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1. Introduction

Let p be a prime number and Qp be an algebraic closure of the p-adic numbers Qp.
The goal of this article is to determine the reductions of certain 2-dimensional p-adic

representations of GQp
=Gal

(
Qp/Qp

)
that are semistable and not crystalline in the sense

of Fontaine [15]. Examples of such representations arise from local p-adic representations
associated with eigenforms with Γ0(p)-level.

1.1. Main result

Write vp for the p-adic valuation on Qp, normalized so that vp(p) = 1. Choose � ∈ Qp

such that �2 = p. Then for each integer k ≥ 2 and each L ∈Qp, there is a 2-dimensional

filtered (ϕ,N)-module Dk,L =Qpe1⊕Qpe2 where, in the basis (e1,e2), we have

ϕ=

(
�k 0
0 �k−2

)
, N =

(
0 0
1 0

)
, FiliDk,L =

⎧⎪⎨⎪⎩
Dk,L if i≤ 0,

Qp · (e1+Le2) if 1≤ i≤ k−1,

{0} if k ≤ i.

(1.1)

Each Dk,L is weakly admissible, so a theorem of Colmez and Fontaine implies there is a

unique 2-dimensional Qp-linear representation Vk,L of GQp
such that Dk,L =D∗

st (Vk,L).
Up to a twist by a crystalline character, the representations Vk,L enumerate all Qp-linear
2-dimensional semistable and non-crystalline representations of GQp

. They are irreducible

except if k = 2.

We aim to determine the semisimple mod p reductions V k,L of Vk,L. Twenty years

ago, Breuil and Mézard determined V k,L for even k < p and any L [7, Théorème 4.2.4.7].
Guerberoff and Park recently studied odd k < p [17, Theorem 5.0.5]. The reader who

takes a moment to examine the cited theorems should be left with an impression of the

complicated dependence of V k,L on L, and that is just for k < p.
Prior results are limited by their ambition to determine V k,L for all L. Here, we focus on

determining V k,L for any k while restricting to L that place Vk,L in a p-adic neighborhood

of a crystalline representation (see §1.2). Write Qp2 for the unramified quadratic extension
of Qp, χ for its quadratic character modulo p, and ω2 for a niveau 2 fundamental character

on GQp2
.

Theorem 1.1 (Theorem 4.1). Assume k ≥ 4 and p �= 2. Then, if

vp(L)< 2− k

2
−vp((k−2)!),

we have V k,L ∼= Ind
GQp

GQ
p2

(
ωk−1
2 χ

)
.

To be accurate, our method proves Theorem 1.1 when k ≥ 5 or p = 3 and k = 4. The

theorem holds for k = 4 and p≥ 5 by the work of Breuil and Mézard, and it is consistent
with their work and the work of Guerberoff and Park for 5 ≤ k < p. Our method also

directly obtains a result for k = 3 and k = 4 with a weaker bound (see Remark 4.8 for a

more detailed discussion). Our exclusion of p= 2 is more fundamental (see Remark 1.4).
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Remark 1.2. When k < p and k is even, the bound in Theorem 1.1 is optimal by the
results of Breuil and Mézard. The same can be said if 5≤ k < p and k is odd, by the work

of Guerberoff and Park. We do not know to what extent the bound is optimal for higher

weights (see §1.3).

Theorem 1.1 is a natural analogue of widely studied theorems that determine
reductions of 2-dimensional, irreducible, crystalline representations of GQp

. For instance,

Buzzard and Gee [9] developed a strategy to determine reductions of certain crystalline

representations, with unbounded Hodge–Tate weights, using the p-adic local Langlands
correspondence. We do not know whether a direct analogue for semistable but non-

crystalline representations has been tried, or even whether such an approach would be

feasible.

Another approach in the crystalline case is via integral p-adic Hodge theory. Berger [4]
and Berger, Li, and Zhu [5] proved local constancy results for reductions of crystalline

representations using Wach modules. Recently, the first two authors of this article

improved the Berger–Li–Zhu result using Kisin modules [3]. Those are what we will use
here also. One incentive to write the previous article was as training to conduct the current

research.

Finally, an indirect approach to calculating V k,L is explained in a recent preprint by
Chitrao, Ghate, and Yasuda [10], though their investigation heads in a interesting separate

direction from ours.

1.2. Overview of strategy

We now describe our strategy, first recontextualizing Theorem 1.1 through the lens of

local constancy of reductions as in [3, 4, 5].
The parametrization of semistable and non-crystalline representations by L ∈ Qp

extends to a P1
(
Qp

)
-parametrization with a crystalline representation at ∞. Namely,

for L �= 0 we consider Dk,L with basis (e′1,e
′
2) = (e1,Le2) – in which case, rather than

equation (1.1), we have

ϕ=

(
�k 0

0 �k−2

)
, N =

(
0 0

L−1 0

)
, FiliDk,L =

⎧⎪⎨⎪⎩
Dk,L if i≤ 0,

Qp · (e′1+ e′2) if 1≤ i≤ k−1,

{0} if k ≤ i.

(1.2)

Thus, Dk,L → Dk,∞ as L−1 → 0, where Dk,∞ is the filtered (ϕ,N)-module with the

same ϕ and filtration as equation (1.2) but with N = 0. In fact, Dk,∞ ∼= D∗
crys (Vk,∞),

where Vk,∞ is a 2-dimensional crystalline representation of GQp
whose Frobenius trace

is ap = �k−2 +�k. Replacing the filtered (ϕ,N)-modules with Galois representations,

we have Vk,L → Vk,∞ as L−1 → 0 (see the description in [12, §§4.5, 4.6] in terms of
the space of trianguline representations, for instance). Thus, V k,L ∼= V k,∞ for L−1 → 0.

Furthermore, vp (ap) =
k−2
2 and so

⌊
k−1
p

⌋
< vp (ap), except if p = 2 or k is small, and
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so V k,∞ ∼= Ind
GQp

GQ
p2

(
ωk−1
2 χ

)
by [3, Corollary 5.2.3]. We have reduced the theorem to the

question: At which point as L−1 → 0 do we have V k,L ∼= V k,∞?

We now recall the relationship between reductions and Kisin modules. To ease notation,

assume for the remainder of this subsection that k is even and L ∈ Qp, so Vk,L and
Vk,∞ are defined over Qp. Let S = Zp[[u]], and write ϕ : S → S for the Frobenius map

ϕ(u)=up. Then consider the category Modϕ,≤k−1
S of ϕ-modules overS with height≤ k−1

[18]. Objects in this category, which are called Kisin modules, are finite free S-modules
M equipped with a ϕ-semilinear operator ϕ : M → M such that the cokernel of the

linearization ϕ∗M→M is annihilated by E(u)k−1, where E(u) = u+p. When M satisfies

the monodromy condition, Kisin’s theory constructs a canonical semistable representation
VM such thatD∗

st(VM)∼=M/uM[1/p], for a certain filtration and monodromy on the right-

hand side. Furthermore, VM is determined by M/pM
[
u−1
]
as a ϕ-module over Fp((u)).

The challenge in calculating VM this way is determining M from VM or, equivalently,
D∗

st(VM). That task was carried out for Vk,∞ in [3, Theorem 5.2.1].

The heart of this article is a two-step argument to do the same for Vk,L as L−1 →
0. The difficulty presented by nontrivial monodromy on Dk,L requires us to develop a

new technique to pass from filtered (ϕ,N)-modules to Kisin modules. We make use of a
category intermediate between filtered (ϕ,N)-modules and Kisin modules. Namely, write

Modϕ,≤k−1
SQp

for the category of ϕ-modules over SQp
= Zp

[[
u, E

p

p

]][
1
p

]
with height ≤ k−1.

This category is close to certain filtered (ϕ,N)-modules considered by Breuil [6]. Adapting

Breuil’s work, we explicitly construct a canonical object Mk,L ∈Modϕ,≤k−1
SQp

such that if

M ∈Modϕ,≤k−1
S and Mk,L ∼=M⊗S SQp

, then VM ∼= Vk,L. ‘Explicit’ means that for any
(nonzero) L, we determine a basis of Mk,L and an exact formula for ϕ in that basis. This

is where we overcome the difficulty of nontrivial monodromy on Dk,L.
The second step is to descend Mk,L from SQp

to S when L−1 → 0, thus producing
an M for Vk,L. Here we view SQp

as a subring of R2, where R2 is the ring of p-adic

rigid analytic functions on |u| ≤ p−1/2 (using p �= 2). In [3, §4], a row-reduction algorithm

is presented for semilinear operators that, under certain conditions, can descend from
R2 to S. Specifically, the main theorem there gives a sufficient condition to descend

Mk,L⊗SQp
R2 to S. Saving the details for later, we use the explicit calculation of Mk,L

to check that those conditions are met when vp(L)< 2− k
2 +vp((k−2)!).

Remark 1.3. As already discussed, our approach in the first step is more general

than [3], as it applies in the semistable, non-crystalline case. In fact, the method is

quite general and can be used (with a suitable descent process) to compute reductions

for higher-dimensional semistable representations. For example, the third author has
used the strategy here to compute reductions of irreducible 3-dimensional crystalline

representations of GQp
with Hodge–Tate weights {0,r,s} satisfying 2 ≤ r ≤ p− 2 and

p+2≤ s≤ r+p−2 [22].

