Prove by case analysis on M that that

Γ ` M : B ∧ elmt(Γ|M) ↓ ⇒ ∃s ∈ S. Γ ` B : s

Conclude from Lemma 11.

(2) By the Start lemma,

∃s ∈ S. Γ ` A : s

Conclude from Lemma 11. q

Note that, unlike the traditional formulation of the Classification lemma (Geu-

vers, 1993), our result does not require the use of sorted variables. Of course, the

classification algorithm and the syntax-directed presentation of the coming sections

remain correct (and can even be simplified) if one uses sorted variables.

3 Type-checking and expansion postponement

To provide useful background for the rest of this paper, we review two open problems

for pure type systems, namely the completeness of Pollack’s ‘natural’ syntax-directed

presentation and expansion postponement.

3.1 A natural type-checking algorithm

An important aspect of type-checking is syntax-directedness (Benthem Jutting et al.,

1994). Informally, a set of rules is syntax-directed if, using this set of rules, there is at

most one way to derive a type for a given pseudo-term M in a given pseudo-context

Γ – and the type is unique. The rules for pure type systems are not syntax-directed, in

particular because of the conversion rule which may be applied at any moment. To

achieve syntax-directedness while maintaining essentially the same set of derivable

judgments, one may want to distribute the (conversion) rule over the remaining rules

https://doi.org/10.1017/S0956796899003573 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003573

Theoretical pearls 683

(axiom) 〈〉 `nat s1 : s2 if (s1, s2) ∈ A

(start)
Γ `nat A :→→wh s

Γ, x : A `nat x : A
if x 6∈ dom(Γ)

(weakening)
Γ `nat A : B Γ `nat C :→→wh s

Γ, x : C `nat A : B

if x 6∈ dom(Γ)

and A ∈ V ∪S

(product)
Γ `nat A :→→wh s1 Γ, x : A `nat B :→→wh s2

Γ `nat (Πx:A. B) : s3
if (s1, s2, s3) ∈ R

(application)
Γ `nat F :→→wh (Πx:A′. B) Γ `nat a : A

Γ `nat F a : B{x := a} if A =β A
′

(abstraction)
Γ, x : A `nat b : B Γ `nat Πx:A. B : s

Γ `nat λx:A. b : Πx:A. B

Fig. 2. Pollack’s syntax-directed rules for pure type systems.

of pure type systems. The algorithm below, which is due to Pollack (1992; 1994), is

the result of performing such a distribution – there is a certain irony in coining the

next definition as Pollack’s algorithm, since the algorithm is called worse in Pollack

(1994).

Definition 13 (Pollack’s algorithm)

• Weak-head reduction →wh is the smallest relation such that for every x ∈ V
and A, P , Q,~R ∈ T

(λx : A. P) Q ~R →wh P {x := Q} ~R
(Weak-head reduction differs from β-reduction by applying only at the top-

level.)

• The reflexive-transitive closure of →wh is denoted by →→wh.

• We write Γ `nat M :→→wh A for

∃A′ ∈ T. Γ `nat M : A′ ∧ A′ →→wh A

• The derivability relation Γ `nat M : A is given by the rules of Figure 2.

A simple induction on the structure of derivations establishes soundness, i.e.

`nat⊆`. The problem of completeness is defined as follows:

Open Problem 14

Γ ` M : A ⇒ ∃A′ ∈ T. Γ `nat M : A′ ∧ A =β A
′

As observed by Pollack (1992), we have to restrict ourselves to functional pure type

systems, otherwise `nat is not complete with respect to `.

The main problem in proving the completeness of `nat is the second premise in

the (abstraction) rule. When trying to prove the above implications by induction on

the derivations, the induction step for the (abstraction) rule cannot be completed,

precisely because of its second premise; see Poll (1993) for a careful analysis of the

failure of the induction step.

https://doi.org/10.1017/S0956796899003573 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003573

684 G. Barthe

One solution to this problem is to formulate a new, more liberal, (abstraction)

rule and to perform the distribution of the (conversion) rule over this new set of

rules. This solution, which is adopted in most works on type-checking pure type

systems, see section 6, is implemented in the next sections where we propose a new

(abstraction) rule inspired from the Classification lemma and show that it yields a

sound and complete syntax-directed system for injective pure type systems.

