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The Vibrations of a Particle about a Position of
Equilibrium.

By BEVAN B. BAKER, Lecturer in Mathematics in the University of
Edinburgh, and E. B. Boss, Professor of Mathematics in the
Madras Christian College.

(Head Uth March 1921. Received 10th August 1921.)

1. In obtaining a solution of the differential equations corres-
ponding to the motion of a particle about a position of equilibrium,
it is usual to express the displacements in terms of a series of periodic
terms, each sine or cosine having for its coefficient a series of powers
of small quantities. Korteweg* has discussed the general form of
such solutions, and, from the developments in series which he has
obtained, has deduced certain features of interest. In particular,
he has shown that, under certain circumstances, it is possible that
certain vibrations of higher order, which are normally of small
intensity compared with the principal vibrations, may acquire an
abnormally large intensity. Considering the oscillations of a
dynamical system having a number of degrees of freedom, and

supposing - i- , jp-, to be the frequencies corresponding to
lit Ztr

infinitesimal oscillations in the different normal coordinates,
Korteweg has shown that these cases of interest arise only when

is zero or very small, where px, p2,... are small integers, positive
or negative; the most important cases occur when

<S= I ft I + I ft I + - § 4 .
The cases when S ̂  4 have been discussed at some length by

Beth,j who uses, as an illustration of his dynamical system, the
oscillations of a particle near the bottom of a bowl.

The case of two degrees of freedom, where S=3, i.e. px = 2,
p,= — 1, is the most important, and it is a particular form of this

* Korteweg : Archives Neerlandaises des Sciences exaotes et naturelles (2),
1, pp. 229-260, 1897.

+ H. Beth: Archives Neerlandaises des Sciences exactes et naturelles (2),
15, pp. 246-283, 1910.
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case which is discussed in this paper. Under these conditions the
radii of curvature at the bottom of the bowl are approximately in
the ratio of 4 : I.

The solution in periodic series has the disadvantage of becoming
unmanageable for certain values of the frequencies, and it is
difficult to determine whether this is due to actual divergence or
whether the trouble arises from the presence of a part increasing
steadily with the time (secular term). The particular problem
discussed, which was suggested by Prof. E. T. Whittaker, has the
advantage of being soluble not only in periodic series but also in
terms of elliptic functions, and this second form of solution gives
results where the series solution breaks down. This paper is
chiefly concerned with a discussion of the conditions, obtained
from the elliptic function solution, under which any valid solution
of the problem exists. In a later paper it is hoped to apply the
conditions so obtained to ascertain the cause of the divergence of
the series solution.

2. Let <£, and <f>* be the normal coordinates of the system, ^, and

^2 the corresponding momenta, and JJ- » — i the frequencies of the
2jT 27T

principal vibrations. Apply a contact transformation, to another
system of coordinates p,, p?, q1, q2, defined by

l = \ i-i C O S ^ <k=A/= A / — .COSp2,
y s y

</<!= J28^,. sinpx, f 2 = •Ji2s2^.smp

We assume Hamilton's function H= T+ V, where T and V repre-
sent the kinetic and potential energies of the system, respectively,
to be given by

H = s,q1 + siq., + a.q1ql cos(2p,-p2), (2)
a. being a eertain constant.

This gives a somewhat artificial form to the kinetic and
potential energies in terms of the original coordinates, viz.,

2 v 2
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The equations of motion of the system are

dt dp! ' dt ~ dp2'

dp, _ _ dH_ dPi_ dH I '
dt dqs ' dt dqt ' j

which, on substituting for H from (2), give

dq, •
— = - 2a. q, q\ sin (2Pl -p,) ,

s i n

cos (2^! - j

Since the energy, H, of the system is constant, we have

qII = siql + s.2qi

Also, from equations (4) ,
^ p , -p2) = constant = A (say) •(5)

.-. qt + 2q2 = constant = c(say) (6)
Having therefore two integrals, (5) and (6), we can integrate the
whole system.

3. Solution in Series.

We proceed first to obtain a solution in the form of infinite
series.

From equations (5) and (6) we find

(2., - s2)

where k, and A2 are constants.

•(7)
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Solving equations (7) by successive approximations, and putting
<f} = 2pl -p%, we ob ta in

3 a.3 (k\ - 2lk* k\ + 32/fc)

iirT^ *; coa4>

cos

1 a.8 (A* - 24/fc; ̂  + 3 2 ^
16 (2«! - s2)3 ^

T (2l~^)*W COS

correct to the sixth power of the small quantities A, and &2.