Remark 1.4. We exclude p= 2 twice. The second time, when we embed SQp
into R2, is

likely technical. However, we also exclude p= 2 when referencing the calculation of V k,∞
in [3], and that seems crucial: our strategy is based on knowing not just V k,∞ but also
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how to construct a Kisin module for Vk,∞. Including p= 2 here would necessarily require

calculating V k,∞ when p= 2 as well. We note that the formula V k,∞ ∼= Ind
GQp

GQ
p2

(
ωk−1
2 χ

)
should still be true, but we cannot justify it.

1.3. Global context

We end this introduction with a discussion of the global situation. Suppose N ≥ 1 and

f =
∑
an(f)q

n is a cuspidal (normalized) eigenform of level Γ1(N), weight k ≥ 2, and
nebentype character ψf . Eichler, Shimura, and Deligne famously associated with f a 2-

dimensional, irreducible, continuous representation Vf of Gal
(
Q/Q

)
. We normalize Vf so

that for � �Np the restriction Vf |D�
to D�, a decomposition group at �, is unramified and

the characteristic polynomial of a geometric Frobenius element is t2−a�(f)t+ψf (�)�
k−1.

The representation Vf |Dp
is semistable when p2 �N and the conductor of ψf is prime-to-p;

it is crystalline when p �N [24].

We assume now that Vf |Dp
is semistable and non-crystalline, in which case we define

the L-invariant of f to be the unique Lf ∈Qp such that Vf |Dp
∼= Vk,Lf

. The L-invariant
defined this way is called the Fontaine–Mazur L-invariant (it agrees with [23, §12] up to

a sign). It is a local quantity, but it famously arises in global situations. Examining how
it arises allows us to provide global examples where Theorem 1.1 applies and to connect

L-invariants to global phenomena on p-adic families.

Theorem 1.1 determines
(
Vf |Dp

)ss
in arbitrary weights k ≥ p as long as vp (Lf ) is

sufficiently negative, but it is not immediately obvious that eigenforms exist with vp (Lf )
so negative. Recent research, however, sheds light on the situation. For instance, Gräf

[16] and Anni, Böckle, Gräf, and Troya (see [1], which builds on [11]) have developed the

theory and practice needed to calculate the multiset of valuations of L-invariants in a fixed
weight and level. Pollack has also developed computer code to calculate L-invariants. His
method, which dates to the early 2000s, uses the appearance of L-invariants in exceptional

zero phenomena for p-adic L-functions. That method is being written up as part of a joint
investigation by Pollack and the first author.

Using their works, both Pollack and Gräf kindly calculated some L-invariants for us.

In Table 1, we partially list the p-adic valuations found when p= 3 and N = 51 = 3 ·17.
Note that the bound in Theorem 1.1 is v3 (Lf ) < 0 in weight k = 4 and v3 (Lf ) < −2 in
weight k = 6, so Table 1 provides two examples of Theorem 1.1 in weight k = 4 and one

example in weight k = 6, though none in weight k = 8.

Let us look further at p=3 and k=6 and the boundary case v3(L) =−2 in Theorem 1.1.
Pollack’s code, in fact, reports not just v3 (Lf ) for each newform f but also V f . This

refined data shows that the eigenforms with weight k = 6 and v3 (Lf ) equal to −3 and

Table 1. 3-adic valuations of some L-invariants.
k v3 (Lf ) for newforms f ∈ Sk(Γ0(51))

4 −2,−1,0,0, . . .
6 −3,−2,−1,−1,−1, . . .
8 −3,−3,− 3

2,− 3
2,− 3

2,− 3
2,−1, . . .
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−2 have isomorphic global Galois representations modulo 3. Since Theorem 1.1 applies to
v3(L) =−3, we see that there exist L-invariants with v3(L) =−2 for which the conclusion

of Theorem 1.1 continues to hold. More numerical data is required before we can theorize

about the sharpness of the bound in Theorem 1.1.
The L-invariants also arise, globally, from p-adic families. Namely, f lives in a p-adic

family of eigenforms parametrized by weights k ∈ Zp and Lf = −2dlogap(k) = −2
a′
p(k)

ap(f)

[13, Corollaire 0.7]. This appearance reveals an obstruction to the ‘radius’ of the largest

‘constant slope’ family through f. Indeed, for p �= 2, [2, Theorem 4.3] implies vp

(
L−1
f

)
≤

m(f), where m(f) is the least positive integer such that f lives in a p-adic family of

eigenforms f ′ with vp (ap(f ′)) = vp (ap(f)) and weight k′ ≡ k mod (p−1)pm(f).
So, ruling out exceptions to Theorem 1.1, vp (Lf )< 2− k

2 −vp((k−2)!) implies

• (
V f |Dp

)ss ∼= Ind
GQp

GQ
p2

(
ωk−1
2 χ

)
and

• m(f)> k
2 −2+vp((k−2)!)≈ k−2

2 + k
p−1 .

To connect these, if k �≡ 1 mod p + 1, then V f |Dp
is irreducible. On the other

hand, the second implication generically implies m(f) > k−2
2 = vp (ap(f)). The fact

that m(f) > vp (ap(f)) occurs in a situation where V f |Dp
is irreducible is not

a coincidence. It follows a pattern of counter examples found by Buzzard and

Calegari, to a conjecture of Gouvêa and Mazur, which is related to the m(f). The
counter-examples were found by Buzzard and Calegari [8]. See [2, §9] for more

discussion.

2. Theoretical background

In this section, we recall filtered (ϕ,N)-modules and Breuil and Kisin modules. We

explain, in theory, how to calculate a finite-height ϕ-module, over a ring larger than

S, associated with a filtered (ϕ,N)-module (Theorem 2.7). In §3 we carry this out in
practice in a special case.

2.1. Notations

Let k be a finite field and W (k) be the Witt vectors over k. Set K0 =W (k)[1/p] and

assume K/K0 is a totally ramified extension of degree e. Let ΛK be the ring of integers
of K, π ∈ΛK a uniformizer, and E =E(u) ∈W (k)[u] its Eisenstein polynomial. Choosing

π0 = π and π1,π2, . . . a sequence in K such that πp
i+1 = πi, we let G∞ be the absolute

Galois group of lim−→K(πi). Let O ⊆K0[[u]] be the rigid analytic functions on |u|< 1 and
S =W (k)[[u]] ⊆ O. The action of ϕ on K0[[u]], by the Frobenius on K0 and ϕ(u) = up,

preserves S⊆O ⊆K0[[u]].

We also choose F/Qp a finite extension, which will play the role of linear coefficients.
In §2.4 we assume that F contains a subfield isomorphic the Galois closure of K. We

write Λ⊆ F for the ring of integers, mF ⊆ Λ for the maximal ideal, and F for the residue

field. Define SΛ =S⊗Zp
Λ and OF = O⊗K0

F . Extending ϕ linearly, we have ϕ-stable

subrings of SΛ ⊆ SF ⊆ (K0⊗Qp
F
)
[[u]], where SF =S

[[
Ep

p

]]
⊗Qp

F .
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2.2. Kisin modules

Let R ⊆ (K0⊗Qp
F
)
[[u]] be a ϕ-stable subring containing E. A ϕ-module over R is a

finite free R-module M equipped with an injective ϕ-semilinear operator ϕM :M →M .

Let ModϕR be the category of ϕ-modules over R with morphisms being R-linear maps

that commute with ϕ. For a ϕ-module M, write ϕ∗M =R⊗ϕ,RM , so 1⊗ϕM defines an
R-linear map ϕ∗M →M called the linearization of ϕ. For h≥ 0, an element M ∈ModϕR
has (E )-height ≤ h if its linearization has cokernel annihilated by Eh. The subcategory

of ϕ-modules over R with height ≤ h is denoted Modϕ,≤h
R . A Kisin module over SΛ with

height ≤ h is an object in Modϕ,≤h
SΛ

.

Let MFϕ,N
F be the category of positive filtered (ϕ,N,K,F )-modules, which we shorten to

just filtered (ϕ,N)-modules over F (see [7, §3.1.1]). For D ∈MFϕ,N
F , set DK =K⊗K0

D;

here, ‘positive’ means Fil0DK =DK . Let Repst,hF be the category of F -linear semistable

representations V of GK whose Hodge–Tate weights lie in {0, . . . ,h}. Then there exists a
fully faithful, contravariant functor

D∗
st : Rep

st,h
F →MFϕ,N

F

whose image is the subcategory of weakly admissible filtered (ϕ,N)-modules over F (see

[14, 15] and [7, Corollaire 3.1.1.3]). For V ∈ Repst,hF and T ⊆ V a G∞-stable and Λ-

linear lattice, there exists, by [20, Theorem 5.4.1], a canonical Kisin module M=M(T )
over SΛ with height ≤ h. Naturally, we say a Kisin module M is associated with V if

M =M(T ) for some T. By [3, Corollary 2.3.2], the semisimple mod p representation V

can be determined from any associated Kisin module.
One category that intervenes in determining an M associated with V ∈ Repst,hF is

the category of (ϕ,N∇)-modules over OF [18]. Let λ =
∏

n≥0ϕ
n(E(u)/E(0)) ∈ OF . An

object MOF
∈Modϕ,N∇

OF
is a finite-height ϕ-module over OF equipped with a differential

operator N∇ lying over −uλ d
du on OF and satisfying N∇ϕ= pE(u)

E(0)ϕN∇. By [18, Theorem

1.2.15], we have quasi-inverse equivalences of categories

MFϕ,N
F

MOF

�� Modϕ,N∇
OF

.