3.2 Expansion postponement

The problem of expansion postponement, due to H. Barendregt, consists in deter-

mining whether one may replace the conversion rule of Pure Type Systems by a

reduction rule, without ‘essentially’ affecting the set of derivable judgments.

Definition 15 (Expansion postponement)

• The relation Γ `R M : A is defined by the rules of Figure 1, except for the

rule (conversion) which is replaced by

Γ `R A : B Γ `R B′ : s

Γ `R A : B′
if B →→β B

′

• The relation Γ `r M : A is defined by the rules of Figure 1, except for the

rule (conversion) which is replaced by

Γ `r A : B

Γ `r A : B′
if B →→β B

′

The above definition is taken from Pollack (1994), where it is noted that

`R ⊆ `r ⊆ `
The problem of expansion postponement has two variants:

Open Problem 16

Let `̀ be `R or `r.

Γ ` M : A ⇒ ∃A′ ∈ T. Γ `̀ M : A′ ∧ A→→β A
′

Proving expansion postponement by induction on the structure of derivations fails

exactly for the same reason as proving the completeness of `nat, i.e. for the second

premise in the (abstraction) rule (Poll, 1998; Pollack, 1994). In 1995, Poll (1998)

solved the `r-variant of the problem for normalizing pure type systems, i.e. for pure

type systems such that

Γ ` M : A ⇒ M is weakly β-normalizing

In 1998, Barthe et al. (1998) solved the `R-variant of the problem (and a fortiori the

`r-variant) for a large class pure type systems.

In the next section, we define a new set of rules which, in the case of injective

specifications, has the same derivable judgments as ` and has the expansion post-

ponement property for its `r-variant. This supports the observation in Benthem

Jutting et al. (1994) that expansion postponement is relative to a set of rules rather

than to a derivability relation.

https://doi.org/10.1017/S0956796899003573 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003573

Theoretical pearls 685

4 A new derivability relation for pure type systems

4.1 Assessment

The derivability relation for pure type systems contains a certain amount of re-

dundancy. For example, one can derive from the first premise of the (abstraction)

rule

Γ, x : A ` M : B

that

(H1) ∃s1 ∈ S. Γ ` A : s1
(H2) (∃s2 ∈ S. Γ, x : A ` B : s2) ∨ B ∈ S

There is only a small step to infer the second premise of the (abstraction) rule (the

existential quantification below is usually left implicit)

∃s ∈ S. Γ ` Πx:A. B : s

While we do not know how to make this small step in general, the Classification

Lemma allows us to make this small step for injective specifications. Indeed, for

such specifications, we can rephrase (H1) and (H2) as

(H ′1) Γ ` A : sort(Γ|A)

(H ′2) Γ, x : A ` B : elmt(Γ, x : A|b) ∨ elmt(Γ, x : A|b) ↑
Under these hypotheses, the second premise of the (abstraction) rule becomes

equivalent to elmt(Γ|λx:A. b) ↓. This is the key to the new derivability relation.

As suggested by Pollack, one can proceed similarly with the first premise of the

(product) rule. Indeed, the premise Γ ` A : s1 of the (product) rule is redundant

and may be replaced by sort(Γ|A) = s1. Equivalently, the premise Γ ` A : s1 and

the constraint (s1, s2, s3) ∈ R may be replaced by s3 = ρ(sort(Γ|A), s2).

4.2 Classification-based rules

Throughout this subsection, we let S = (S,A,R) be a fixed injective specification.

Definition 17

The relation Γ `cl M : A is defined by the rules of Figure 3.

The new derivability relation is sound and complete with respect to the original

one.

Proposition 18

Γ ` M : A ⇔ Γ `cl M : A

Proof

By induction on the structure of derivations. We treat the reverse implication for

the (abstraction) and (product) rules.

