ON THE ANNIHILATORS OF THE INJECTIVE HULL OF A MODULE

Kwangil Koh

In [2, page 151], J. Lambek proposes the following exercise: With any maximal right ideal M of a ring R with 1 associate the ideal $O_M = \{r \ \epsilon \ R : \ \forall \ x \ \epsilon \ R \ \ \} \ t \not \in M$, $r \ x \ t = 0\}$. Show that O_M is the right annihilator of the injective hull of the right R-module R/M. The purpose of this note is to show that the above statement is true for a much larger class of right ideals than that of maximal regular right ideals of a ring. If R is a ring, let C(R) be a class of right ideals in the ring R such that M ϵ C(R) if and only if

- (i) $R^{2} \ \mbox{$\stackrel{d}{\underline{}}$} \ M$ and there exists a $\epsilon \ R$, a $\mbox{$\stackrel{d}{\varepsilon}$} \ M$, such that aM $\subseteq \ M$;
- (ii) $\operatorname{Hom}_{R}(\widetilde{R/M},\widetilde{R/M})$ is a division ring where $\widetilde{R/M}$ is the quasi-injective hull of the right R-module R/M;
- (iii) if N is a non-zero submodule of R/M, then there is a non-zero f ϵ Hom $_R$ (R/M, R/M) such that f(R/M) \subseteq N.

Clearly, any maximal right ideal M of a ring R with 1, belongs to C(R). However, a member of C(R) is not necessarily a maximal right ideal of the ring R. For example, if R is a commutative ring and P is a prime ideal of R such that $P \neq R$, then R/P satisfies (i) and (iii). By [1, Theorem 3.2, Lemma 3.3], one can also see that R/P satisfies (ii). Hence $P \in C(R)$. In fact if R is a semi-prime ring with a uniform right ideal U such that the (right) singular ideal of R is zero then the right annihilator of the set $\{u\}$ for $u \in U$, $u^2 \neq 0$, is a member of C(R) (see [1, Theorem 2.2]).

THEOREM. Let R be an arbitrary ring with a regular element. If M ϵ C(R) then ${}^{O}_{M}$ is the right annihilator of the injective hull of the right R-module R/M.

LEMMA 1. $\{y \in R/M : yR = 0\} = \{0\}$.

<u>Proof.</u> Let Γ = {y ϵ R/M : yR = 0}. If Γ is a non-zero submodule of R/M then by (iii) one can find a non-zero endomorphism f of R/M such that $f(R/M)R \subseteq \Gamma R = 0$ and $R^2 \subseteq M$ since Ker f = 0. This of course violates (i).

COROLLARY. If a ϵ R such that aR \subseteq M then a ϵ M.

<u>Proof.</u> If a \notin M then a + M ϵ Γ in Lemma 1 and Γ would be a non-zero submodule of R/M, which is absurd in view of Lemma 1.

LEMMA 2. $O_{M} \subseteq M$.

<u>Proof of the Theorem</u>. Let R/M be the injective hull of the right R-module R/M and let $(\widehat{R/M})^{\gamma} = \{r \in R : (\widehat{R/M})r = 0\}$. If there is $r_0 \in (R/M)^{\gamma}$ such that $r_0 \notin O_M$, then there is a ϵ R such that r_0 at \neq 0 for any t \nmid M. That is $(r_0a)^{\gamma}\subseteq M$. Let c be a regular element in R. Then $(cr_0a)^{\gamma} \subseteq M$. Let $T = \{x \in \widehat{R/M} : x[(cr_0a)^{\gamma}] = 0\}$. If y ϵ T, define f: $(cr_0 a)r \rightarrow yr$. Then f is an R-homorphism from a right ideal $\operatorname{cr}_{\cap} aR$ into $\widehat{R/M}$. Let \overline{f} be an extension of f to R. Then $y = \overline{f}(cr_0 a) = \overline{f}(c)r_0 a$ and $y \in (R/M)r_0 a$. That is $T \subseteq (R/M)r_0 a = 0$. By (i) there is b ϵ R , b \notin M , such that bM \subseteq M . Let x = b + M . Then $x[(cr_0a)^{\gamma}] = 0$ since $(cr_0a)^{\gamma} \subseteq M$ and $xM \subseteq M$. Therefore $x \in T$ and b ϵ M. This is impossible. Thus $\widehat{(R/M)}^{\gamma} \subseteq O_{\widehat{M}}$. Now note that for any r ϵ R and any b ϵ O , rb, br are members of O . Since $O_M \subseteq M$ by Lemma 2, $RO_M \subseteq M$ and $(R/M)O_M = 0$. If $(\widehat{R/M})O_{\widehat{M}} \neq 0$ then there exist elements x ϵ $(\widehat{R/M})$ and b ϵ $O_{\widehat{M}}$ such that xb \neq 0. Since (R/M) is an essential extension of R/M, there is $r_0 \in R$ such that xbr₀ \neq 0 and xbr₀ $\in R/M$. Now xbr₀R is a non-zero submodule of $\,R/M\,$ by Lemma 1. Let $\,h\,$ be a non-zero endomorphism of R/M such that $h(R/M) \subseteq xbr_0R$. Let a ϵ R such that a ϵ M and $aM \subseteq M\,. \ \ \text{Then h(a + M) = xbr_0} \\ r^1 \ \ \text{for some r'} \ \epsilon \ R\,. \ \ \text{Let t} \ \epsilon \ R\,, \ t \ \ \ M$ such that $br_0 r't = 0$. Then $h(at + M) = xbr_0 r't = 0$ and at ϵM . This is impossible since the induced endomorphism $g_{a}: r + M \rightarrow ar + M$ is non-zero and Ker $g_2 = 0$ by (ii). Thus $(R/M)^{\gamma} = O_M$.

REFERENCES

- 1. K. Koh and A.C. Mewborn, A class of prime rings. Canad. Math. Bull. 9 (1966) 63-72.
- 2. J. Lambek, Lectures on rings and modules. (Ginn-Blaisdell, 1966.)