EXTENSION OF A RESULT OF S. MANDELBROJT

BY

T. PHAM-GIA(*)

ABSTRACT. We extend the following result to several variables: For any sequence $\{N_i\}$, we have $C\{N_i\} = C\{M_i\}$, with $\{M_i\}$ logarithmically convex i.e. $M_i^2 \leq M_{i-1}M_{i+1}$ j = 1, 2, ...

Let $\{N_i\}_{i=0}^{\infty}$ be a sequence of positive numbers and $C\{N_i\}$ the class of complex-valued infinitely differentiable functions on R, verifying $||D^n f|| \le \alpha_f \beta_f^n N_n$, n = 0, 1, 2, ... where $D^n f = d^n f/dx^n$, $||f|| = \sup_{x \in R} |f(x)|$ and α_f and β_f are positive constants depending only on f.

It is known that $C\{N_j\} = C\{\bar{N}_j\}$ where $\{\bar{N}_j\}$ is the largest logarithmically, convex minorant of $\{N_j\}$ ($\{\log \bar{N}_j\}$ is then convex or $\bar{N}_j^2 \leq \bar{N}_{j-1}\bar{N}_{j+1}, j = 1, 2, ...,$ see e.g. [3]).

We wish to extend the above result to several variables.

Let $m \ge 1$ be a positive integer, $(j) = (j_1, j_2, ..., j_m), 0 \le j_k < \infty, 1 \le k \le m$, be a multi-index and $C\{N_{(j)}\}$ be the class of complex-valued functions in $C^{\infty}(\mathbb{R}^m)$ s.t.

$$\|D^{(j)}f\| \le \alpha_f \beta_f^{\|(j)\|} N_{(j)}$$
 where $\|(j)\| = \sum_{k=1}^m j_k$,

$$D^{(j)}f = \frac{\partial^{|(j)|}f}{\partial^{j_1}x_1\cdots\partial^{j_m}x_m}, \quad ||f|| = \sup_{x \in \mathbb{R}^m} |f(x)| \quad \text{and} \quad \alpha_f, \beta_f > 0$$

depend only on f.

We define $N_{(i)}$ to be log-convex if it is so componentwise i.e.

$$\forall (j), \forall k \ 1 \le k \le m, \ N_{j_1, \dots, j_k}^2 \le N_{j_1, \dots, j_k} \le N_{j_1, \dots, j_k-1, \dots, j_m} \cdot N_{j_1, \dots, j_k+1, \dots, j_m}$$

To a multisequence $N_{(j)}$, we associate the *m* marginal sequences $\{N_{1,\ell}\}_{\ell=0}^{\infty} = \{N_{\ell,0},\ldots,0\}_{\ell=0}^{\infty},\ldots,\{N_{m,\ell}\}_{\ell=0}^{\infty} = \{N_{0,0},\ldots,\ell\}_{\ell=0}^{\infty}$ and the product marginal multisequence

$$N_{(j)}^* = N_{1,j_1} N_{2,j_2} \cdots N_{m,j_m} \forall (j).$$

Received by the editors February 6, 1978 and, in revised form, June 7, 1978.

^(*) The author wishes to thank the referee for helpful comments and for remarks on the same problem on a bounded interval.

[September

We prove the following

THEOREM. Let $N_{(j)}$ be a multisequence s.t. $N_{(j)} \ge N_{(j)}^*$, $\forall (j)$. Then $C\{N_{(j)}\}$ contains an algebra $C\{M_{(j)}\}$ with $\{M_{(j)}\}$ log-convex. Moreover $C\{N_{(j)}\} = C\{M_{(j)}\}$ if $N_{(j)} = N_{(j)}^*, \forall (j)$.

Proof. As for the one-dimensional case, the proof relies on the Kolmogoroff-Gorny inequality on successive derivatives. For m = 1, this inequality can be written as:

(1)
$$||D^n f|| \le 2 ||D^p f||^{(r-n)/(r-p)} ||D^r p||^{(n-p)/(r-p)}$$

for $f \in C^r(R)$ and $0 \le p \le n < r$.

(This is rather a simplified form of the inequality, where 2 has replaced a constant t(p, n, r) with $1 \le t \le 2$ (see e.g. [1] p. 216).)

We need to extend this inequality to several variables first.