• (abstraction): assume that the last rule of the derivation is

Γ, x : A `cl b : B

Γ `cl λx:A. b : Πx:A. B
elmt(Γ|λx:A. b) ↓

https://doi.org/10.1017/S0956796899003573 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003573

686 G. Barthe

(axiom) 〈〉 `cl s1 : s2 if (s1, s2) ∈ A

(start)
Γ `cl A : s

Γ, x : A `cl x : A
if x 6∈ dom(Γ)

(weakening)
Γ `cl A : B Γ `cl C : s

Γ, x : C `cl A : B
if x 6∈ dom(Γ) and A ∈ V ∪S

(product)
Γ, x : A `cl B : s2

Γ `cl (Πx:A. B) : s3
if s3 = ρ(sort(Γ|A), s2)

(application)
Γ `cl F : (Πx:A. B) Γ `cl a : A

Γ `cl F a : B{x := a}

(abstraction)
Γ, x : A `cl b : B

Γ `cl λx:A. b : Πx:A. B
if elmt(Γ|λx:A. b) ↓

(conversion)
Γ `cl A : B Γ `cl B

′ : s

Γ `cl A : B′
if B =β B

′

Fig. 3. Classification-based rules for injective pure type systems.

Set s1 = sort(Γ|A), s2 = elmt(Γ, x : A|b) and s3 = ρ(s1, s2). By induction

hypothesis,

Γ, x : A ` b : B

By Lemma 12(2),

Γ ` A : s1

By Lemma 12(1),

Γ, x : A ` B : s2

By (product),

Γ ` Πx:A. B : s3

By (abstraction),

Γ ` λx:A. b : Πx:A. B

• (product): assume that the last rule of the derivation is

Γ, x : A `cl B : s2

Γ `cl Πx:A. B : s3
s3 = ρ(sort(Γ|A), s2)

Set s1 = sort(Γ|A). By induction hypothesis,

Γ, x : A ` B : s2

By Lemma 12(2),

Γ ` A : s1

By product

Γ ` Πx:A. B : s3

q

https://doi.org/10.1017/S0956796899003573 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003573

Theoretical pearls 687

(axiom) 〈〉 `sd s1 : s2 if (s1, s2) ∈ A

(start)
Γ `sd A :→→wh s

Γ, x : A `sd x : A
if x 6∈ dom(Γ)

(weakening)
Γ `sd A : B Γ `sd C :→→wh s

Γ, x : C `sd A : B
if x 6∈ dom(Γ) and A ∈ V ∪S

(product)
Γ, x : A `sd B :→→wh s2

Γ `sd (Πx:A. B) : s3
if s3 = ρ(sort(Γ|A), s2)

(application)
Γ `sd F :→→wh (Πx:A′. B) Γ `sd a : A

Γ `sd F a : B{x := a} if A =β A
′

(abstraction)
Γ, x : A `sd b : B

Γ `sd λx:A. b : Πx:A. B
if elmt(Γ|λx:A. b) ↓

Fig. 4. Syntax-directed rules for pure type systems.

While the relation `cl is not well-defined for non-injective specifications, one may

wonder whether it is possible to modify the definitions of elmt(.|.) and sort(.|.) so as

to define a classification-based derivability relation that is sound and complete with

respect to ` for a larger class of pure type systems. In the appendix, we show that

one can indeed do so for the class of M-injective specifications.

5 Classification, type-checking and expansion postponement

The classification-based rules enjoy expansion postponement and are the key to

a simple type-checking algorithm for injective pure type systems. Throughout this

section, we let S = (S,A,R) be a fixed injective specification.

5.1 Type-checking

The rules for `nat are obtained by distributing the (conversion) rule over the other

rules for `. In this subsection, we define a new derivability relation `sd by distributing

the (conversion) rule over the other rules for `cl. Moreover, we show that `sd is

sound and complete with respect to `cl, and hence with respect to `.

Definition 19

We write Γ `sd M :→→wh A for

∃A′ ∈ T. Γ `sd M : A′ ∧ A′ →→wh A

The derivability relation Γ `sd M : A is given by the rules of Figure 4.

We claim that, for injective pure type systems, our algorithm is as natural as `nat;

moreover, the side conditions for `sd are simpler than those for `nat.

Lemma 20

Γ `sd M : A ⇒ Γ `cl M : A

https://doi.org/10.1017/S0956796899003573 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003573

688 G. Barthe

Proof

By induction on the structure of derivations. q

The completeness of `sd is stated as follows:

Proposition 21

Γ `cl M : A ⇒ ∃A′ ∈ T. Γ `sd M : A′ ∧ A =β A
′

Proof

By induction on the structure of derivations. We treat the (application) and (ab-

straction) rules.