Now, from the general theory, y, dp1 + j 2 dp2 is a perfect
differential, d W (say);

dW dW
<8)
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Substituting ax and a2 for kx and A,, where a, and a2 are given by

a.' ^(Aj-4Ag) 3 ^

„ *?(*} -6^A1 + 4AS) sin 4*.

ere a, and a2

we obtain \

^ - +40a? 4 -32a, a\ J ) sin <

_ M8" (2s, - s ^
1 rt.4 ^

- - j - rs a (*'" 7 a ' i a - ' + 4 a ' a=) t s i n

4 (,-iS, - S.:) )

s i n 4<^'

....(9)

+ TR 7O~—\t (a ~ 6

Now let ^ = ^ - a n d / 8 5 = ^ ; (10)
da, ofln

then, from the general theory, the other two integrals requ ired to
complete the solution are

^ ^ - * - ! ^ , (11)

where «, and «., are arbitrary constants.
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From equations (8) and (9) we obtain values for q1 and qa and,
substituting these in equation (5), we get

1 a.2
— a, (a, - 4as) ^ - -
4 (2», - 82)

From equations (11) and (12) we obtain values for ft and ft
viz.:—

Writing now i / for (2/i, - ft), we have

M= 2«, - «s - I { (2* - *2) + 2 («, - a,) —^~

Also from (10) we obtain values for jo, and/)2, giving

a. (a, - 4a,)

192 (2«, -

s (2.,-f.y
- (6a? - 16a! Oa + 4a.i) sin 4
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12

a,

1 »' (** 1**
48(24l-<.2)3Vaf

(** - 1** + 63a, «| - 1044 ) sin Uf

.(15)

4. On substituting from (15) in the expressions for qlt q2, plt

and p2, we obtain finally the results

i
a2

a.3 f 3
cos M+ \ — c^ (a* -

cos ^ + T
- So, a2 (a, - a,) — —- cos M

^S S)-.Sj -

- (— Oj (a? - 8a! a2 + 4a=) + 4af a2 cos 2 .¥ } ————,

\ ± 6f \ I ill

| / 5 i j \ . 1 .j . 1 a?

- {{j ^ a, - oj J «n tf - ye* an 8Jf ) ^ " _ -

l a , a.
sinJ/- -=-2-

8 a, (2Sl-s2y
- sin 2M
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where /3D /?„, and J/" are given by equations (13) and (14), and
eu €2> ai> a n d «2 a r e arbitrary constants depending on the circum-
stances of projection.

The solution is thus given in terms of infinite series, most of
the terms of which certainly contain (2sl - s2) in the denominator.
The series evidently diverge when 2sl = s2, but when (2^ - s2) is not
small and the arbitrary constants Oj and a2 are small the series
converge rapidly.

The following particular case illustrates the form of the
numerical results.

Assuming

g1 = l, s2= 1-75, a = 0- l , a1 = 0-5, 02 = 0-25, £, = €2 = 0

we obtain

A = 0-93534, M= -0-2716*

ft = 3 • 687776 M*, & = 6 • 375552 if *

pl = 3 • 687776J/+ 9 • 626 sinJ/ + 0 • 779 sin 2M+ 0 • 153 sin 3M

p, = e- 375552.¥+ 12 • 376 sin M- 1 • 329 sin 2M+ 0 • 153 sin ZM

g, = 0 • 5104 -0-184 cos M+ 0 • 0032 cos 2M

q2 = 0 • 2448 + 0 • 092 cos M- 0 • 0016 cos 231.

The original coordinates (£„ and <£2, are then obtained by the use
of equations (1). The orbit for this case is shown in figure 1, for
values of M between 0° and 600°.

* As these values are required with greater accuracy further terms were
obtained in the expressions for p, and p.,.

4 Vol. 39
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5. Elliptic Functions solution.

I t is possible, however, to present the solution in a closed
form by means of elliptic functions.
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From the two integrals given by equations (5) and (6), together
with the second of equations (3), we have

q\ = a2q]q2{ 1 - cos2 (1Pl -p2)}

a2 (c - 2?2)2 q, - { (h - «, c) + ?2 (2s, - «s) }
2

where .4 = - (A - s, c)2,
.8 = a.2 c2 - 1h (2s, - s2) + 2«! (2«, - *3) c,
C= -{(2s1-s2)2 + 4a.2c},
i) = 4a.2.