Let (i) and (j) be multi-indices. We write $(j) \le (i)$ if $j_k \le i_k$, $1 \le k \le m$. By (i) - (j) we mean the multi-index $(i_1 - j_1, i_2 - j_2, \ldots, i_m - j_m)$ and by |(i) - (j)| the product $\prod_{k=1}^{m} |i_k - j_k|$, $\forall (i), (j)$.

Let (p), (n) and (r) be s.t. $(0) \le (p) \le (n) < (r)$. We associate to these multiindices 2^m couples $\{(\xi)_{\ell}, (\theta)_{\ell}\}, \ \ell = 1, 2, ..., 2^m$, defined as follows: $(\xi)_{\ell} = (\xi_{\ell,1}, \xi_{\ell,2}, ..., \xi_{\ell,m}), \ (\theta) = (\theta_{\ell,1}, \theta_{\ell,2}, ..., \theta_{\ell,m}).$

 $\xi_{\ell,k}$ and $\theta_{\ell,k}$ being either p_k or r_k , $1 \le k \le m$ but $\xi_{\ell,k} \ne \theta_{\ell,k}$. (There are obviously 2^m such couples).

If $C^{(r)}(\mathbb{R}^m)$ denotes the class of functions f defined on \mathbb{R}^m s.t. $D^{(i)}f$ is continuous for any $(i) \leq (r)$ and $D^{i_k}f$ the partial derivative $\partial^{i_k}f/\partial x_k^{i_k}$, we have the following

LEMMA. Let $(0) \le (p) \le (n) < (r)$ and let $f \in C^{(r)}(\mathbb{R}^m)$ be such that $||D^{(j)}f|| < \infty$, $(j) \le (r)$. Then we have:

(2)
$$\|D^{(n)}f\| \le 2^m \prod_{j=1}^{2^m} \|D^{(\xi)j}f\|^{|(n)-(\theta)_j|/|(r)-(p)|}$$

Proof. Suppose we have inequality (2) for m and let's prove it for m+1, $m \ge 1$.

If $(n) = (n_1, n_2, ..., n_m, n_{m+1})$, we denote by (n') the restriction of (n) to its first *m* components. Similarly, $(\xi')_j$ and $(\theta')_j$ are restrictions of $(\xi)_j$ and $(\theta)_j$ to their first *m* components.

By (1), we have

$$\sup_{\mathbf{x}_{m+1}} |D^{n+1}(D^{(n')}f)| \leq 2 \sup_{\mathbf{x}_{m+1}} |D^{p_{m+1}}(D^{(n')}f)|^{(r_{m+1}-n_{m+1})/(r_{m+1}-p_{m+1})} \\ \times \sup_{\mathbf{x}_{m+1}} |D^{r_{m+1}}(D^{(n')}f)|^{(n_{m+1}-p_{m+1})/(r_{m+1}-p_{m+1})}$$

Hence,

$$\|D^{n+1}(D^{(n')}f)\| \le 2\|D^{p_{m+1}}(D^{(n')}f)\|^{(r_{m+1}-n_{m+1})/(r_{m+1}-p_{m+1})} \\ \|D^{r_{m+1}}(D^{(n')}f)\|^{(n_{m+1}-p_{m+1})/(r_{m+1}-p_{m+1})}$$

$$\|D^{(n')}(D^{p_{m+1}}f)\| \leq 2^m \prod_{j=1}^{2^m} \|D^{(\xi')_j}(D^{p_{m+1}}f)\|^{|(n')-(\theta')_j|/|(r')-(p')|}$$

Hence,

$$\begin{split} \|D^{(n)}f\| \leq & 2 \left(2^m \prod_{j=1}^{2^m} \|D^{(\xi')_j}(D^{p_{m+1}}f)\|^{|(n')-(\theta')_j|/|(r')-(p')|} \right)^{(r_{m+1}-n_{m+1})/(r_{m+1}-p_{m+1})} \\ & \left(2^m \prod_{j=1}^{2^m} \|D^{(\xi')_j}(D^{r_{m+1}}f)\|^{|(n')-(\theta')_j|/|(r')-(p')|} \right)^{(n_{m+1}-p_{m+1})/(r_{m+1}-p_{m+1})} \end{split}$$

and

$$\|D^{(n)}f\| \le 2^{m+1} \prod_{j=1}^{2^{m+1}} \|D^{(\xi)_j}f\|^{|(n)-(\theta)_j|/|(r)-(p)|}$$

This completes the proof of the lemma.