• (application): assume that the last rule of the derivation is

Γ `cl F : (Πx:A. B) Γ `cl a : A

Γ `cl F a : B{x := a}
By induction hypothesis, there exists C,D such that

C =β Πx:A. B

D =β A

Γ `sd F : C

Γ `sd a : D

Necessarily there exists E,G such that

C →→wh Πx:E. G

E =β A

G =β B

Hence we have

Γ `sd F :→→wh Πx:E. G

Γ `sd a : D

E =β D

By (application), we get

Γ `sd F a : G{x := a}
Moreover, G{x := a} =β B{x := a} so we are done.

• (abstraction): assume that the last rule of the derivation is

Γ, x : A `cl b : B

Γ `cl λx:A. b : Πx:A. B
elmt(Γ|λx:A. b) ↓

By induction hypothesis, there exists B′ such that B =β B
′ and

Γ, x : A `sd b : B′

By (abstraction),

Γ `sd λx:A. b : Πx:A. B′

We have Πx:A. B =β Πx:A. B′, so we are done.

q

https://doi.org/10.1017/S0956796899003573 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003573

Theoretical pearls 689

5.2 Expansion postponement

We prove that the weak variant of expansion postponement holds for `cl.

Definition 22

The relation Γ `ep M : A is defined by the rules of Figure 3, except for the

(conversion) rule which is replaced by

Γ `ep A : B

Γ `ep A : B′
if B →→β B

′

`ep is sound with respect to `cl, and hence with respect to `.

Lemma 23

Γ `ep M : A ⇒ Γ `cl M : A

Proof

By induction on the structure of derivations. q

The expansion postponement property is stated as follows:

Proposition 24

Γ `cl M : A ⇒ ∃A′ ∈ T. Γ `ep M : A′ ∧ A→→β A
′

Proof

By induction on the structure of derivations. We treat the (abstraction) and (con-

version) rules.

• (abstraction): assume that the last rule of the derivation is

Γ, x : A `cl b : B

Γ `cl λx:A. b : Πx:A. B
elmt(Γ|λx:A. b) ↓

By induction hypothesis, there exists B′ such that B →→β B
′ and

Γ, x : A `ep b : B′

By (abstraction),

Γ `ep λx:A. b : Πx:A. B′

We have Πx:A. B →→β Πx:A. B′, so we are done.

• (conversion): assume that the last rule of the derivation is

Γ `cl A : B Γ `cl B
′ : s

Γ `cl A : B′
B =β B

′

By induction hypothesis, there exists B′′ such that B →→β B
′′ and

Γ `ep A : B′′

By Church-Rosser, there exists C such that B′, B′′ →→β C . By (conversion),

Γ `ep A : C

so we are done.

q

https://doi.org/10.1017/S0956796899003573 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003573

690 G. Barthe

6 Other type-checking algorithms

Before proceeding with related work, we briefly review some background material

on pure type systems.

6.1 Classes of specifications

In this section, we introduce some of the most important specifications as well

as specific classes of specifications that have been considered in the context of

type-checking.

We begin by introducing Barendregt’s (1991, 1992) λ-cube, which gives a fine-grain

analysis of the Calculus of Constructions and provide the archetypical examples of

specifications.

Definition 25 (Cube-specifications)
Let S = {∗,�} and A = {(∗,�)}. The cube-specifications are

→ = (S,A, {(∗, ∗)})
2 = (S,A, {(∗, ∗), (�, ∗)})
ω = (S,A, {(∗, ∗), (�,�)})
P = (S,A, {(∗, ∗), (∗,�)})
ω = (S,A, {(∗, ∗), (�, ∗), (�,�)})
P2 = (S,A, {(∗, ∗), (�, ∗), (∗,�)})
Pω = (S,A, {(∗, ∗), (�,�), (∗,�)})
C = (S,A, {(∗, ∗), (�, ∗), (�,�), (∗,�)})

The specifications may be organized into a cube as shown in Figure 6. Most

specifications correspond to well-known systems as shown in the following:

→ simply typed λ-calculus

2 System F (second-order λ-calculus)

P LF, Automath

ω System Fω (higher-order λ-calculus)

C Calculus of Constructions

Another important example of specification is ∗.
Sorts *

Axioms *: *

Rules (∗, ∗)
The specification ∗.