We lose no generality by replacing c and «, by unity and it is
further convenient to write

1 - h = g and 2s, - s2 = s.
Then q\ = 4a.2 $ - (4a.2 + s2) ^ + (a.2 + 2*0) q.2 - g* (16)

The problem may therefore be solved in terms of elliptic
functions, using equations (3) and (6) to give corresponding values
of p , , p2 and gt .

6. As an illustration of the methods adopted, we take the
particular case which has already been solved by means of the
series solution, in § 4.

We have «2 = 1 -75, a. = 0 • 1, gr = 1 - A = 0 -06466, s = 0 • 25; giving
A= -0-004181, 5 = 0-0423, C= -0-1025, Z> = 0-04;

.-. % = 0 • 04 [q\ - 2 • 562 q\ + 1 • 0582 ?2 - 0 • 10452].
The cubic in square brackets has three real positive roots,

viz.:—
A = 0-15019, /t = 0-3350, v = 2-077.

To obtain the Jacobian elliptic functions we use the trans-
formation

akz + b

the appropriate correspondence being

) oo, X,

_. a+b ak + b b - ak
Then , _ _ f / 4 _ _ , ; l _ 1 _ .
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Eliminating k we obtain

ab = (/J.V +v\ + A/i) - 2A/i = 0 • 9576 ;

a and b are therefore the roots of the quadratic equation
C- 2 ^ + 0 -9576 = 0 ;

whence a = 3 • 910, b = 0 • 2449, and k = 0 • 02520 .

The differential equation for z is then

(o - 6)
M therefore corresponds closely to ilf of the series solution (see § 4).

We have then
z = sn (u, k)

and
0-09236 sn u

?! being given by ?„ = 1 - 2ga.

A - s.,
Further, Pl= -

, dll 1 .. .
a n d p2 = - — = - —— (» - «i q, + So <?2);

values of Pl and p2 can therefore be obtained, by using the known
values of qx and q2, and integrating these equations.

7. The method will also give a solution when the series solution
is no longer of use. We have already shown that when s = 0, i.e.
s.2 = 2, the series for q1, q2, Pl and j>2 are certainly divergent.

Assume now s = 0, g = 0 • 02, a. = 0 • 1.
The solution then reduces to

_ 0 • 16761353 snw + 0- 20892106
? 2 = 0-16058204 s n u + 1 '
q1 = 1 - 2 q,,

Pl = 7 • 35622241 u - \ tan"1 [3 • 76458405 dc u]

+ [0 • 01015432 sin 2v - 0 • 00010177 sin iv 1
+ 0 • 00000137 sin 6v - 0 • 00000002 sin 8 J '
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p2 = 14 • 71296994 u + J tan"1 [0 • 75942794 dc u]

+ F-JT - i ten-1 {0 • 60375960 tan v }1 - 0 • 00000507 sin 2 •»,
L •» J

where v = -£=.u and M = - 0 - 130917125«.

The orbit, for values of v between 0° and 360°, is shown in
figure 2.

CM
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8. Conditions for a Real Solution.

From the first two of equations (1) it is apparent that for real
values of the coordinates <pj and <£2, the two coordinates g, and q2

must be both positive, and therefore, from equation (6), neither
ql nor 2q2 must exceed c (which we have taken, arbitrarily, to be
unity).

The satisfying of this condition depends upon the roots of the
cubic on the right hand side of equation (16), viz.:—

4a.2 ql - (4<x2 + s2) q\ + (a.2 + Isg) q2 - g\

From the form of the coefficients it follows that the roots of
this cubic must be either all real and positive or else one real and
two imaginary. When the roots are all real, as in the particular
cases already discussed in §§ 6 and 7, a real solution is obtained.

As a particular example of a case in which two roots are
imaginary, assume

s = 0, 0 = 0-06466, OL = 0 - 1

giving ql = 0 • 04 fe - 0 • 8506) (q\ - 0 • 14945y2 + 0-12289)

1 -6986 + 0 '002487 en u
we deduce q2 = 1+cnw

Thus q2 > £ and .•. qt<0 and the solution is imaginary. It
thus appears that a condition for a real solution is that the roots of
the cubic on the right hand side of equation (16) should be all real
and therefore all positive. The transition occurs when the dis-
criminant of the cubic is zero. Denoting this discriminant by A
we obtain

A = «.2(s-2?)
2{8a.4 + a2(s2 + 36s^-108/) + 46^} (17)

The locus represented by A = 0, taking s and g as the two
variables, consists of two curved branches and the repeated straight
line *• = 2g (referred to in the sequence as " the double line "), which
touches each curved branch. The locus, for the value <x = 0 • 1, is
shown in figure 3.

