EXTENSION OF A RESULT OF S. MANDELBROJT

BY
T. PHAM-GIA ${ }^{(*)}$

Abstract. We extend the following result to several variables: For any sequence $\left\{N_{j}\right\}$, we have $C\left\{N_{j}\right\}=C\left\{M_{i}\right\}$, with $\left\{M_{i}\right\}$ logarithmically convex i.e. $M_{j}^{2} \leq M_{j-1} M_{j+1} j=1,2, \ldots$

Let $\left\{N_{j}\right\}_{j=0}^{\infty}$ be a sequence of positive numbers and $C\left\{N_{i}\right\}$ the class of complex-valued infinitely differentiable functions on R, verifying $\left\|D^{n} f\right\| \leq$ $\alpha_{f} \beta_{f}^{n} N_{n}, n=0,1,2, \ldots$ where $D^{n} f=d^{n} f / d x^{n},\|f\|=\sup _{x \in R}|f(x)|$ and α_{f} and β_{f} are positive constants depending only on f.

It is known that $C\left\{N_{j}\right\}=C\left\{\bar{N}_{j}\right\}$ where $\left\{\bar{N}_{j}\right\}$ is the largest logarithmically convex minorant of $\left\{N_{i}\right\}\left(\left\{\log \bar{N}_{j}\right\}\right.$ is then convex or $\bar{N}_{j}^{2} \leq \bar{N}_{j-1} \bar{N}_{i+1}, j=1,2, \ldots$, see e.g. [3]).

We wish to extend the above result to several variables.
Let $m \geq 1$ be a positive integer, $(j)=\left(j_{1}, j_{2}, \ldots, j_{m}\right), 0 \leq j_{k}<\infty, 1 \leq k \leq m$, be a multi-index and $C\left\{N_{(j)}\right\}$ be the class of complex-valued functions in $C^{\infty}\left(R^{m}\right)$ s.t.

$$
\begin{gathered}
\left\|D^{(j)} f\right\| \leq \alpha_{f} \beta_{f}^{\|(j)\|} N_{(j)} \quad \text { where }\|(j)\|=\sum_{k=1}^{m} j_{k}, \\
D^{(j)} f=\frac{\partial^{\|(j)\|} f}{\partial^{i_{1}} x_{1} \cdots \partial^{j_{m}} x_{m}}, \quad\|f\|=\sup _{x \in \mathbf{R}^{m}}|f(x)| \text { and } \alpha_{f}, \beta_{f}>0
\end{gathered}
$$

depend only on f.
We define $N_{(j)}$ to be log-convex if it is so componentwise i.e.

$$
\forall(j), \forall k 1 \leq k \leq m, N_{j_{1}, \ldots, j_{k}}^{2}, \ldots, j_{m} \leq N_{i_{1}, \ldots, j_{k}-1, \ldots, j_{m}} \cdot N_{i_{1}, \ldots, j_{k}+1, \ldots, j_{m}}
$$

To a multisequence $N_{(j)}$, we associate the m marginal sequences $\left\{N_{1, \ell}\right\}_{\ell=0}^{\infty}=$ $\left\{N_{\ell, 0}, \ldots, 0\right\}_{\ell=0}^{\infty}, \ldots,\left\{N_{m, \ell}\right\}_{\ell=0}^{\infty}=\left\{N_{0,0, \ldots, \ell}\right\}_{\ell=0}^{\infty}$ and the product marginal multisequence

$$
N_{(j)}^{*}=N_{1, j_{1}} N_{2, j_{2}} \cdots N_{m, j_{m}} \forall(j) .
$$

[^0]We prove the following
Theorem. Let $N_{(j)}$ be a multisequence s.t. $N_{(j)} \geq N_{(j)}^{*}, \forall(j)$. Then $C\left\{N_{(j)}\right\}$ contains an algebra $C\left\{M_{(j)}\right\}$ with $\left\{M_{(j)}\right\}$ log-convex. Moreover $C\left\{N_{(j)}\right\}=C\left\{M_{(j)}\right\}$ if $N_{(j)}=N_{(j)}^{*}, \forall(j)$.