All the above-mentioned specifications have rules of the form (s1, s2, s2). This

motivates the following definition.

Definition 26 (Persistent)
A specification S = (S,A,R) is persistent if for every s1, s

′
1, s2, s

′
2, s3 ∈ S,

(s1, s2, s3) ∈ R ⇒ s2 = s3
(s1, s2) ∈ A ∧ (s1, s

′
2) ∈ A ⇒ s2 = s′2

(s1, s2) ∈ A ∧ (s′1, s2) ∈ A ⇒ s1 = s′1

https://doi.org/10.1017/S0956796899003573 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003573

Theoretical pearls 691

Fig. 5. The cube-specifications.

Persistent specifications form an important class of injective specifications for which

it is possible to simplify the classification algorithm.

Other well-known classes characterize specifications that have ‘enough’ rules.

Definition 27 (Full, semi-full)

Let S = (S,A,R) be a specification.

• S is full if for every s1, s2 ∈ S there exists s3 ∈ S s.t. (s1, s2, s3) ∈ R.

• S is semi-full if for every s1, s2, s3, s
′
2 ∈ S,

(s1, s2, s3) ∈ R ⇒ ∃s′3 ∈ S. (s1, s
′
2, s
′
3) ∈ R

Note that every full specification is semi-full and that not all specifications of interest

are full or semi-full. In the case of the cube-specifications, only P and Pω are semi-

full. Beyond Barendregt’s λ-cube, the Calculus of Constructions with Universes λCU

is full.

Sorts ∗i (i ∈ N)

Axioms ∗i : ∗i+1 (i ∈ N)

Rules (∗i, ∗j , ∗k) (i, j, k ∈ N ∧ (i, j 6 k ∨ j = k = 0))

The specification CU.

The next definition, due to Poll (1993), provides a mild weakening of the notion

of injectivity.

Definition 28 (Weakly injective)

Let S = (S,A,R) be a specification. S is weakly injective if it is functional and for

every s1, s2, s, s
′ ∈ S,

(s1, s, s2) ∈ R ∧ (s1, s
′, s2) ∈ R ⇒ s = s′

Note that every injective specification is weakly injective.

The relationship between the various classes is depicted in Figure 6 (the notion

of M-injective specification and the specifications C ′, X and Q are defined in the

appendix). All inclusions are strict. However, there may not always be a specification

https://doi.org/10.1017/S0956796899003573 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003573

692 G. Barthe

 Injective

Functional

Weakly injective

M-injective

Full Semi-full

Persistent

CU

Q

 C

P

C’X

->, 2, P2,
ω,...

Fig. 6. Classes of pure type systems.

of independent interest that belongs to a class K but not to a subclass K ′; for

example, we do not know of any standard semi-full specification that is not M-

injective.

Digression on terminology The nomenclature for the classes of specifications con-

sidered in this paper is rather unfortunate. The notion of injective specification, as

presented in this paper, occurs in (Geuvers & Nederhof, 1991). However, Geuvers

(1993) uses the word injective for a stronger notion. We prefer to use the terminol-

ogy strongly injective for this stronger notion – which we do not use in this paper.

Finally, Poll (1993) uses the word ‘bijective’ instead of ‘weakly injective’. This is

counter-intuitive since every injective specification is bijective but there are bijective

specifications that are not injective.

6.2 Related work

Several sound and complete (for certain classes of specifications) syntax-directed

presentations of pure type systems may be found in the literature. Without any

claim to being exhaustive, we mention:

• full Pure type systems: Pollack (1992) gives a sound and complete syntax-

directed presentation for full pure type systems. The key observation is that, for

full Pure Type Systems, the problematic side-condition in the (abstraction) rule

can be eliminated. Indeed, for such systems, one can use the (abstraction) rule

Γ, x : A ` b : B B ∈ S ⇒ B ∈ S•
Γ ` λx:A. b : Πx:A. B

https://doi.org/10.1017/S0956796899003573 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003573

Theoretical pearls 693

As in this paper, one may obtain a sound a complete algorithm by replacing the

(abstraction) rule of pure type systems with this new rule and by distributing

the (conversion) rule over the other rules.

