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Abstract

Let K{, K2 be locally compact hypergroups. It is shown that every isometric isomorphism
between their measure algebras restricts to an isometric isomorphism between their L -algebras.
This result is used to relate isometries of the measure algebras to homeomorphisms of the
underlying locally compact spaces.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 43 A 62; secondary 43 A10,
43 A 20, 43 A 22.

During the past forty years there have been many results characterising lo-
cally compact groups in terms of spaces of functions and measures on them.
The aim has been to find complete invariants of the class of locally com-
pact groups in the following sense: the locally compact groups Gx, G2 are
topologically isomorphic if and only if the corresponding function or mea-
sure spaces E(Gl), E(G2) are isomorphic in the appropriate category. In this
context, the development for Ll(G) began with the papers of Kawada (1948)
and Wendel (1951, 1952); for Ml{G) with Johnson (1964) and Strichartz
(1965), and for A(G) and B{G) with Arendt and Canniere (1983) and Wal-
ter (1972). There have been various extensions to spaces of continuous func-
tions and pth-integrable functions, and also variations on the nature of the
isomorphism between E(G{) and E(G2).

In this paper we consider the above ideas in the hypergroup setting. A hy-
pergroup (which we define in detail in Section 1) is a locally compact space
K with a convolution on its measure space M(K) such that (M(K), +, *)
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is a Banach algebra with further convolution-like properties. Familiar ex-
amples include the space of conjugacy classes of a compact group, the space
of double cosets of a locally compact group, and the dual object of a com-
pact group. It is important to adopt the viewpoint that hypergroups have
no algebraic structure of their own; all properties are inherited through the
measure algebra. As such, complete invariants need to be given in terms of
the measure algebra itself.

Notwithstanding the above, we can give useful analogues of the Kawada/
Wendel and Johnson/Strichartz results, by showing that these are in fact
statements about the convolution measure algebra structures rather than being
inexorably tied to the underlying group.

This paper is presented in four sections. In the first we give a defini-
tion of a hypergroup and present some preliminary results. Section 2 will
be concerned with the Kawada/Wendel result, where we identify the isomet-
ric isomorphisms of the (hyper)group algebra Ll(K) in terms of bipositive
isomorphisms. In Section 3 we show that isometric isomorphisms between
hypergroup algebras are determined by isometric isomorphisms between the
corresponding measure algebras, thus extending the results of Johnson (1964)
and Strichartz (1965) given for locally compact groups. We also prove the
converse of this. Finally in Section 4 we show how isomorphisms between
measure algebras lead to homeomorphisms and other structure preserving
mappings between the underlying locally compact spaces.

1. Hypergroups

Hypergroups made their first appearance in harmonic analysis with the
papers of Dunkl (1973), Jewett (1975) and Spector (1975). While the three
definitions differ slightly the developments are quite similar. We follow that
of Jewett, which has become the standard for the many papers appearing in
this area during the ensuing fifteen years.

1.1. Notation. Let A" be a locally compact Hausdorff space. The notation
below will be used throughout the paper.

R, C Space of real and complex numbers, respectively.
C(X), CQ(X), CC(X) Space of bounded continuous complex-valued

functions on X, those vanishing at infinity,
and those with compact support, respectively.

M(X) Space of bounded Radon measures on X.
M+{X), Ml {X) Subset of M(X) consisting of those measures
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that are nonnegative, and those that are non-
negative with total variation one, respectively.

supp(ju) Support of fi G M(X).
supp(^) U(suPP(/"): M G A}, where A c M(X).
\\/i\\ Total variation norm of // e M{X).
ex Point mass at x.
Ac Closure of A<zX.
^A Indicator function of A c X.
0 Empty set.
A Complex conjugate of A c C.

In this paper we consider two topologies on M(X), namely the vague topol-
ogy a{M{X), CC(X)), and a(M(X), C(X)) which we refer to as the weak
topology (Jewett (1975) uses the term cone topology). Where nothing is said
to the contrary, it is the weak topology that is intended.

1.2. Hypergroups. A nonvoid locally compact Hausdorff space K will be
called a hypergroup if the following conditions are satisfied.

(i) (M(K), +) admits a binary operation * under which it is a complex
algebra.