Proof. As for the one-dimensional case, the proof relies on the Kolmogoroff-Gorny inequality on successive derivatives. For $m=1$, this inequality can be written as:

$$
\begin{equation*}
\left\|D^{n} f\right\| \leq 2\left\|D^{p} f\right\|^{(r-n) /(r-p)}\left\|D^{r} p\right\|^{(n-p) /(r-p)} \tag{1}
\end{equation*}
$$

$$
\text { for } f \in C^{r}(R) \quad \text { and } \quad 0 \leq p \leq n<r .
$$

(This is rather a simplified form of the inequality, where 2 has replaced a constant $t(p, n, r)$ with $1 \leq t \leq 2$ (see e.g. [1] p. 216).)

We need to extend this inequality to several variables first.
Let (i) and (j) be multi-indices. We write $(j) \leq(i)$ if $j_{k} \leq i_{k}, 1 \leq k \leq m$. By (i)-(j) we mean the multi-index $\left(i_{1}-j_{1}, i_{2}-j_{2}, \ldots, i_{m}-j_{m}\right)$ and by $|(i)-(j)|$ the product $\prod_{k=1}^{m}\left|i_{k}-j_{k}\right|, \forall(i),(j)$.

Let $(p),(n)$ and (r) be s.t. $(0) \leq(p) \leq(n)<(r)$. We associate to these multiindices 2^{m} couples $\left\{(\xi)_{\ell},(\theta)_{\ell}\right\}, \ell=1,2, \ldots, 2^{m}$, defined as follows: $(\xi)_{\ell}=$ $\left(\xi_{\ell, 1}, \xi_{\ell, 2}, \ldots, \xi_{\ell, m}\right),(\theta)=\left(\theta_{\ell, 1}, \theta_{\ell, 2}, \ldots, \theta_{\ell, m}\right)$.
$\xi_{\ell, k}$ and $\theta_{\ell, k}$ being either p_{k} or $r_{k}, 1 \leq k \leq m$ but $\xi_{\ell, k} \neq \theta_{\ell, k}$. (There are obviously 2^{m} such couples).

If $C^{(r)}\left(R^{m}\right)$ denotes the class of functions f defined on R^{m} s.t. $D^{(i)} f$ is continuous for any $(i) \leq(r)$ and $D^{i_{k}} f$ the partial derivative $\partial^{i_{k}} f / \partial x_{k}^{i_{k}}$, we have the following

Lemma. Let $(0) \leq(p) \leq(n)<(r)$ and let $f \in C^{(r)}\left(R^{m}\right)$ be such that $\left\|D^{(i)} f\right\|<\infty$, $(j) \leq(r)$. Then we have:

$$
\begin{equation*}
\left\|D^{(n)} f\right\| \leq 2^{m} \prod_{j=1}^{2^{m}}\left\|D^{(\xi)} f\right\|^{\left\|(n)-(\theta)_{i} \mid /(r)-(p)\right\|} \tag{2}
\end{equation*}
$$

Proof. Suppose we have inequality (2) for m and let's prove it for $m+1$, $m \geq 1$.
If $(n)=\left(n_{1}, n_{2}, \ldots, n_{m}, n_{m+1}\right)$, we denote by $\left(n^{\prime}\right)$ the restriction of (n) to its first m components. Similarly, $\left(\xi^{\prime}\right)_{j}$ and $\left(\theta^{\prime}\right)_{j}$ are restrictions of $(\xi)_{j}$ and $(\theta)_{j}$ to their first m components.