• semi-full Pure type systems: as observed by Pollack (1992), the above (ab-

straction) rule may be modified slightly so as to be sound and complete for

semi-full pure type systems. Indeed, for such systems it is enough to know

what the sort s1 of A is in the (abstraction) rule and whether (s1, s2, s3) ∈ R
for some s2, s3 ∈ S. This suggests the (abstraction) rule

Γ, x : A ` b : B Γ ` A : s1 B ∈ S ⇒ B ∈ S•
Γ ` λx:A. b : Πx:A. B

(s1, s2, s3) ∈ R
which indeed yields a sound and complete syntax-directed presentation for

semi-full pure type systems.

• functional Pure type systems: van Benthem Jutting et al. (1994), Pollack

(1994), Severi (1996; 1998) and the author (Barthe, 1998) give sound and

complete syntax-directed presentations for functional pure type systems. All

presentations make use of a more liberal derivability relation for the second

premise of the (abstraction) rule. Formally, their (abstraction) rule is of the

form

Γ, x : A `sd b : B Γ `fun Πx:A. B : s

Γ `sd λx:A. b : Πx:A. B

where `fun is an auxiliary derivability relation.

We see three mild disadvantages to this approach:

— conceptual clarity: our side-conditions arise from an elementary analysis of

the derivability relation for Pure Type Systems and from a well-established

result, i.e. the Classification lemma, whereas the other derivability relations

considered in the above mentioned works appear to be somewhat more

intricate;

— implementation: the functions elmt(.|.) and sort(.|.) are easier to implement

than `fun since they do not involve conversion or substitution;

— feasibility: since type-checking for ` relies on type-checking for `fun, one

needs to prove, in addition to the soundness and completeness results, that

weak normalization for ` implies weak normalization for `fun.

• weakly injective pure type systems: Poll (1993) gives a sound and complete

syntax-directed presentation for weakly injective pure type systems. The pre-

sentation is concerned with judgments of the form Γ ` M : A : s. Intuitively,

such judgments combine in a single relation the usual derivability relation

Γ ` M : A and the function elmt(.|.). As a result, Poll’s presentation is sound

and complete for weakly injective specifications rather than for injective speci-

fications. On the other hand, Poll’s presentation does not attempt to eliminate

redundant information. We conjecture that the second premise of the (abstrac-

tion) and (product) rules may be eliminated without affecting soundness and

completeness.

https://doi.org/10.1017/S0956796899003573 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003573

694 G. Barthe

7 Conclusion

We have presented a sound and complete type-checking algorithm for injective

pure type systems and indicated how to adapt the algorithm to M-injective pure

type systems. To our knowledge the algorithm, which is a simplification of Pollack’s

natural type-checking algorithm, is the simplest algorithm for type-checking injective

Pure Type Systems. Although almost all standard pure type systems are injective,

it is of theoretical interest to determine whether our approach may be generalized

to larger classes of pure type systems, e.g. by relying on the results of (Benthem

Jutting, 1993). It may also prove worthwile to extend our results to Cumulative Type

Systems, i.e. pure type systems with universe inclusion (e.g. see Pollack, 1994).

Acknowledgements

I am indebted to R. Pollack for suggesting significant improvements and finding

a mistake in an earlier version of the paper. I am grateful to M.H. Sørensen for

exchanges on the Classification Lemma, to H. Elbers, E. Poll and J. Zwanenburg

for detailed comments on an earlier version of the paper, and to S. Peyton Jones for

providing the initial motivation for this work through discussions on (Peyton Jones

& Meijer, 1997).

Most of this work was carried while working at the Centrum voor Wiskunde

en Informatica (CWI), Amsterdam, the Netherlands and at Chalmers Tekniska

Högskola, Göteborg, Sweden. I acknowledge financial support from the Dutch

Science Foundation (NWO) and from the European TMR programme.

Appendix. Beyond injectivity

We show that one can define a classification-based derivability relation that is sound

and complete with respect to ` for the class of M-injective specifications, which we

introduce below.

Definition 29

Let S = (S,A,R) be a specification.