DOF
��

(2.1)

For s > 0, write Os for the OF -algebra of rigid analytic functions converging on

|u|< p−s.

Proposition 2.1. Suppose M∈Modϕ,≤h
SΛ

, V ∈Repst,hF , and s is such that 1/pe < s< 1/e

and M⊗SΛ
Os

∼=MOF
(D∗

st(V ))⊗OF
Os in Modϕ,≤h

Os
. Then, M=M(T ) for some T ⊆ V

as before.

Proof. Since s < 1/e, π lies in the disc |u|< p−s. Since M⊗SΛ
Os

∼=MOF
(D∗

st(V ))⊗OF

Os, [3, Corollary 2.2.5] implies that MOF
:= M⊗SΛ

OF is canonically an object in

Modϕ,N∇
OF

. Then [20, Theorem 5.4.1] implies that there exists a V ′ ∈ Repst,hF such that

M = M(T ) for a lattice T ⊆ V ′ for some T. We claim that V ∼= V ′. Indeed, since
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1/pe < s < 1/e, the definition of DOF
(MOF

) in [18, §§1.2.5–1.2.7] depends on only the

finite-height ϕ-module MOF
⊗OF

Os over Os. Thus we have

D∗
st(V

′)∼=DOF
(MOF

)∼=DOF

(MOF
(D∗

st(V ))
)∼=D∗

st(V ).

Since D∗
st is fully faithful, we have V ∼= V ′, completing the proof.

Remark 2.2. To be accurate, the equivalence (2.1) is constructed in [18] only when
F = Qp. We use multiple references with the same technical limitation. We pause to

detail one approach to resolving the issue. Later, we omit details for other functors.

First, we may define the functors DOF
and MOF

using the same formulas as (2.1), or

equivalently, we can define them by forcing the diagram

MFϕ,N
F

forget

��

MOF

�� Modϕ,N∇
OF

DOF
��

forget

��

MFϕ,N
Qp

MO
�� Modϕ,N∇

O

DO
��

to commute. Here, the vertical arrows are the natural forgetful functors and the bottom
arrows are as in [18], where they are proved to be quasi-inverses. If MOF

∈ Modϕ,N∇
OF

,

we thus have a natural isomorphism α :MOF

(
DOF

(MOF
)
)∼=MOF

in Modϕ,N∇
O . Since

multiplication by x ∈ F defines an endomorphism of MOF
in Modϕ,N∇

O and α is natural,

we see that α is an isomorphism in Modϕ,N∇
OF

. Thus, MOF
is a left quasi-inverse to DOF

.
Proving that DOF

is a right quasi-inverse to MOF
is analogous.

2.3. Breuil modules

Let SBr be the p-adic completion of the divided power envelope of W (k)[u] with respect

to the ideal generated by E. Breuil [6] classically identified MFϕ,N
Qp

with a category of

filtered (ϕ,N)-modules over SBr

[
1
p

]
. We recall this, replacing SBr with a simpler ring.

One extends the Frobenius ϕ to K0[[u]] via ϕ(u) = up. We define N =−u d
du on K0[[u]].

Let ŜE be the E -completion of W (k)[u]
[
1
p

]
. For a subring R⊆ ŜE and j ≥ 0, set FiljR=

R∩EjŜE . In particular, we can take R = S :=W (k)
[[
u, E

p

p

]]
. As a subring of K0[[u]], S

is closed under ϕ and N. We define SΛ = S⊗Zp
Λ and SF = S⊗Zp

F , extending ϕ, N, and
Fil• linearly.

Clearly S ⊆ SBr ⊆ ŜE , which are compatible with the
(
u, E

p

p

)
-topology on S, the p-adic

topology on SBr, and the (E)-topology on ŜE . One advantage S enjoys over SBr is that
Filj SF = EjSF . To see this, note that any element f ∈ Filj SF can be uniquely written

in the form f =
∑

i ai(u)
Epi

pi , with ai(u) ∈K0[u] a polynomial of degree strictly less than

ep (e is the degree of E ). Then, when j < pi, we have Epi−j

pi = 1
pi−lE

pi−pl
(

Ep

p

)l
, with

l=
⌊
pi−j
p

⌋
. In this situation, i− l depends only on j, so factoring Ej out of the expression
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for f and examining the leftover summation, one sees at once that f ∈ EjSF . Note as

well: SF is an OF -algebra, and ϕ(E) = pc with c ∈ S×. In particular, ϕ(λ) ∈ S× ⊆ S×
F .

The category MFϕ,N
SF

of filtered (ϕ,N)-modules over SF , or Breuil modules over SF ,
are objects (D,ϕD) ∈ModϕSF

such that the linearization of ϕD is an isomorphism, and D
is equipped with the following:

• a decreasing filtration Fil•D by SF -submodules such that Fil0D =D and

FiliSF ·FiljD ⊆ Fili+jD
for all i,j ≥ 0;

• an operator ND :D →D that acts as a derivation over N, with
– NDϕD = pϕDND and

– ND
(
FiliD)⊆ Fili−1D for all i≥ 1.

A morphism in MFϕ,N
SF

is an SF -linear map equivariant for ϕ, N, and Fil•.
We define a functor D : MFϕ,N

F →MFϕ,N
SF

as follows:

• D :=D(D) = SF ⊗K0⊗QpF
D as an SF -module,

• ϕD = ϕ⊗ϕD,
• ND =N ⊗1+1⊗ND,
• Fil0(D) =D, and

Fili(D) =
{
x ∈ D |ND(x) ∈ Fili−1D and (evπ⊗1)(x) ∈ FiliDK

}
for i≥ 1.

Here, evπ :SF →F⊗Qp
K is the scalar extension of evπ :W (k)[u]�ΛK , the evaluation-at-

π map.

Theorem 2.3 (Breuil). The functor D : MFϕ,N
F →MFϕ,N

SF
is an equivalence of categories.

Breuil proves in [6, §6] that D is an equivalence of categories when F = Qp and S

is replaced by SBr. That one can replace SBr by S is known to some, but there does

not appear to be a reference. The only step in Breuil’s proof that requires honestly new

justification is the following analogue of [6, Proposition 6.2.1.1] (this version is even easier
to prove):

Lemma 2.4. Set D∈MFϕ,N
SF

and D=D/uD. Then there exists a unique F ⊗Qp
K0-linear

ϕ-equivariant section s :D→D of the reduction map.

Proof. First, suppose F = Qp and let (ê1, . . . ,êd) be an S
[
1
p

]
-basis of D. Write

ϕD (ê1, . . . ,êd) = (ê1, . . . ,êd)X and set X0 = X mod u. Then X ∈ pkMatd(S), X
−1
0 ∈

p�Matd(W (k)), and XX−1
0 ∈ I + upmMatd(S) for some k,�,m ∈ Z. As in the proof of

[6, Proposition 6.2.1.1], we need to show that

Yn :=Xϕ(X) · · ·ϕn(X)ϕn
(
X−1

0

) · · ·ϕ(X−1
0

)
X−1

0

converges in Matd

(
S
[
1
p

])
as n→∞. But, in the notation already used,

Yn−Yn−1 ∈ ϕn(u)pn(k+�)+mMatd(S).
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Since ϕn(u)pnr → 0 in S
[
1
p

]
for any fixed r, we see that Yn−Yn−1 → 0 in Matd

(
S
[
1
p

])
,

as needed.

If F �= Qp, the proof already given implies that there exists a unique K0-linear ϕ-
equivariant section s :D→D. If x ∈ F×, then x−1sx is also K0-linear and ϕ-equivariant,

and thus s is F -linear.

Proof of Theorem 2.3. Define DSF
: MFϕ,N

SF
→MFϕ,N

F as follows. Set D =DSF
(D) =

D/uD with its induced action of ϕ and N. For s in Lemma 2.4, (evπ⊗1)◦s :D→D/ED
induces a canonical isomorphism DK

∼=D/ED. The filtration Fili(DK) is the pullback of

the filtration on D/ED defined as the image Fili(D)→D/ED. The arguments in [6], with

Lemma 2.4 replacing its Proposition 6.2.1.1, show that DS[ 1p ]
and D are quasi-inverses

when F =Qp. In general, see Remark 2.2.

2.4. Comparison

We now assume that F contains a subfield isomorphic to the Galois closure of K (see

Lemma 2.5). In practice, as in §§3 and 4, we take K =Qp, so this is no hindrance.