By (1), we have

$$
\begin{aligned}
& \sup _{x_{m+1}}\left|D^{n+1}\left(D^{\left(n^{\prime}\right)} f\right)\right| \leq 2 \sup _{x_{m+1}}\left|D^{p_{m+1}}\left(D^{\left(n^{\prime}\right)} f\right)\right|^{\left(r_{m+1}-n_{m+1}\right) /\left(r_{m+1}-p_{m+1}\right)} \\
& \times \sup _{x_{m+1}}\left|D^{r_{m+1}}\left(D^{\left(n^{\prime}\right)} f\right)\right|^{\left(n_{m+1}-p_{m+1}\right) /\left(r_{m+1}-p_{m+1}\right)}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \left\|D^{n+1}\left(D^{\left(n^{\prime}\right)} f\right)\right\| \leq 2\left\|D^{p_{m+1}}\left(D^{\left(n^{\prime}\right)} f\right)\right\|^{\left(r_{m+1}-n_{m+1}\right) /\left(r_{m+1}-p_{m+1}\right)} \\
& \left\|D^{r_{m+1}}\left(D^{\left(n^{\prime}\right)} f\right)\right\|^{\left(n_{m+1}-p_{m+1}\right) /\left(r_{m+1}-p_{m+1}\right)}
\end{aligned}
$$

By (2),

$$
\left\|D^{\left(n^{\prime}\right)}\left(D^{p_{m+1}} f\right)\right\| \leq 2^{m} \prod_{i=1}^{2^{m}}\left\|D^{\left(\xi^{\prime}\right)_{i}}\left(D^{p_{m+1}} f\right)\right\|^{\left(n^{\prime}\right)-\left(\theta^{\prime}\right)_{i} / /\left(r^{\prime}\right)-\left(p^{\prime}\right) \|}
$$

Hence,

$$
\begin{aligned}
&\left\|D^{(n)} f\right\| \leq 2\left(2^{m} \prod_{j=1}^{2 m}\left\|D^{\left(\xi^{\prime}\right)_{i}}\left(D^{p_{m+1}} f\right)\right\|^{\left.\left(n^{\prime}\right)-\left(\boldsymbol{\theta}^{\prime}\right)_{j}\right) /\left(r^{\prime}\right)-\left(p^{\prime}\right) \mid}\right)^{\left(r_{m+1}-n_{m+1}\right) /\left(r_{m+1}-p_{m+1}\right)} \\
&\left(2^{m} \prod_{i=1}^{2 m}\left\|D^{\left(\xi^{\prime}\right)_{i}}\left(D^{r_{m+1}} f\right)\right\|^{\left(n^{\prime}\right)-\left(\theta^{\prime}\right)_{i} / /\left(r^{\prime}\right)-\left(p^{\prime}\right) \|}\right)^{\left(n_{m+1}-p_{m+1}\right) /\left(r_{m+1}-p_{m+1}\right)}
\end{aligned}
$$

and

$$
\left\|D^{(n)} f\right\| \leq 2^{m+1} \prod_{j=1}^{2^{m+1}}\left\|D^{(\xi)} f\right\|^{\|(n)-(\theta)_{i}} \eta /(r)-(p) \|
$$

This completes the proof of the lemma.
Proof of the theorem. For each marginal sequence $\left\{N_{k, \ell}\right\}_{\ell=0}^{\infty}, 1 \leq k \leq m$, we consider $\lim \inf _{n \rightarrow \infty}\left(N_{k, \ell}\right)^{1 / \ell}$ and call that sequence an α, β or γ-sequence if the value of this limit is respectively finite, zero or infinite. The proof then follows Mandelbrojt ([1], p. 226) using properties of the convex regularized sequences $\left\{N_{k, \ell}^{c}\right\}_{\ell=0}^{\infty}$ of $\left\{N_{k, \ell}\right\}_{\ell=0}^{\infty}, 1 \leq k \leq m$ and inequality (2) of the lemma.