• Let S′ = (S′,A′,R′) be a specification. H : S → S′ is a morphism of

specifications, notation H : S→ S′, if for every s1, s2, s3 ∈ S,

(s1, s2) ∈ A ⇒ (H s1, H s2) ∈ A′
(s1, s2, s3) ∈ R ⇒ (H s1, H s2, H s3) ∈ R′

• A morphism H : S→ S′ is faithful if for every s1, s2 ∈ S,

∃s3 ∈ S. (s1, s2, s3) ∈ R ⇔ ∃s′3 ∈ S′. (H s1, H s2, s
′
3) ∈ R′

• S is injective modulo or M-injective if there exists a faithful morphism of

specifications H : S→ S′ with S′ an injective specification.

There are several examples of specifications that are not injective but are M-injective,

including:

https://doi.org/10.1017/S0956796899003573 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003573

Theoretical pearls 695

• the predicative variant of Fω , defined by Peyton Jones & Meijer (1997), which

we call Q;

• the inclusion-free variant of XML (Harper & Mitchell, 1993), which we call

X;

• the specification C ′ (Barendregt, 1992), which is full and weakly injective but

not injective.

Sorts Simp Poly Kind

Axioms Simp: Kind

Rules (Simp,Simp) (Poly,Poly) (Kind,Kind)

(Kind,Simp,Poly) (Kind,Poly,Poly)

(Simp,Poly,Poly) (Poly,Simp,Poly)

The specification Q.

Sorts ? �
Axioms ? : �
Rules (?, ?) (�,�) (�, ?,�) (?,�)

The specification X.

Sorts ?0 ?1 �
Axioms ?i : � (i ∈ {0, 1})
Rules (?i, ?j) (�,�) (�, ?i) (?i,�) (i, j ∈ {0, 1})

The specification C ′.

Fact 30

1. Every injective specification is M-injective.

2. Every full specification is M-injective.

3. Q, C ′ and X are M-injective.

Proof

(1) An injective specification S is injective modulo the identity morphism on S. (2)

Every full specification is M-injective modulo the unique morphism !S : S→ ∗ since

∗ is injective and !S is faithful. (3) C ′ and X are full, hence M-injective. Q is injective

modulo H : Q→ ω given by

H Simp = H Poly = ∗
H Kind = �

q

In the rest of this appendix, we show that a suitable adaptation of the classification-

based rules for M-injective specifications is sound and complete with respect to

the rules of pure type systems. Throughout the rest of this appendix, assume

S = (S,A,R) is injective modulo H : S→ S′ with S′ = (S′,A′,R′).
Definition 31

The relation Γ `clm M : A is defined by the rules of Figure 7.

https://doi.org/10.1017/S0956796899003573 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003573

696 G. Barthe

(axiom) 〈〉 `clm s1 : s2 if (s1, s2) ∈ A

(start)
Γ `clm A : s

Γ, x : A `clm x : A
if x 6∈ dom(Γ)

(weakening)
Γ `clm A : B Γ `clm C : s

Γ, x : C `clm A : B
if x 6∈ dom(Γ)

and A ∈ V ∪S

(product)
Γ `clm A : s1 Γ, x : A `clm B : s2

Γ `clm (Πx:A. B) : s3
if (s1, s2, s3) ∈ R

(application)
Γ `clm F : (Πx:A. B) Γ `clm a : A

Γ `clm F a : B{x := a}

(abstraction)
Γ, x : A `clm b : B

Γ `clm λx:A. b : Πx:A. B
if B ∈ S ⇒ B ∈ S•
and elmt(H Γ|H (λx:A. b)) ↓

(conversion)
Γ `clm A : B Γ `clm B′ : s

Γ `clm A : B′
if B =β B

′

Fig. 7. Classification-based rules for M-injective pure type systems.

Note that `clm does not use Pollack’s optimization in the (product) rule, which

would be unsound.

The new derivability relation is sound and complete with respect to the original

one.