In the prior sections, we have described equivalences

Modϕ,N∇
OF

∼= �� MFϕ,N
F

∼= �� MFϕ,N
SF

. (2.2)

An analog of [21, Corollary 3.2.3] allows for a description of the composition that,
unfortunately, is not practical for calculations. In the following, though, we explain how to

determine MOF
(D)⊗OF

SF as a ϕ-module over SF from D, up to determining D=D(D).

A key technical point, which follows from the next lemma, is that filtrations on Breuil
modules over SF are always free, in contrast to the filtrations on objects in MFϕ,N

F

(compare with [7, Exemple 3.1.1.4]).

Lemma 2.5. Suppose that N is a finite free SF -module and H⊆N is an SF -submodule

such that EjN ⊆H for some j ≥ 0. Then H is finite free over SF .

Proof. We may assume j = 1. Indeed, consider the nested sequence Hi = H+EiN of

SF -modules, which satisfy EHi ⊆Hi+1 ⊆Hi. By the j = 1 case we deduce that H1 ⊆N
is free, and then H2, and so on until Hj =H is free. We may also assume N ∼= SF . Indeed,

if 0→N ′′ →N f→N ′ → 0 is an exact sequence of finite free SF -modules, then H′ = f(H)

and H′′ = ker(f)∩H satisfy EN ′′ ⊆H′′ and EN ′ ⊆H′. So if both H′′ and H′ are free,

then H∼=H′′⊕H′ is free as well.
We have reduced to proving that if I ⊆ SF is an ideal containing E, then I is free. Since

F contains a subfield isomorphic to the Galois closure of K, we may decompose SF =∏
σ∈Hom(K0,F )SF,σ where SF,σ = Λ

[[
u, σ(E)p

p

]][
1
p

]
is a domain. The ideal I decomposes

as a product of ideals Iσ such that σ(E)SF,σ ⊆ Iσ. Since σ(E) is nonzero, it suffices to
show that each Iσ is principal. Write Homσ(K,F ) for the embeddings τ :K → F lifting

σ. Then we have a canonical isomorphism

SF,σ/σ(E)SF,σ
∼=K⊗K0,σ F

∼= FHomσ(K,F ).
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So Iσ/σ(E)SF,σ
∼= FT for some subset T ⊆ Homσ(K,F ). But JT =

∏
τ∈T (u− τ(π)) ·SF

also contains σ(E)SF,σ and JT /σ(E)SF,σ
∼= FT . Thus Iσ = JT is principal, completing

the proof.

We now consider an ad hoc category of ‘Breuil modules without monodromy’. Let
MFϕ,h

SF
denote the category whose objects are (D,ϕD)∈ModϕSF

such that the linearization

of ϕD is an isomorphism, and D is equipped with a finite free SF -submodule FilhD ⊆D
such that FilhSF ·D ⊆FilhD. By Lemma 2.5 there is a natural forgetful functor MFϕ,N

SF
→

MFϕ,h
SF

.

Now define D′ :Modϕ,≤h
SF

→MFϕ,h
SF

by declaring D′(M)=SF ⊗ϕ,SF
M as an SF -module,

and

• ϕD′(M) = ϕ⊗ϕM and

• FilhD′(M) =
{
x ∈ D′(M) | (1⊗ϕM)(x) ∈ FilhSF ·M

}
.

Since EhD′(M)⊆ FilhD′(M), Lemma 2.5 implies that FilhD′(M) is finite free over SF .

Proposition 2.6. The functor D′ is an equivalence.

Proof. We first show that D′ is fully faithful. Suppose M and M′ are in Modϕ,≤h
SF

. Write

D :=D′(M) andD′ :=D′(M′). Choose a basis (e1, . . . ,ed) ofM and write ϕM(e1, . . . ,ed)=
(e1, . . . ,ed)A with A ∈ Matd(SF ). Since M has height ≤ h, there exists a matrix B ∈
Matd(SF ) such that AB = BA = EhId. By assumption, FilhD has basis (α1, . . . ,αd) =

(ẽ1, . . . ,ẽd)B where ẽi = 1⊗ ei ∈ D compose a basis of D. Similarly, we get A′,B′, and ẽ′i
from a basis (e′1, . . . ,e

′
d′) of M′.

Now suppose f :D→D′ is a morphism in MFϕ,h
SF

. We write f (ẽ1, . . . ,ẽd) = (ẽ′1, . . . ,ẽ
′
d′)X

for X ∈ Matd(SF ). Since f is ϕ-equivariant, we have Xϕ(A) = ϕ(A′)ϕ(X), and since

f
(
FilhD

)
⊆ FilhD′, we have XB = B′Y for some Y ∈ Matd(SF ). Using AB = BA =

EhId and A′B′ = B′A′ = EhId′ , we see that ϕ(Y )ϕ
(
Eh
)
=Xϕ

(
Eh
)
, and so X = ϕ(Y )

because ϕ(E) ∈ S×
F . It follows that Y A = A′ϕ(Y ). Define f :M→M′ by f(e1, . . . ,ed) =

(e′1, . . . ,e
′
d′)Y . Then f is ϕ-equivariant and f =D′(f) since X = ϕ(Y ). This shows that D′

is full, and since Y determines X, we also see that D′ is faithful.
Now we prove that D′ is essentially surjective. Given a D ∈ MFϕ,h

SF
, choose bases

(e1, . . . ,ed) of D and (α1, . . . ,αd) of FilhD. Write (α1, . . . ,αd) = (e1, . . . ,ed)B and

ϕD(e1, . . . ,ed) = (e1, . . . ,ed)X with det(X) ∈ S×
F . Since EhD ⊆ FilhD, there exists

A ∈ Matd(SF ) such that AB = BA = EhId. Since ϕ(E) = pc ∈ S×
F , we see that

Xϕ(B) ∈ GLd(SF ), whereas ϕD(α1, . . . ,αd) = (e1, . . . ,ed)Xϕ(B). Thus (f1, . . . ,fd) =

(e1, . . . ,ed)Xϕ(B)p−hc−h is a basis of D and ϕD(α1, . . . ,αd) = (f1, . . . ,fd)p
hch. Finally,

(α1, . . . ,αd) = (f1, . . . ,fd)B
′ where B′ = Y B and Y =

(
Xϕ(B)p−hc−h

)−1
, so there

exists an A′ such that A′B′ = B′A′ = EhId. Now define M =
⊕d

i=1SF fi and set

ϕM(f1, . . . ,fd) = (f1, . . . ,fd)A
′. Then M∈Modϕ,≤h

SF
and D′(M) =D (set fi = 1⊗ fi).

We now reach the main theorem of this section, which provides a mechanism to calculate

a finite-height ϕ-module over SF explicitly from D ∈MFϕ,N
F . We write ϕ(E) = pc with

c ∈ S× as before.
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Theorem 2.7. Suppose D ∈MFϕ,N
F . Write D′ ∈MFϕ,h

SF
for the image of D(D) under the

natural forgetful functor and M=MOF
(D)⊗OF

SF . Then there is a natural isomorphism
D′(M)∼=D′.
In particular, M is recovered from D via the following steps:

(1) Select SF -bases (e1, . . . ,ed) of D =D(D) and (α1, . . . ,αd) of Fil
hD.

(2) Let ϕD(e1, . . . ,ed) = (e1, . . . ,ed)X and (α1, . . . ,αd) = (e1, . . . ,ed)B with X,B ∈
Matd(SF ).

(3) Then M has an SF -basis (f1, . . . ,fd) in which ϕM(f1, . . . ,fd) = (f1, . . . ,fd)A, where

A= EhB−1Xϕ(B)p−hc−h.

Proof. To start, once the isomorphism D′(M)∼=D′ is justified, the ‘in particular’ follows

by tracing through the second half of the proof of Proposition 2.6.
For MOF

∈Modϕ,N∇
OF

we define D = DOF
(MOF

) = SF ⊗ϕ,OF
MOF

, which is a finite

free SF -module, and equip it with the following structure of a Breuil module over SF :

• ϕD = ϕ⊗ϕM,
• ND =N ⊗1+ p

ϕ(λ) ⊗N∇,

• Fili(D) =
{
x ∈ D | (1⊗ϕM)(x) ∈ FiliSF ⊗OF

MOF

}
.

Following the proof of [20, Proposition 3.2.1], replacing S by SBr, and adding linear F -

coefficients, we see that DOF
: Modϕ,N∇

OF
→MFϕ,N

SF
defines a functor. Moreover, if MOF

has height ≤ h, then

DOF
(MOF

)∼=D′ (MOF
⊗OF

SF )

in the category MFϕ,h
SF

. Thus it remains to show that DOF
makes the diagram of functors

MFϕ,N
F

D
�� MFϕ,N

SF

Modϕ,N∇
OF

DOF

��

DOF

�����������

(2.3)

commute as well. (In particular, DOF
is an equivalence.) It is enough to check this when

F = Qp (by Remark 2.2). In that case, if S is replaced by SBr, this is the statement

of [20, Corollary 3.2.3]. The proof there goes through here with only one adjustment.
Namely, the isomorphism SBr[

1
p ]⊗K0

DO(MO) ∼= SBr[
1
p ]⊗ϕ,O MO implicit in the first

two displayed equations there needs to have SBr replaced by S. To make this adjustment,

consider the map ξ : O⊗K0
D(MO) → MO constructed in [18, Lemma 1.2.6]. Thus ξ
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is a ϕ-equivariant injection with cokernel annihilated by λh for some h ≥ 0. From the
diagram in the middle of the proof of [18, Lemma 1.2.6], we have ξ factors

O⊗K0
D(MO)

��

ξ
�� MO.