For real roots we must have A>0, i.e., the point (*, g) must lie
between the curved branches.
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To discuss the conditions more fully, we consider the differential

equation (16), satisfied by qt, and in it take u= ±a.t as the inde-

?» f ^ i ) a s *n e dependent variable,
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denoting it by @(u). This gives the ordinary equation for the
Weierstrassian elliptic function, viz.:—

, and g3 being constants depending on a., s and g.

, , 4o.2 + s2

Then 5 V ; 12a.2 '
4a.2 - 2s2

For a real solution ql, q2 and | —' I must all be positive

and this is only possible on the oval branch of the curve

when the three roots of the cubic are real.
If ex, «,, e3 be the roots of the cubic on the right hand side of

equation (18), and if ex >e2 >e3 we must have e22p(u)2es.

Suppose A, JU., v to be the roots of the cubic on the right hand
side of equation (16), where X< fj.< v, then the conditions for a
real periodic solution in q2 are

A « 2 I g2

-T- +e3 >0, i.e. A>0
12

and

The conditions are therefore :—
(i) all the roots of the cubic in q., must be real and positive,
(ii) fx, the middle root, must be less than £.

On substituting q.2 = ^ in the right hand side of equation (16),
we obtain — i (« — 2<7)2, so that either two roots or no roots are less
than J (i.e. the greatest root is always greater than J), except when
s = 2g, in which case two roots equal J.

s2

When s = 2g, the third root is ——„; it is therefore the smallest

root if s2 < 2 a.2 and the greatest root if s2 > 2a.2; when s2 = 2a.2 we
obtain one or other of the points at which the double line, s = 2g,
touches the curved branches, and here all the roots are equal and
equal to J.
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9. To investigate the behaviour on the curved branches of the
curve A = 0, we equate the discriminant to zero and solve for g,
giving

54 a.2

The cubic for q,, viz.:—

ioSql-(4:a.> + si)qt + (a? + 2s9)q2-g = 0, (20)

has two equal roots and therefore the derivate also vanishes when
g has the values given by equation (19). We must therefore have
either

3a.2

° r ? 2 = 18,*° '

the second of these being the double root of the cubic. The
remaining root is found to be

These roots reduce to

h

36a.2 ' 36a.2 '
a being the repeated root.

We have now to investigate under what circumstances a is the
greater root. If a>b the middle root will be greater than \, and
no real solution will be obtained, since the greatest root is always
greater than \ (except at points on the double line).

Now a>6if (R + sf>(2R-sfi.e. if 2Rs>E> .

This cannot be the case if R and s have different signs. If they
have the same sign, suppose they are both positive and the condi-
tion reduces to «2>2a.2.

We have, then,
(i) 0r>O, s>0, s!>2a.2; all the roots are>J,

(ii) <7>0, s>0, s2<2a.2; two roots are equal a n d < | ,
(iii) g>0, «<0, two roots are equal and < \ .

The areas towards infinity, between the double line and the
curved branches, must therefore be excluded from the permissible
area (see figure 3). (The permissible area is shaded in the figure.)
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The particular forms of the orbits on the boundaries of the
permissible area (including the double line) are discussed below
in §10.

In figure 4 are sketched curves showing the values of « and g
for different constant values of A2, in the permissible region, where
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k is the modulus of the Weierstrassian elliptic functions occurring
in the solutions for qr and q,, and is thus related to the period of the
vibration. Near the points at which the double line touches the
curved branches (i.e. where all the roots are equal) we get the
somewhat curious result, that, if we approach these points along
any straight line, making a finite angle with the double line, the
value of k" tends to J. The curves for constant values of As1, in the
immediate neigbourhood of these points are shown on a larger
scale in figure 5.

10. Limiting Forms of the Solution.

We divide the discussion of particular limiting forms of the
solution into four cases.

CASE 1.—Points on the Double Line s = 2g.

1° Points between the points of contact with the curved branches
of the discriminant.

In this case «a < 2 a.8

and
«S-(&-*)•(*«••*.-•).

Putting

-qt = — •'• 4ar = (2a.2 - s2) x2 - 4OL2

X"

we obtain
/2a.2 - s°

px = - ~. t + constant,
2

, f V2O.2-/ , / Jia^-s2 \\
p2 = constant - s, t + tan"1 -j tanh I . ( I }.