Proposition 32

Γ ` M : A ⇔ Γ `clm M : A

Proof

By induction on the structure of derivations. We treat the reverse implication for

the (abstraction) rule only. So assume that the last rule of the derivation is

Γ, x : A `clm b : B

Γ `clm λx:A. b : Πx:A. B
(B ∈ S ⇒ B ∈ S•) and elmt(H Γ|H (λx:A. b)) ↓

By the induction hypothesis,

Γ, x : A ` b : B

By Correctness of Types, there exists s1 ∈ S such that

Γ ` A : s1

Typing is preserved along morphisms of specifications and hence by Lemma 12(2),

H s1 = sort(H Γ|H A)

By Correctness of Types and the assumption B ∈ S ⇒ B ∈ S•, we conclude

Γ, x : A ` B : s2

Typing is preserved along morphisms of specifications and hence by Lemma 12(1),

H s2 = elmt(H Γ, x : H A|H b)

https://doi.org/10.1017/S0956796899003573 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003573

Theoretical pearls 697

Now elmt(H Γ|H (λx:A. b)) ↓ hence there exists s′3 ∈ S′ such that (H s1, H s2, s
′
3) ∈

R′. By faithfulness there exists s3 ∈ S such that (s1, s2, s3) ∈ R. By (product),

Γ ` Πx:A. B : s3

By (abstraction),

Γ ` λx:A. b : Πx:A. B

q

The results of Proposition 32 suggest that Propositions 21 and 24 scale up to

M-injective PTSs for suitably modified relations `sd and `ep.

References

Barendregt, H. (1991) Introduction to generalised type systems. J. Functional Programming

1(2), 125–154.

Barendregt, H. (1992) Lambda calculi with types. In: S. Abramsky, D. Gabbay and

T. Maibaum, editors, Handbook of Logic in Computer Science, pp. 117–309. Oxford Sci-

ence.

Barthe, G. (1998) The semi-full closure of Pure Type Systems. In: Brim, L., Gruska, J.

and Zlatuska, J., editors, Proceedings of MFCS’98: Lecture Notes in Computer Science 1450,

pp. 316–325. Springer-Verlag.

Barthe, G., Hatcliff, J. and Sørensen, M. H. B. (1998) An induction principle for Pure Type

Systems. Manuscript.

Benthem Jutting, L. S. van (1993) Typing in pure type systems. Information & Computation

105(1), 30–41.

Benthem Jutting, L. S. van, McKinna, J. and Pollack, R. (1994) Checking algorithms for

pure type systems. In: Barendregt, H. and Nipkow, T. editors, Proceedings of TYPES’93:

Lecture Notes in Computer Science 806, pp. 19–61. Springer-Verlag.

Berardi, S. (1990) Type dependence and Constructive Mathematics. PhD thesis, University of

Torino.

Coquand, T. and Herbelin, H. (1994) A-translation and looping combinators in pure type

systems. J. Functional Programming 4(1), 77–88.

Geuvers, J. H. (1993) Logics and type systems. PhD thesis, University of Nijmegen.

Geuvers, J. H. and Nederhof, M. J. (1991) A Modular Proof of Strong Normalization for the

Calculus of Constructions. J. Functional Programming 1(2), 155–189.

Harper, R. and Mitchell, J. C. (1993) On the type structure of Standard ML. ACM Trans.

Programming Languages and Systems, 15(2), 211–252.

Peyton Jones, S. and Meijer, E. (1997) Henk: a typed intermediate language. Proceedings of

the ACM Workshop on Types in Compilation.

Poll, E. (1993) A typechecker for bijective pure type systems. Technical Report CSN93/22,

Technical University of Eindhoven.

Poll, E. (1998) Theoretical pearl: Expansion postponement for normalizing pure type systems.

J. Functional Programming 8(10), 89–96.

Pollack, R. (1992) Typechecking in pure type systems. In: B. Nordström, editor, Informal

Proceedings of Logical Frameworks’92, pp. 271–288.

Pollack, R. (1994) The Theory of LEGO: A Proof Checker for the Extended Calculus of

Constructions. PhD thesis, University of Edinburgh.

https://doi.org/10.1017/S0956796899003573 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003573

698 G. Barthe

Pollack, R. (1995) A verified type-checker. In: Dezani-Ciancaglini, M. and Plotkin, G., editors,

Proceedings of TLCA’95: Lecture Notes in Computer Science 902, pp. 365–380 Springer-

Verlag.

Severi, P. (1996) Normalisation in lambda calculus and its relation to type inference. PhD thesis,

Technical University of Eindhoven.

Severi, P. (1998) Type inference for pure type systems. Information & Computation 143(1),

1–23.

Terlouw, J. (1989) Een nadere bewijstheoretische analyse van GSTT’s. Manuscript (in Dutch).

https://doi.org/10.1017/S0956796899003573 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003573