O⊗ϕ,OMO.
1⊗ϕ

		�����������

(2.4)

We deduce that the vertical arrow has cokernel annihilated by ϕ(λ)h. Since ϕ(λ) ∈ S×,
we have

S[1/p]⊗K0
D(MO)

1⊗ξ∼= S[1/p]⊗ϕ,OMO.

This completes the proof.

Remark 2.8. The previous proof makes it clear to see that for D ∈ MFϕ,N
F and

D=D(D) ∈MFϕ,N
SF

, the map evπ induces an isomorphism Fili+1D/EFiliD∼=Fili+1DK .

Indeed, since evπ
(
Fili+1D)=Fili+1DK , it suffices to show that ED∩Fili+1D=EFiliD.

Pick y = Ex ∈ Fili+1D with x ∈ D. The proof of the theorem, especially the fact that

diagram (2.3) commutes, shows that

Fili+1(D) =
{
x ∈ D | (1⊗ϕM)(x) ∈ Fili+1SF ⊗OF

MOF

}
.

Thus, we see that (1⊗ϕM)(Ex) =E(1⊗ϕM)(x) ∈ Fili+1SF ⊗OF
MOF

. Since FilnSF =

EnSF , it is clear that (1⊗ϕM)(x) ∈ FiliSF ⊗OF
MOF

, and hence x ∈ FiliD as required.
(Compare with the end of the proof of [21, Proposition 3.2.1].)

Example 2.9. Suppose K = Qp and V is crystalline. By [19], D = D∗
st(V ) admits a

strongly divisible lattice
(
M,FiliM,ϕi

)
. More precisely, there exist an F -basis (e1, . . . ,ed)

of D and integers 0 = n0 ≤ n1 ≤ ·· · ≤ nh ≤ d such that FiliD :=
⊕

j≥ni
Fej , and

ϕ(e1, . . . ,ed) = (e1, . . . ,ed)XP where X ∈ GLd(Λ) and P is a diagonal matrix whose iith

entry is psi , where si = max{j | nj ≤ i} = max
{
j | ei ∈ FiljD

}
. Since N = 0 on D, we

easily compute that FilhD admits a basis (e1, . . . ,ed)B where B is the diagonal matrix

with (i,i)th entry Eh−si (compare §3.1). By the steps outlined in Theorem 2.7, using the

basis 1⊗ei ∈D, we see that the matrix of ϕ onM is given by A=EhB−1XPϕ(B)p−hc−h,
where A=DXC,D is a diagonal matrix with (i,i)th entry Esi , and C is a diagonal matrix

with (i,i)th entry c−si .

3. An explicit determination of a Breuil module

In this section, we assume K = Qp. We choose π = −p, so E(u) = u+p. We keep F/Qp

as a linear coefficient field and recall that Λ is its ring of integers. In §3.2, we explain the

definition of the filtered (ϕ,N)-module Dh+1,L ∈MFϕ,N
F , for h≥ 1 and L ∈ F , discussed

in the introduction. Let Mh+1,L =MOF
(Dh+1,L)⊗OF

SF ∈Modϕ,≤h
SF

. The ultimate goal

(Theorem 3.7) is to describe the matrix of ϕ in a certain trivialization Mh+1,L ∼= S⊕2
F , at

least if L �= 0. We begin by describing the Breuil module Dh+1,L =D (Dh+1,L).
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3.1. The filtration on some rank 2 Breuil modules

In order to minimize notation, in this subsection we let D ∈MFϕ,N
F be any 2-dimensional

filtered (ϕ,N)-module with Hodge–Tate weights 0< h. We also choose any basis (f1,f2)

for D such that FilhD = Ff2. We write ND(f1,f2) = (f1,f2)
(
a b
c d

)
with

(
a b
c d

) ∈Mat2(F ).

(Compare with Lemma 3.6.)
Set D =D(D) = SF ⊗F D. For f ∈D we write f̂ = 1⊗f ∈ D. In particular, D is a free

SF -module with basis
(
f̂1,f̂2

)
. Recall that FiliD is defined by Fil0D =D and, for i≥ 1,

FiliD =
{
x ∈ D |ND(x) ∈ Fili−1D and evπ(x) ∈ FiliD

}
.

When i= 1, the condition ND(x) ∈ Fil0D =D is a tautology. So Fil1D = SF f̂2+SFEf̂1.

Proposition 3.1. There exist x1, . . . ,xh−1 ∈ F such that, if 0≤ i≤ h,

FiliD = SF ·
⎛⎝f̂2+

⎛⎝i−1∑
j=1

xjE
j

⎞⎠ f̂1
⎞⎠+SF ·Eif̂1.

Proof. Assume by induction on 0 ≤ i < h that there exist x1, . . . ,xi−1 ∈ F such that for

each 0 ≤ j ≤ i we have FiljD = SF · f̂ (j)2 +SF · f̂1, where f̂ (j)2 = f̂2+
(∑j−1

m=1xmE
m
)
f̂1.

Setting f̂
(0)
2 = f̂

(1)
2 = f̂2 handles the cases i= 0 and i= 1. So suppose 1≤ i < h.

For the (i+1)th case, we first define xi ∈ F . By induction, ND
(
f̂
(i)
2

)
∈ Fili−1D =

SF f̂
(i−1)
2 +SFE

i−1f̂1. Since f̂
(i−1)
2 = f̂

(i)
2 −xi−1E

i−1f̂1, we can write

ND
(
f̂
(i)
2

)
= dif̂

(i)
2 + biE

i−1f̂1

for some di,bi ∈ SF (compare Lemma 3.2). Set xi = bi(π)/iπ, and then set f̂
(i+1)
2 = f̂

(i)
2 +

xiE
if̂1. Since 2≤ i+1≤ h, we have Fili+1D = Ff2. Thus, evπ

(
f̂
(i+1)
2

)
= f̂2 ∈ Fili+1D.

Further,

ND
(
f̂
(i+1)
2

)
=ND

(
f̂
(i)
2

)
−xiiuEi−1f̂1+xiE

iND
(
f̂1

)
(3.1)

= dif̂
(i)
2 +(bi−xiiu)Ei−1f̂1+xiE

iND
(
f̂1

)
.

Note that the last summand in equation (3.1) lies in FiliSF ·D ⊆ FiliD, whereas the first

lies in FiliD. By definition we have evπ(bi−xiiu) = 0, and so the middle summand also

lies in FiliSF ·D ⊆ FiliD. Thus f̂
(i+1)
2 ∈ Fili+1D.

For a moment, define F i+1D = SF f̂
(i+1)
2 + SFE

i+1f̂1 ⊆ Fili+1D. We want to show

equality. Since Ef̂
(i)
2 = Ef̂

(i+1)
2 −xiEi+1f̂1, we in fact have

EFiliD ⊆ F i+1D ⊆ Fili+1D.
Since evπ gives an isomorphism Fili+1D/EFiliD ∼= Ff2 by Remark 2.8, and

evπ
(
F i+1D) �= 0, we conclude that the natural map F i+1D/EFiliD → Fili+1D/EFiliD

is an isomorphism. Thus, F i+1D = Fili+1D.
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The proof of Proposition 3.1 allows for explicit control of the scalars xj in terms of the
monodromy matrix

(
a b
c d

)
. For the next two results, we explain this by reexamining the

proof.

Lemma 3.2. For 1≤ i≤ h−1, let di,bi ∈ SF be such that ND
(
f̂
(i)
2

)
= dif̂

(i)
2 +biE

i−1f̂1.

Then d1 = d, b1 = b, x1 =
b
π , and for 1≤ i < h−1,

di+1 = di+ cxiE
i

bi+1 = xi(a− czi−di)+(bi−xiiu)/E

xi+1 =
bi+1(π)

(i+1)π
,

where zi =
∑i

j=1xjE
j.

Proof. The values of d1, b1, and x1 follow immediately from f̂
(1)
2 = f̂2 and ND

(
f̂2

)
=

bf̂1+df̂2. Next, by equation (3.1) and because ND
(
f̂1

)
= af̂1+ cf̂2, we have

ND
(
f̂
(i+1)
2

)
= dif̂

(i)
2 +(bi−xiiu)Ei−1f̂1+xiE

i
(
af̂1+ cf̂2

)
. (3.2)

We can write f̂
(i)
2 = f̂

(i+1)
2 − xiE

if̂1 and, separately, f̂2 = f̂
(i+1)
2 − zif̂1. Thus equation

(3.2) becomes

ND
(
f̂
(i+1)
2

)
=
(
di+ cxiE

i
)
f̂
(i+1)
2 +

(−dixiEi+(bi−xiiu)Ei−1+xiE
i(a− czi)

)
f̂1.