Distinguishing between different cases, we show that if one of the marginal sequences is β, then $C\left\{N_{(j)}^{*}\right\}=C\{0\}$ while for other cases $C\left\{N_{(j)}^{*}\right\}=C\left\{M_{(j)}\right\}$ with $M_{(j)}=M_{1_{1} 1} M_{2_{i 2}} \cdots M_{m_{j}}$, where $M_{k_{j_{k}}}$ is either 1 or $N_{k_{j_{k}}}^{c}$, depending on whether $\left\{N_{k, e}\right\}_{\ell=0}^{\infty}$ is α or $\gamma, 1 \leq k \leq m$. Without loss of generality, we can suppose $M_{k, 0}=1 \forall k$.

To see that $C\left\{M_{(j)}\right\}$ is an algebra, let f and g be in $C\left\{M_{(j)}\right\}$. By Leibniz's rule

$$
D^{(j)}(f g)=\sum_{n_{1}=0}^{j_{1}} \sum_{n_{2}=0}^{i_{2}} \cdots \sum_{n_{m}=0}^{j_{m}}\binom{j_{1}}{n_{1}}\binom{j_{2}}{n_{2}} \cdots\binom{j_{m}}{n_{m}} D^{(n)} f \cdot D^{(i)-(n)} g
$$

where $n=\left(n_{1}, n_{2}, \ldots, n_{m}\right)$. Hence,

$$
\mid D^{(j)}(f g) \| \leq \beta_{f} \beta_{g}\left(\sum_{n_{1}=0}^{j_{1}} \sum_{n_{2}=0}^{j_{2}} \cdots \sum_{n_{m}=0}^{j_{m}}\binom{j_{1}}{n_{1}}\binom{j_{2}}{n_{2}} \cdots\binom{j_{m}}{n_{m}} B_{f}^{\|(n)\|} M_{(n)} B_{g}^{\mid(j)-(n) \|} M_{(j)-(n)}\right.
$$

or by commutativity,

$$
\begin{aligned}
\left\|D^{(j)}(f g)\right\| \leq \beta_{f} \beta_{\mathrm{g}}\left(\sum_{n_{1}=0}^{j_{1}}\binom{j_{1}}{n_{1}} B_{f}^{n_{1}} B_{\mathrm{g}}^{j_{1}-n_{1}} M_{1, n_{1}}\right. & \left.M_{1, j_{1}-n_{1}}\right) \cdots \\
& \times\left(\sum_{n_{m}=0}^{j_{m}}\binom{j_{m}}{n_{m}} B_{f}^{n_{m}} B_{8}^{j_{m}-n_{m}} M_{m, n_{m}} M_{m, j_{m}-n_{m}}\right)
\end{aligned}
$$

The convexity of $\left\{\log M_{k, \ell}\right\}_{\ell=0}^{\infty}$ combined with $M_{k, 0}=1$ shows that $M_{k, n_{k}} M_{k, j_{k}-n_{k}} \leq M_{k, j_{k}}, 1 \leq k \leq m$. Hence, we have:

$$
\left\|D^{(j)}(f g)\right\| \leq \beta_{f} \beta_{g}\left(B_{f}+B_{g}\right)^{\|(j)\|} M_{(j)}
$$

which shows that $C\left\{M_{(i)}\right\}$ is an algebra under pointwise addition and multiplication.

If $N_{(j)}=N_{(j)}^{*} \forall(j)$, we see immediately that $C\left\{N_{(j)}\right\}=C\left\{M_{(j)}\right\}$. This completes the proof of the theorem.

References

1. S. Mandelbrojt, Séries adhérentes, régularisation des suites, applications, Gauthier-Villars, Paris, 1952.
2. T. Pham-Gia, On a theorem of Lelong, Canad. Math. Bull., Vol. 19 (4), 1976, 505-506.
3. W. Rudin, Division in algebras of infinitely differentiable functions, Journ. Math. Mech., Vol. II, 5 (1962), 797-809.
4. W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1966.

Department of Mathematics
Université de Moncton
Moncton, N.B. E1A 3E9

[^0]: Received by the editors February 6, 1978 and, in revised form, June 7, 1978.
 ${ }^{(*)}$ The author wishes to thank the referee for helpful comments and for remarks on the same problem on a bounded interval.