(ii) The bilinear mapping *: M(K)xM(K) —> M(K) given by (/i, v) —>
H*v is nonnegative (fi*u > 0 whenever ft, v > 0) and its restriction
to M+{K) x M+(K) is continuous when M+(K) is given the weak
topology.

(iii) Given x, y £ K, ex* e & M (K) and supp(eJC * e ) is compact.
(iv) The mapping (x, y) —> supp(ev * e j of K x K into the space of

nonvoid compact subsets of K is continuous, the latter space with
the topology as given in Jewett (1975), Section 2.5.

(v) There exists a (necessarily unique) element e of K such that ee*sx —
ex * ee — ex for all x e K.

(vi) There exists a (necessarily unique) involution (a homeomorphism
x -* x~ of AT onto itself with the property (x~)~ = x for all
x e K) such that, for x, y e K, e e supp(ex * ey) if and only

if x = y~ , and (fi * v)~ — v~ * n~ for all fi, v e M(K), where
fi~ € M(K) is defined by n~(A) — n{A~) for Borel subsets A of
K, with A~ = {x~ : x G A} .

A familiar example of a hypergroup is a locally compact Hausdorff group
G, with M(G) carrying its usual convolution structure. Many examples are
to be found in Dunkl (1973), Jewett (1975), Ross (1977) and Bloom and
Heyer (1982). Harmonic analysis on hypergroups has been given in some
detail in the paper of Jewett (1975). We shall use the more straightforward
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results there without explicit reference. However some of the results that
either we need to refer to reasonably often or are not to be found in the form
we require will be presented below.

For / e C(K), x, y € K, we write

f(x*y) = Jfd(ex * ey) = fx(y) = f{x)

provided the integral exists. It is seen that (x, y) —* f(x *y) is a continuous
function on K x K, and that fx,f

xe C{K) for each x e K.
For subsets A, B of K define

A * B = |J{supp(e;(. * ey): x e A, y 6 B}.

A subset H of K is called a subhypergroup of K if the following three
conditions are satisfied:

(i) H is nonvoid and closed;
(ii) H~ = H;

(iii) H*HcH.

It is apparent that e € H whenever H is a subhypergroup of K.
Let H be a subhypergroup of K. A nonnegative (not necessarily bounded)

Radon measure co on K will be called left //-invariant if ex * co = ca for all
JC e H. In the case where co is left AT-invariant, we refer to it as a left Haar
measure on AT. If A" is compact (Jewett (1975), Theorem 7.2A), discrete
(Jewett (1975), Theorem 7.1 A) or commutative (Spector (1978), Theorem
III.4) then K possesses a left Haar measure. It is not known whether all
hypergroups admit left Haar measures. However if a left Haar measure exists,
it is essentially unique (Jewett (1975), Theorem 5.2). Throughout this paper
we assume that K possesses a left Haar measure, which we denote by coK, or
co if there is no possible ambiguity. We denote by Ma (K) the two-sided ideal
in M(K) consisting of those measures absolutely continuous with respect to
(a; see Jewett (1975), Theorem 5.6A. Similar considerations hold when left
is replaced by right throughout. A measure that is both left and right H-
invariant will be referred to simply as //-invariant. It should be noted that
a left Haar measure on a compact hypergroup K is also right AT-invariant
(Jewett (1975), Theorem 7.2A).

Of particular importance in probability theory are those measures co e
M+(K) satisfying co * co = co; such measures are called idempotent. Jewett
(1975), Theorem 10.2E has characterised the idempotent measures as Haar
measures of compact subhypergroups of K; see also Dunkl (1973), Theorem
1.13.

For each / e C(K) we define f by f~(x) = f(x~), where x € K.
It is clear that / f~ d/i = Jfdfi" whenever fi £ M{K). Furthermore
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(M(K), +, *) is a Banach ~-algebra, with the involution given by n~{A) =
fi(A~). For each p E [1 , oo] we can form the Lebesgue space LP(K, co)
which is usually written just as LP(K). We shall not distinguish between
Ll(K) and its isomorphic image Ma(K) in M(K).