The whole of the energy is thus finally absorbed by <£a.

The form of the orbit for the values:—^ = 0-02, <x. = 0- l ,
s = 0 • 04, is shown in figure 6. I t is noteworthy that, when
#, = 0, fa has always the same value when t is finite.
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2° Points outside the points of contact vrith the curved branches
of the discriminant.

In this case sa> 2a.2 and we obtain as the only real solution
9a= h ?i = 0 permanently,
Pi = — «2' + constant, pj is indeterminate.
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2ir
This gives merely a simple harmonic motion in <f>2, of period —.

si

CASE 2.— The point of contact of the Curved Branches of the
Discriminant with the Double Line.

In this case g = — = —-,— >
•4 « / 2

giving <?2 = §, ?i = 0) P2 = - S21 + constant.

We have therefore, as the complete solution, the same simple
harmonic vibration as in Case 1, 2°.

CASE 3.—The origin, g = s = 0.

We obtain, either q% = 0, ql = 1

or 8s = J. ?i = 0
and p, = - t + constant, p2 = - It + constant.

We have, therefore, either a simple harmonic vibration in <j>t of
period 2TT, or a simple harmonic vibration in fa of period jr.

CASE 4.—The part of the Curved Branches of the Discriminant
which is a Boundary of the Permissible Region.

We have

q\ = 4a.2(q2 - A)2(q2 - v) where

The only valid part of the solution is given by

= I -2 + Y + ^ }< + constant.

11. General Solution.

To obtain the solution in the general case, we assume the cubic
on the right hand side of equation (16) to have roots k, /i, v, where
A</*<v, and suppose the conditions for a real solution to be
satisfied.
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Effecting on qa a linear transformation, given by

mkz+ I
qi=~kzTT

l + m l + mk l-mk
w h e r e v = ••- , JX = — — = - , A = — —, ( 2 1 )

2 1 + k 1 — k

and 0<km<I<mand 0<A.<l<fi<v<m, equation (16) reduces to

->(!-<

T* 4. -2 4 0 L ( ; - A . ) ( Z - / t ) ( ^ v ) .
If we put u2 = i — r ^ — ~ - -, we obtain

A2 (m - If

z = sn (u, k)
and therefore

mksnu + l
? 2 = 1+Asnw

A, »», i, being determined by equations (21).

Then
, „ l-2l-k(2m-\)snu

Also

2 - s
2 ~

Taking
dw „ 2<x

we obtain

2 - 8 s - 2 ^ f 1+Aisnw
l - 2 « - A ( 2 m - l ) s n u

(8 -,2y) (s-2y) (1+sna) j"Asn«(l+Asnwsno)

"+ J r ' M
where sn a —

j
- 2 0 J l-/fc2sn2u.sn2<

2 t » - l
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This reduces to

2 - s s-2g

(s-2g)(l +sna) i , ®(u--a)~\+T-l0g'5(=^)J
where en a = —iC;

2 - s 8-2g2g \
-2l) ) U

the sign outside the square bracket being the same as that of
(s-2g).

dH *-* 9

dp2 4-8 g \ +ksnu
IM = 2iV ~ 2N ' T+kmsnu

g(sna'-I) C ksnu(l-ksnusna')

j **
where sn o = -y- .

Putting en a' = -iC,' this reduces to

the sign outside the square bracket being the same as that of g.
Some modifications are necessary when g = 0.

12. The solution of the particular problem is thus complete,
a solution being obtained in every case in which a real solution
exists. We have not yet been able to commence the most
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important line of research suggested by the work, namely, the
investigation of the cause of divergence of the series solution; that
it is a case of failure to represent the state of affairs, and not an
indication of any discontinuity in the system, is shown by the
existence of the elliptic function solution. The chief feature of the
latter is the presence of the double line with its peculiar properties.
So far as we know, attention has not previously been directed to
the fact, that it is not for the perfect octave s = 0, that the greatest
deviation from the general type of solution occurs, but along the
double line, s = 2g. That this line is double, suggests that, when
other less important and suitably chosen terms are introduced into
the fundamental expression for H, equation (2), it may open out
into a region in which no orbit is possible.

We have to thank Professor Whittaker, not only for introducing
us to the problem and for the interest and help with which he has
followed our work, but also for the opportunity of co-operation
which the Mathematical Institute has afforded us.
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