Factoring Ei out of the f̂1-coefficient, the result is clear.

Example 3.3. In Lemma 4.4, we will need an explicit calculation of the xi and z. This

can be done using the recursive formulas already given. The calculations we need, both

of which are straightforward, are

x2 =
b

2π2
(a−d−1)

z2(0) =
b

2
(a−d−3).

(See also Example 3.9.)

Lemma 3.4. Assume that a−d ∈ Λ and bc ∈ Λ. Then for 1≤ i≤ h−1, we have

vp(xi)+vp(i!)+ i≥ vp(b).

Remark 3.5. The lemma is consistent with b= 0, since in that case xi = 0 for all i.
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Proof of Lemma 3.4. Given v ∈ R, we write

Av =

⎧⎨⎩∑
j≥0

yjE
j ∈ F [u] | vp (yj)+vp(j!)+ j ≥ v

⎫⎬⎭ .
Note that Av is a subgroup of F [u]. Since vp((j+k)!)≥ vp(j!)+vp(k!) for all nonnegative

integers j,k (because binomial coefficients are integers), we have AvAw ⊆ Av+w as well.
In particular, A0 is a ring containing Λ as a subring, and each Av is an A0-module.

The lemma is equivalent to xiE
i ∈ Avp(b) for all 1 ≤ i ≤ h− 1, but to show xiE

i ∈
Avp(b) it suffices to show biE

i−1 ∈Avp(b). Indeed, biE
i−1 ∈ bi(π)Ei−1+EiF [u], and so if

biE
i−1 ∈ Av (for any v), then vp(bi(π))+ vp((i− 1)!)+ i− 1 ≥ v. Since bi(π) = xiiπ, by

definition, we would clearly have vp(xi)+vp(i!)+ i≥ v as well.

We have reduced to showing biE
i−1 ∈Avp(b) for 1≤ i≤ h−1. For i= 1, by Lemma 3.2

we have b1 = b, and so the claim is clear. Now assume that bjE
j−1 ∈ Avp(b) for all j ≤ i.

By the previous paragraph, we have xjE
j ∈Avp(b) for all j ≤ i, and so zj ∈Avp(b) for all

j ≤ i (including z0, which we define to be 0). By Lemma 3.2, we have

bi+1E
i = (a− czi−di)xiEi+(bi−xiiu)Ei−1

= (a−d− c(zi+ zi−1))xiE
i+ biE

i−1−xiiπEi−1−xiiEi.

(3.3)

It is clear by induction that the final three summands are in Avp(b). For the first summand,
we know zi+zi−1 ∈Avp(b). Since vp(c)+vp(b)≥ 0 and a−d∈Λ, we see that a−d−c(zi+
zi−1) ∈A0. Since xiE

i ∈Avp(b), by induction, the first summand also lies in Avp(b). Thus,

bi+1E
i ∈Avp(b).

3.2. Explicit filtered (ϕ,N)-modules

Now assume F contains an element � such that �2 = p. For L ∈ F and h≥ 1, we define

Dh+1,L = Fe1⊕Fe2 ∈MFϕ,N
F , where, in the basis (e1,e2),

ϕ=

(
�h+1 0

0 �h−1

)
, N =

(
0 0

1 0

)
, FiliDh+1,L =

⎧⎪⎨⎪⎩
Dh+1,L if i≤ 0,

F · (e1+Le2) if 1≤ i≤ h,

{0} if h < i

(see [7, Exemple 3.1.2.2(iv)]). It is useful make a change of basis. Set ap =�h−1+�h+1.

Lemma 3.6. If L �= 0, then (f1,f2) = (−ϕ(e1 +Le2),e1 +Le2) is a basis of Dh+1,L in
which

ϕ=

(
ap −1

ph 0

)
, N =

p

L(1−p)
(

1 �−h−1

�h+1 −1

)
, FiliDh+1,L =

⎧⎪⎨⎪⎩
Dh+1,L if i≤ 0,

Ff2 if 1≤ i≤ h,

{0} if h < i.
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Proof. If L �= 0, then e1+Le2 is not an eigenvector of ϕ, so (f1,f2) is a basis. We leave

calculating the matrices for the reader.

Now let Dh+1,L =D (Dh+1,L) and Mh+1,L =MOF
(Dh+1,L)⊗OF

SF ∈Modϕ,≤h
SF

. Recall

that c= ϕ(E)/p ∈ S×
F . Let λ− =

∏
n≥0ϕ

2n+1(E)/p and λ++ = ϕ(λ−).

Theorem 3.7. If L �= 0, there exists a basis of Mh+1,L in which the matrix of ϕ is

given by

A=

⎛⎜⎝(ap−phz)
(

λ−
λ++

)h
−1+ϕ(z)

(
ap−phz

)
Eh Ehϕ(z)

(
λ++

λ−

)h
⎞⎟⎠,

where z =
∑h−1

j=1 xjE
j ∈ F [E]. Moreover, if vp

(L−1
)≥−1, then

vp (xj)≥ vp
(L−1

)− h−1

2
−vp(j!)− j (3.4)

for each 1≤ j ≤ h−1.

Proof. Let (f1,f2) be the basis as in Lemma 3.6. Set f̂1 = 1⊗f1 and f̂2 = 1⊗f2, elements

of Dh+1,L, as before. Then the matrix of ϕ in the basis
(
f̂1,f̂2

)
of Dh+1,L is X =

(
ap −1

ph 0

)
.

Moreover, Proposition 3.1 implies that FilhDh+1,L = SFα1⊕SFα2, where

(α1,α2) =
(
f̂1,f̂2

)(Eh z

0 1

)
=:
(
f̂1,f̂2

)
B

for z =
∑h−1

j=1 xjE
j and some xj ∈ F . Theorem 2.7 implies that Mh+1,L has a basis in

which the matrix of ϕ is given by

A′ = EhB−1Xϕ(B)p−hc−h =

(
a−phz p−hc−h

(−1+ϕ(z)
(
ap−phz

))
Ehph p−hc−hEhphϕ(z)

)
. (3.5)

Since λ− and λ++ are units in SF , we can replace A′ by CA′ϕ
(
C−1

)
for C =

(
phλh

− 0

0 λh
++

)
.

A short calculation shows A= CA′ϕ
(
C−1

)
, completing the general proof.

Finally, if vp
(L−1

)≥−1, then the matrix of N in Lemma 3.6 satisfies the hypotheses
of Lemma 3.4, so the estimates (3.4) follow from the b-entry of the monodromy matrix:

b=
−p

�h+1L(1−p) =
−1

�h−1L(1−p) .

This completes the proof.

Remark 3.8. An analogous calculation in the crystalline case, where z = 0 (see Remark
3.5), was made in [3, §3]. The technique here, passing through the category MFϕ,N

SF
, is

different, but the descriptions are the same (compare Example 2.9).

Example 3.9. We need one ad hoc calculation in Lemma 4.4. Let h=3. By Example 3.3,

the element z in Theorem 3.7 satisfies z(0) = b
2 (a−d−3), where

(
a b
c d

)
is the monodromy
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matrix in Lemma 3.6. For p = h = 3, plugging in the explicit matrix, we see z(0) =
1
4L
(
1
L +1

)
.

4. Descent and reductions

The goal in this section is to prove the main theorem of the article. Given h ≥ 1 and

L ∈ F , we write Vh+1,L for the unique 2-dimensional representation of GQp
such that

D∗
st (Vh+1,L)∼=Dh+1,L, where Dh+1,L is as in §3.2. Write V for the semisimple reduction

modulo mF of V. Let Qp2 be the unramified quadratic extension of Qp, χ the unramified

quadratic character of GQp2
, and ω2 a niveau 2 fundamental character of Qp2 . Note that

Ind
GQp

GQ
p2

(
ωh
2χ
)
has determinant ωh, where ω is the cyclotomic character, and its restriction

to inertia is ωh
2 ⊕ωph

2 .

Theorem 4.1. Assume h≥ 3 and p �= 2. Then if L satisfies

vp
(L−1

)
>
h−1

2
−1+vp((h−1)!),

we have V h+1,L ∼= Ind
GQp

GQ
p2

(
ωh
2χ
)
.

Remark 4.2. Our contribution toward Theorem 4.1 is limited to h ≥ 4 and p = h = 3.
The case of h= 3 and p≥ 5 follows from the work of Breuil and Mézard. If we were to use

the weaker bound vp
(L−1

)
> h−1

2 + vp((h− 1)!), then our calculation would also cover

the cases of h= 2 and h= 3. See Remark 4.8 for further explanations.

We plan to take the matrix of ϕ acting on Mh+1,L = MOF
(Dh+1,L)⊗OF

SF as in

Theorem 3.7 and replace it with a ϕ-conjugate defined over SΛ when vp
(L−1

)
satisfies

the bound in the theorem. This defines a Kisin module M for Vh+1,L that allows us
to calculate the reduction V h+1,L. Despite our theorem being limited to h ≥ 3, we will

present many calculations assuming only h ≥ 2, in order to later justify Remark 4.2. So

we assume without further comment that

p �= 2 and h≥ 2; (4.1)

vp
(L−1

)
>
h−1

2
−1+vp((h−1)!).