2. Isomorphisms of L (K)

Let T be an isometric isomorphism between L (Kx) and L (K2), and
write $ ( / ) = {x e K: f(x) # 0} where / € L\K). (This support set is
determined up to a null set.) We need the following five lemmas which were
given by Wendel (1951) for locally compact groups. However it should be
noted that the proofs given by Wendel for Lemmas 2.1-2.4 do not depend
on any group structure; the reader is referred to Wendel (1951), pp. 308-309
for these.

2.1. LEMMA. For f, g e L\KX) , s(f)C\s(g) = 0 if and only if s(Tf)n
s{Tg) = 0.

2.2. LEMMA. For f,ge L\KX), s(f) c s(g) if and only if s{Tf) c
s(Tg).

2.3. LEMMA. For each a-finite subset B of K2 there exists / €L 1 (A ' 1 ) +

such that s(Tf) = B.

2.4. LEMMA. Let f,ge LX{KX)+ . For y e s{Tf) write

KTf(y) = Tf(y)\Tf(y)\-1

and similarly for KTg. Then KTf = KTg a.e. on s(Tf)r\s(Tg).

The fifth lemma is essential for relating isometric and positive isomor-
phisms between the hypergroup algebras. We first require the idea of a con-
tinuous character y, which is a nontrivial bounded continuous function sat-
isfying both the product formula y(x * y) = y{x)y(y) and y(x~) = y(x) for
all x, y e K. We write K~ for the set of continuous characters on K. Note
that members of K~ are necessarily bounded in modulus by y(e) — 1 (see
Jewett (1975), Lemma 6.3D) but in contrast to the group case could take the
value zero.
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2.5. LEMMA. There is a unique continuous character y with \y\ = 1 on K2

such that Tf = y\Tf\ a.e. on K2 for all f e L\KX)+ (y is real or complex
according to the l)-spaces).

PROOF. Let V be a compact neighbourhood of e2 e K2, and using Jewett
(1975), Lemma 10.1C choose an open (and closed) cx-compact subhyper-
group HQ of K2 containing V. By Lemma 2.3 there exists h e Ll(K{)

+

such t h a t s(Th) = Ho . F r o m h>0 we have \\h * h\\{ = \\h\\] so tha t

* r a n , - \\T(h * /oil, = \\h *h\\l = \\h\\\ = \\Th\\].
Now

Th*Th(y)= f Th{z)Th(z~~ *y)dwK{z).

Using Lemma 2.4, we have (writing K for the common value)

K = KThtTh = KTh a.e. on s(Th * Th) n s(Th).

As s(Th) = Ho is a subhypergroup of K2, s(Th * Th) c HQ so that
5(r/i * Th) c .5(770 • Now as Th * Th = 0 outside s(77z * TA) we have
that Th * Th = K\Th * Th\ on Ho, where we have extended K to be KTf

HHon Ho. Hence

f Th{z)Th{z~ *y)dcoK{z)

and using (1), we have

11771*77111,= / K(y)~l [ Th(z)Th(z~ *y)dcoK (z)dcoK (y)

= f f K(y)-1K(z)\Th\(z)(K\Th\)(z-*y)d(oK2(z)dcoK2(y)
JH0 JH0H0

= \\Th\\\

- / \Th\(y)d(OK(y) f \Th\(z)d(oK(z)

= j J \Th\(z)\Th\(z- *y)d(oK2(y)d(oK2(z)

where for the final equality we have used Jewett (1975), Theorem 3.3F. It
follows that as e z - * e is supported in HQ

JHQJH0J{Z-}*
K(x)K(y) XK{z)\Th\{x)\Th\{z)

M
dez-

= 1 1 1 \Th\(x)\Th\(z)dez-*e(x)dcoK(z)da)K(y).
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Since \K(x)K(y)~lK(z)\ = 1 we deduce that K{x) = K(y)K(z)~l with the
e q u a l i t i e s h o l d i n g x - a . e . o n { z ~ } * {y} f o r a l m o s t a l l y , z . H e n c e

/ K(x)de2-*e(x) = K(y)K(z)-1

and K(z~ * y) = K(y)K(z)~1 for almost all y, z e HQ. Now choose a
compact set C c HQ of (finite) positive measure, and integrate to obtain

K(y)coK (C) = / K{y)dtoK (z) = / K(z~ *y)K(z)dcoK (z)2 Jc 2 Jc

for almost all y. Since K 6 L°°{K2) and K(c € L\K2), Jewett (1975),
Theorem 5.5D shows that the latter expression is a continuous function of
y. Thus K is equal almost everywhere to a continuous function, y0 say. By
the above yo(z~ * y) - yo(y)7o{z)~i a.e. on Ho x Ho. Appealing to Jewett
(1975), Lemma 3.1A, we see that this equality holds everywhere on HQxH0,
and it should also be observed that |yo| = 1.