Proof of the theorem. For each marginal sequence $\{N_{k,\ell}\}_{\ell=0}^{\infty}, 1 \le k \le m$, we consider $\liminf_{n\to\infty} (N_{k,\ell})^{1/\ell}$ and call that sequence an α , β or γ - sequence if the value of this limit is respectively finite, zero or infinite. The proof then follows Mandelbrojt ([1], p. 226) using properties of the convex regularized sequences $\{N_{k,\ell}^{\epsilon}\}_{\ell=0}^{\ell}$ of $\{N_{k,\ell}\}_{\ell=0}^{\infty}, 1 \le k \le m$ and inequality (2) of the lemma.

Distinguishing between different cases, we show that if one of the marginal sequences is β , then $C\{N_{(i)}^*\} = C\{0\}$ while for other cases $C\{N_{(i)}^*\} = C\{M_{(i)}\}$ with $M_{(i)} = M_{1_{11}}M_{2_{12}}\cdots M_{m_{im}}$, where M_{kj_k} is either 1 or $N_{kj_k}^c$, depending on whether $\{N_{k,\ell}\}_{\ell=0}^{\infty}$ is α or γ , $1 \le k \le m$. Without loss of generality, we can suppose $M_{k,0} = 1 \forall k$.

To see that $C\{M_{(i)}\}$ is an algebra, let f and g be in $C\{M_{(i)}\}$. By Leibniz's rule

$$D^{(j)}(fg) = \sum_{n_1=0}^{J_1} \sum_{n_2=0}^{J_2} \cdots \sum_{n_m=0}^{J_m} {j_1 \choose n_1} {j_2 \choose n_2} \cdots {j_m \choose n_m} D^{(n)} f \cdot D^{(j)-(n)} g$$

where $n = (n_1, n_2, \ldots, n_m)$. Hence,

$$\|D^{(j)}(fg)\| \leq \beta_f \beta_g \left(\sum_{n_1=0}^{j_1} \sum_{n_2=0}^{j_2} \cdots \sum_{n_m=0}^{j_m} {j_1 \choose n_1} {j_2 \choose n_2} \cdots {j_m \choose n_m} B_f^{\|(n)\|} M_{(n)} B_g^{\|(j)-(n)\|} M_{(j)-(n)} \right)$$

or by commutativity,

$$\|D^{(j)}(fg)\| \leq \beta_f \beta_g \left(\sum_{n_1=0}^{j_1} {j_1 \choose n_1} B_f^{n_1} B_g^{j_1-n_1} M_{1,n_1} M_{1,j_1-n_1} \right) \cdots \times \left(\sum_{n_m=0}^{j_m} {j_m \choose n_m} B_f^{n_m} B_g^{j_m-n_m} M_{m,n_m} M_{m,j_m-n_m} \right)$$

T. PHAM-GIA

The convexity of $\{\log M_{k,\ell}\}_{\ell=0}^{\infty}$ combined with $M_{k,0} = 1$ shows that $M_{k,n_k}M_{k,j_k-n_k} \le M_{k,j_k}, 1 \le k \le m$. Hence, we have:

$$\|D^{(j)}(fg)\| \leq \beta_f \beta_g (B_f + B_g)^{\|(j)\|} M_{(j)}$$

which shows that $C\{M_{(i)}\}$ is an algebra under pointwise addition and multiplication.

If $N_{(j)} = N_{(j)}^* \forall (j)$, we see immediately that $C\{N_{(j)}\} = C\{M_{(j)}\}$. This completes the proof of the theorem.

REFERENCES

1. S. Mandelbrojt, Séries adhérentes, régularisation des suites, applications, Gauthier-Villars, Paris, 1952.

2. T. Pham-Gia, On a theorem of Lelong, Canad. Math. Bull., Vol. 19 (4), 1976, 505-506.

3. W. Rudin, Division in algebras of infinitely differentiable functions, Journ. Math. Mech., Vol. II, 5 (1962), 797–809.

4. W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1966.

DEPARTMENT OF MATHEMATICS UNIVERSITÉ DE MONCTON MONCTON, N.B. E1A 3E9

384