We will clarify result by result where we need to limit to h ≥ 3 or h ≥ 4. Also, fix z =∑h−1
j=1 xjE

j as in Theorem 3.7. Note that by formula (4.1), we have vp
(L−1

)≥−1, so the

estimates (3.4) in Theorem 3.7 hold.

4.1. Preparing for descent

Consider the ring

R2 =
{
f =

∑
aiu

i ∈ F [[u]] | i+2vp(ai)→∞ as i→∞
}
.

Thus R2 is the F -Banach algebra of series converging on |u| ≤ p−1/2. We equip R2 with the

valuation vR2

(∑
aiu

i
)
= infi {i+2vp(ai)}. The canonical map OF ↪→R2 factors through
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SF , since vR2
(Ep/p) = p−2> 0. Finally, given v ∈R, we define additive subgroups H◦

v ⊆
Hv ⊆R2 by

Hv = {f ∈R2 | vR2
(f)≥ v}, H◦

v = {f ∈R2 | vR2
(f)> v} .

For any v, Hv and H◦
v are stable under ϕ. In fact, for any j ≥ 0 we have

ϕ
(
Hv ∩ujR2

)⊆Hv+j(p−1)∩upjR2, (4.2)

and the same for H◦
v replacing Hv (see, e.g., [3, Lemma 4.1.1]).

Our first lemma, concerning some entries of the matrix in Theorem 3.7, is straightfor-

ward, so we omit the proof (compare with [3, Lemma 5.1.1]).

Lemma 4.3. Let λ− =
∏

n≥0ϕ
2n+1(E)/p and λ++ = ϕ(λ−) be as in Theorem 3.7. Then

(a) λ− ∈ 1+Hp−2 and λ++ ∈ 1+Hp2−2,

(b) λ−,λ++ ∈R×
2 , and

(c) vR2

(
λ±1
−
)
= 0 = vR2

(
λ±1
++

)
.

We also prepare estimates for z. Note that by formula (4.1), the estimate (3.4) becomes

vp (xj)> vp((h−1)!)−vp(j!)− j−1≥−j−1. (4.3)

Recall that we write ap =�h−1+�h+1. Thus, vp (ap) =
h−1
2 .

Lemma 4.4. For z =
∑h−1

j=1 xjE
j as before and ν = −1+ϕ(z)

(
ap−phz

)
, we have the

following:

(a) phz ∈H◦
h−1. (c) ν ∈ −1+H◦

h−3.

(b) ϕ(z) ∈H◦
−2. (d) If h≥ 3, then ν ∈R×

2 .

Furthermore, if p= 3 and h= 3, then ϕ(z) ∈H◦
−1 and ν ∈ −1+H◦

h−2 =−1+H◦
1 .

Proof. First, vR2

(
Ej
)
= j. By the ultrametric inequality and formula (4.3), we see

vR2
(z)> inf{2(−j−1)+ j | 1≤ j ≤ h−1}=−1−h.

Part (a) follows because vR2

(
ph
)
= 2h. For (b), note that vR2

(
ϕ(E)j

)
= 2j. Thus, using

formula (4.3),

vR2
(ϕ(z))> inf{2(−j−1)+2j | 1≤ j ≤ h−1}=−2.

Continuing, ϕ(z)phz ∈ H◦
h−3 by parts (a) and (b), and since vR2

(ap) = h− 1, we have

ϕ(z)ap ∈ H◦
h−3. This proves (c). Finally, part (d) follows from the geometric series and

part (c).
Finally, suppose p= h= 3. By the argument for (c), it suffices to show that ϕ(z)∈H◦

−1.

We note that vR2

(
ϕ(E)j −E(0)j

)≥ p+2j−2 for any j. Thus, by formula (4.3),

vR2
(ϕ(z)−ϕ(z)(0))> p+2j−2−2(j+1) = p−4 =−1. (4.4)

But by Example 3.9 we have ϕ(z)(0) = z(0) = 1
4L
(
1
L +1

)
. Since vp

(L−1
)
> 0, formula

(4.4) implies vR2
(ϕ(z))>−1, as we wanted.
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We now write M2 =Mh+1,L⊗SF
R2

∼=MOF
(Dh+1,L)⊗OF

R2. Thus, M2 ∈Modϕ,≤h
R2

.

We also introduce some notation. Given A ∈Matd(R2) and C ∈GLd(R2), we write C ∗ϕ
A= C ·A ·ϕ(C)−1. Thus, if (e1,e2) is a basis of M2 and A is the matrix of ϕM2

in that

basis, C ∗ϕA is the matrix of ϕM2
in the basis (e′1,e

′
2) given by (e′1,e

′
2) = (e1,e2)C

−1.

Proposition 4.5. Assume h≥ 4 or p= h= 3. Then there exists a basis of M2 in which

the matrix of ϕM2
is
(

G −1

Eh 0

)
, where G ∈ (ap−phz)( λ−

λ++

)h
+H◦

h.

Proof. By Theorem 3.7, there is a basis (e1,e2) of M2 such that ϕM2
(e1,e2) = (e1,e2)A,

where

A=

⎛⎜⎝(ap−phz)
(

λ−
λ++

)h
−1+ϕ(z)

(
ap−phz

)
Eh Ehϕ(z)

(
λ++

λ−

)h
⎞⎟⎠=

(
μ ν

Eh η

)
,

with ν as in Lemma 4.4 and μ and η defined by the equality. Assume for now just that
h≥ 3. Then, by Lemma 4.4(d), ν ∈ R×

2 . Making a change of basis on M2, we replace A

(note that μη = (1+ν)Eh) by

A′ =
(

1 0

−η/ν 1

)
∗ϕA=

(
μ+ νϕ(η)

ϕ(ν) ν

−Ehν−1 0

)
.

Since vR2
(ν + 1) > 0 by Lemma 4.4(c), we have ν(0) ∈ Λ×. Thus ν0 = ν/ν(0) ∈ 1 +(

H◦
h−3∩uR2

)
. By formula (4.2), we have ϕk(ν0) ∈ 1 +Hh−3+mk

, where mk → ∞ as

k→∞. Thus, the infinite product ν+ =
∏

n≥0ϕ
2n(ν0) converges in R2. Set ν− = ϕ(ν+),

so ν± ∈ 1+H◦
h−3 ⊆R×

2 . We now change basis on M2 again to get a matrix A′′ for ϕM2

given by

A′′ =

( −1
ν(0)

ν−
ν+

0

0 ν+

ν−

)
∗ϕA′ =

(
G −1

Eh 0

)
,

where

G=

(
μ+

νϕ(η)

ϕ(ν)

)
ν2−

ν+ν++
(4.5)

and ν++ = ϕ(ν−).
To complete the argument, we justify G ∈ μ+H◦

h. We already know ν2−/ν+ν++ ∈ 1+

H◦
h−3. The same is true for ν/ϕ(ν). So

vR2

(
νϕ(η)

ϕ(ν)

)
≥ vR2

(ϕ(η))≥ vR2

(
ϕ(E)hϕ2(z)

)
, (4.6)

where we used Lemma 4.3 to remove λ− and λ++ from the estimate. We note that

vR2

(
ϕ(E)h

)
= 2h and vR2

(
ϕ2(z)

)≥ vR2
(ϕ(z))>−2, by formula (4.2) and Lemma 4.4(b).

Thus from formula (4.6) we deduce that vR2
(νϕ(η)/ϕ(ν)) > 2h− 2 = 2(h− 1). We also
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note that ap−phz ∈Hh−1. Thus, μ ∈Hh−1, and so returning to the definition (4.5) of μ
and G, we see

G ∈
(
μ+H◦

2(h−1)

)
· (1+H◦

h−3

)⊆ μ+H◦
2h−4+H

◦
2(h−1) = μ+H◦

2h−4.

Now, if h ≥ 4, then 2h− 4 ≥ h and so G ∈ μ+H◦
h. This completes the proof except if

p= h= 3. In that case, Lemma 4.4 shows that ν ∈ −1+H◦
1 , rather than −1+H◦

0 , from

which we deduce

G ∈ (μ+H◦
4 ) · (1+H◦

1 )⊆ μ+H◦
3 = μ+H◦

h

anyway. This completes the proof.

4.2. Descent

To descend to SΛ, we use the algorithm from [3, §4]. Write T≤d : R2 → F [u] for the

‘truncation’ operation T≤d

(∑
aiu

i
)
=
∑

i≤d aiu
i and T>d(f) = f −T≤d(f). In the next

two proofs, we will use the following principle: if f ∈R2 and vR2
(T≤d(f))>d (for instance,

if vR2
(f)> d), then T≤d(f) ∈mF [u].

Proposition 4.6. Suppose that G ∈R2 such that

(a) G ∈Hh−1,

(b) T>h(G) ∈H◦
h−1, and

(c) T≤h(G) ∈mF [u].