We note from Lemma 2.4 that for any / e L\KX)+ with s(Tf) c Ho,
Tf = yo\Tf\ a.e. on Ho. We now extend this result to all of K2. Write
K2 = Uai^a) * ^o a s ^ e disjoint union of left hypercosets of HQ (see Jew-
ett (1975), Lemma 10.3A), pick a finite number of them, and write Hl for
the open subhypergroup of K2 generated by the (finite) union. By Jewett
(1975), Theorem 10.1C, //, is <r-compact, and as above we obtain a con-
tinuous character y, with modulus 1 on H{. By Lemma 2.4 for two such
subhypergroups H{, H[, yl and y[ agree on Hl n H[ D HQ SO that y, is an
extension of y0 . It is easy to see that for any / e Ll (Kl)

+ with s( Tf) c Hx,
Tf = yi\Tf\ a.e. on Hx.

Now extend y0 to y on K2 which by the preceding paragraph is well
defined. Consider any / e Ll(K{)

+, and since supp(w,) = Kx (Jewett
(1975), Lemma 5.1 A) the countable number of hypercosets {yn} * Ho that
s(Tf) intersects nontrivially (that is, in sets of positive measure). Write

and fn-T
 lgn. Then / = J ^ l , /„ , and by Lemma 2.1 the sets s(fn) are

pairwise disjoint. Since / > 0 so is each fn . Thus

gn(y) = yn(y)\gn(y)\ = y{y)\gn{y)\, y e {yn} * n0,

and
Tf(y) = y(y)\Tf(y)\ for all y e /i:2.

We can now present the main result of this section.
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2.6. THEOREM. Let T be an isometric isomorphism of L (K^ onto
Ll(K2). There is a continuous character y on K2 with modulus 1 such
that the mapping P: L\KX)^> L\K2) defined by

(Pf)(x) = y(x)-lTf(x), feL\K{), x<=K2,

is an isomorphism of L (K{) onto L (K2) satisfying Pf > 0 if and only if
/ > 0. The character y is real or complex according to L1 (A'j), Ll(K2).

PROOF. By Lemma 2.5 there is a (unique) continuous character y of K2

with |y| = 1 such that for all / e L^KJ* , Tf = y\Tf\ a.e. on K2. With
this choice of y define P as in the statement of the theorem, and for / > 0

so that P carries positive elements of LX{K{) into positive elements of
L\K2).

We also have from the proof of the lemma in Bloom (1986) that forf,ge
L\KX)

P(f*g) = ?~lT(f*g) = y~\Tf* Tg) = (y~lTf) * (y^Tg) = Pf*Pg

(note that the lemma is given for commutative hypergroups, but the proof
carries over to the general case by appealing to Dunkl (1973), Proposition
2.2(3) where it is shown that y is constant with value y(x)y(y) on {JC}
Thus P is an algebra isomorphism of Ll{Kx) onto L[(K2).

It remains to show that / > 0 whenever Pf > 0. Write

f = fl-f2 + iW3-f4)
where / , , f2, / 3 , /4 > 0 and j(/,) n s(f2) = 0 = s(f3) n s(f4). Then

and since P is an isometry Lemma 2.1 implies that

*(/>/,) n*(/>/2) = 0 = s(Pf3)ns(Pf4).

Now Pf > 0 implies that Pf3 - Pf4 = 0, and using the disjointness of
the supports Pf2 = Pf3 = Pf4 = 0 (all three terms are nonnegative). Thus
Pf — Pf{ and / = /, > 0 as required.

The algebra isomorphism P introduced in Theorem 2.6 is termed bipos-
itive. We have a converse to Theorem 2.6 for such operators.
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2.7. THEOREM. Let P be a bipositive isomorphism of L^K^ onto Ll
R(K2).