Then, given A=
(

G −1

Eh 0

)
, there exist C ∈GL2(R2) and P ∈mF [u] such that C ∗ϕA=(

P −1

Eh 0

)
.

Proof. Since Eh ∈ uh+Hh+1, (a) implies that

A ∈
(

0 −1

uh 0

)
+

(
Hh−1 0

Hh+1 0

)
.

In the notation of [3, §4.3], set a=0, b=h, a′ = h
2 − p−1

2 , b′ = h
2 +

p−1
2 , and (c0,ch)= (−1,1).

Since h−1−a′ = h
2 −1+ p−1

2 ≥ 1, we see that A is γ-allowable with γ = 1 in the sense of

[3, Definition 4.3.1]. The error of A, in the same definition, is ε = vR2
(T>h(G))−a′. By

[3, Theorem 4.3.7], with R=R2, there exists C ∈GL2(R2) such that A′ =C ∗ϕA satisfies

the following:

(i) Evaluating at u= 0, we have A′|u=0 =A|u=0.

(ii) The matrix A′ is of the form A′ =
(

P −1
f 0

)
, with P and f polynomials of degree at

most h.

(iii) We have an estimate vR2
(P −T≤h(G))≥ ε+a′+1.

(For the reader checking references, note that the role of A versus C is reversed in [3].)
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We claim P ∈ mF [u] and f = Eh, which would finish the proof of the proposition. To
see P ∈mF [u], we start by combining the estimate (iii) and the assumption (b) in order

to see that

vR2
(P −T≤h(G))≥ ε+a′+1 = vR2

(T>h(G))+1> h.

On the other hand, P −T≤h(G) has degree at most h, by (ii), and so P −T≤h(G)∈mF [u],

which implies P ∈mF [u] by assumption (c).
To see f = Eh, we evidently have f = det(A′) = rEh for some r ∈ R×

2 . In particular,

f has a root of multiplicity h at u = −p. But f is a polynomial of degree at most h, by

point (ii), and by point (i) we have f(0) = E(0)h. It now follows quickly that f = Eh,
since F [[u]] is a unique factorization domain.

We now verify that the G from Proposition 4.5 satisfies the hypothesis of Proposi-

tion 4.6.

Lemma 4.7. Set G ∈ (ap−phz)( λ−
λ++

)h
+H◦

h. Then

(a) G ∈Hh−1,

(b) T>h(G) ∈H◦
h−1, and

(c) T≤h (G) ∈mF [u].

Proof. First, the conclusions depend only on G mod H◦
h, so we suppose G =(

ap−phz
)( λ−

λ++

)h
. Part (a) follows from Lemmas 4.3 and 4.4. For part (b), we first have,

by Lemma 4.3(a), that ap

(
λ−
λ++

)h
∈ ap+apHp−2, so T>0

(
ap

(
λ−
λ++

)h)
∈Hh+p−3 ⊆Hh.

On the other hand, by Lemma 4.4(a) we have phz ∈H◦
h−1. Thus we have shown in fact

that T>0(G) ∈H◦
h−1.

Finally, we consider part (c). Since E = u+ p, any f ∈ SΛ can be written as f =
∞∑

n=0
αn

un

p�n
p � with αn ∈ Λ. Let f = λ−

λ++
∈ SΛ in particular. Since vp (ap) =

h−1
2 >

⌊
h
p

⌋
unless p= h= 3 (or p= 2, which we have excluded in formula (4.1)), we see immediately

that T≤h

(
apf

h
) ∈mF [u] except when h= p= 3. When h= p, however,

T≤p(f
p) = T≤p

((
p−1∑
n=0

αnu
n+αp

up

p

)p)
∈ p ·αp−1

0 αp
up

p
+Λ[u]⊆ Λ[u].

Since vp (ap)> 0, we see that T≤h

(
apf

h
) ∈mF [u] in every case.

By the prior paragraph, to show (c) it remains to show that T≤h

(
phzfh

) ∈ mF [u]

as well. By definition, we can write fh =
∞∑
i=0

βi
Ei

p� i
p� with βi ∈ Λ, and we recall that

z =
∑h−1

j=1 xjE
j . Thus

phzfh =

∞∑
n=1

⎛⎝ ∑
i+j=n

phxjβip
−� i

p�
⎞⎠En. (4.7)
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Using the binomial expansion of En = (u+p)n, we see that the um-term of equation (4.7)

is exactly equal to

∞∑
n=m

⎛⎝ ∑
i+j=n

phxjβip
−� i

p�
⎞⎠(n

m

)
pn−m.

We must show that this has positive p-adic valuation form≤ h. Since βi ∈Λ and binomial
coefficients are integers, it is enough to show that for all m ≤ h and j < h, if n ≥m,j,

then

vp (xj)+h+n−m−
⌊
n− j
p

⌋
> 0. (4.8)

By formula (4.3) we have vp (xj)>−j−1, and so

vp (xj)+h+n−m−
⌊
n− j
p

⌋
> h−m−1+n− j−

⌊
n− j
p

⌋
. (4.9)

But the right-hand side of this inequality is nonnegative. Indeed, when h>m, this is clear
because n≥ j. When h=m, on the other hand, we have n≥m= h> j. So the right-hand

side in that case has the form x−�x/p�−1 with x≥ 1, which is also nonnegative.

4.3. Proof of Theorem 4.1

Finally, we give the proof of the main theorem:
Assume that h≥ 3 and p �= 2. Then if L satisfies

vp
(L−1

)
>
h−1

2
−1+vp((h−1)!),

we have V h+1,L ∼= Ind
GQp

G
Q2
p

(
ωh
2χ
)
.

Proof. First, if h= 3 and p≥ 5, then the assumption is that vp(L)< 0. The verification

that V 4,L ∼= Ind
GQp

G
Q2
p

(
ω3
2χ
)
is the first bullet point of [7, Theorem 4.2.4.7(iii)], where the

reader should take k = 4< p and �= vp(L)< 0.
Now we assume that either h≥ 4 or p= h= 3. Then, applying Proposition 4.5, Lemma

4.7, and Proposition 4.6, we deduce that there exists a basis of M2 in which the matrix

of ϕM2
is given by A=

(
P −1

Eh 0

)
and P ∈ mF [u]. Define M=S⊕2

Λ with the matrix of ϕ

being given by A. Clearly M is a Kisin module over SΛ of height ≤ h, and

M⊗SΛ
R2

∼=M2 =MOF
(Dh+1,L)⊗OF

R2

as ϕ-modules over R2. Thus, by Proposition 2.1 we deduce M =M(T ) for some lattice
T ⊆ Vh+1,L. Furthermore, M⊗SΛ

F
[
u−1
]
is a ϕ-module over F((u)) with Frobenius given

by
(

0 −1

uh 0

)
. This shows, in particular, that V h+1,L is the same for any L satisfying

formula (4.1) (see [3, Corollary 2.3.2]).

https://doi.org/10.1017/S1474748022000081 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000081


2642 J. Bergdall et al.

Let Vh+1,∞ be as in the introduction. By [3, Corollary 5.2.2], for Vh+1,∞ there

exists a Kisin module M′ such that M ′ := M′ ⊗SΛ
F
[
u−1
]
has Frobenius also given

by
(

0 −1

uh 0

)
and M ′ determines V h+1,∞ ∼= Ind

GQp

G
Q2
p

(
ωh
2χ
)
. Therefore, V h+1,L ∼= V h+1,∞ ∼=

Ind
GQp

G
Q2
p

(
ωh
2χ
)
.

Remark 4.8. We return to Remark 4.2. Suppose we replace formula (4.1) with

vp
(L−1

)
>
h−1

2
+vp((h−1)!). (4.10)

This has the impact of scaling z by a p-adic unit multiple of p, thus increasing vR2
(z)

by 2 throughout our estimates in §4.1. The reader may check that Proposition 4.5 holds
with these new estimates, and so the proof goes through for all h ≥ 2 and p ≥ 3 under

the assumption (4.10). Of course, this bound is not the sharpest possible when h= 2 or

h= 3. For instance, we have already noted that for h= 3 and p≥ 5, Breuil and Mézard
confirmed Theorem 4.1 with the stronger bound (4.1).

The situation is more complicated when h= 2. In that case, for p≥ 5, Guerberoff and

Park showed that V 3,L ∼= Ind
GQp

G
Q2
p

(
ω2
2χ
)
exactly on vp(L− 1) < 1

2 [17, Theorem 5.0.5].

Thus, the bound vp(L)< 1
2 from Theorem 4.1 produces too large a region of L-invariants,

whereas formula (4.10) produces a region too small. For the interested reader, Guerberoff

and Park also determined, for any L, the restriction of V 3,L to the inertia subgroup.

The restriction to inertia was recently removed by Chitrao, Ghate, and Yasuda using a
completely different method [10, Theorem 1.3]. Thus we have a complete picture of V 3,L.
It would be amusing to understand if that picture can be recovered from the method here.
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(CIRM) in Luminy, France. Part of this collaboration also took place during the workshop
“Moduli spaces and modularity” at Casa Matemática Oaxaca (CMO). We thank both
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