Then P is an isometry.

PROOF. P and P~l are order-preserving hence bounded. Thus as in
Wendel (1951), Theorem 2

(2) 0<C 1

Let / G L\K{)
+ . Then Jewett (1975), Theorem 5.5L shows that | | / * / | | , =

H/llJ and by recursion \\f\\t = ||/||" for all n = 1, 2, . . . . Now Pf > 0
and P(/*") = (P/ ) ' " , so that by (2)

Thus ||P/||, = H/ll, for all / e
For / € LR(K{) write / = fx - f2 where fx, f2 are nonnegative with

disjoint supports. Then

I, = 11/, - /2II, -11/,II, + II/2II, = \\PfA + \\Pf2\\i

and similarly for P ' so that

I,-II* w. l ,< 11/711, < 11/11,

which gives the result.

Wendel (1952), Theorem 1 identified the multipliers of L1(G) as convo-
lution operators, and also (Theorem 3) the isometric multipliers of Ll (G) as
those convolution operators generated by yex where x £ G and y eC with
|y| = 1. The arguments used by Wendel carry over to hypergroups to give:

2.8. THEOREM. Let K be a hypergroup and T a bounded linear operator
from LX(K) into itself Then T commutes with convolution if and only if
there exists a unique measure ji e M{K) such that Tf = JU * f for each

2.9. THEOREM. Let K be a hypergroup and consider the isometry T: Ll(K)
-» LX{K) given by Tf = /i*f. Then there exists x e K and y e C with
\y\ - 1 such that n = yex.

It should be noted that in contrast to the group case the converse of Theo-
rem 2.9 fails to hold. Indeed consider Example 9. ID of Jewett (1975) where
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the conjugacy class hypergroup of the alternating group on four letters is rep-
resented as K = {e, a, b, c} , with hypergroup dual K~ = {1, x, V, £}
related according to the following table:

1

X

V

e

1

1

1

1

a

1

1

1

- 1 / 3

b

1

a

fi
0

c

1

fi
a

0

= P = e ' .

Then Tf = eb*f defines a multiplier of Ll{K) into itself but eb * £ = 0
shows that T is not norm preserving.

3. Isomorphisms of M(K)

Johnson (1964) metrically characterised the subspace of absolutely con-
tinuous measures in the measure algebra of a locally compact group to show
that for locally compact groups GX,G2, M{GX) is isomorphic to M{G2)
implies the same of Ll(Gx) and Ll(G2). The same result was obtained in-
dependently by Strichartz (1965). We follow Strichartz' development which
can be adapted to the hypergroup setting.

3.1. LEMMA. For n, v e M(K)

H±v if and only if \\n + v\\ = \\n - v\\ - \\p\\ + \\v\\.

This lemma is proved in Strichartz (1965).

3.2. LEMMA. L (K) is the intersection of all nontrivial closed left ideals I
in M{K) that satisfy

(3) n e / , v e M{K) and v ± k whenever ft ± k, A e M(K) imply v el.

PROOF. We first see that Ll(K) is a closed left ideal of M(K) satisfying
(3). Indeed that it is a closed left ideal is proved in Jewett (1975), Theorem
5.6B. Also for fi e Ll(K) Strichartz (1965) showed that the condition on
v € M(K) that v _L X whenever fi _L A is equivalent to v -c \i; for if
v <c ft then there exists g € L (//) such that v = gfi, and /i ± k implies
v _L k. In the other direction if v _L k whenever fi ± X then, in the
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Lebesgue decomposition v = f/x + X we have as ft ± X that v _L X. Thus
k = v - fn _L X and hence X = 0, so that v = ffi < fi. Condition (3) for
Ll(K) now follows as the Lebesgue-Radon-Nikodym theorem guarantees that
L (K) contains, along with each member, every measure that is absolutely
continuous with respect to it.

It remains to show that any nontrivial closed left ideal / of M(K) sat-

isfying (3) must contain LX(K). Indeed let n e / with (i / 0. If (VJ

is a basis of compact neighbourhoods at e and ka = (o(Va)~
l£v then

ka e Ll n L°°(K), and for each / e C{K)

Jkjdco- J fd

<co(Va)~
l fv\f-f(e)\d-

e CO

CO

, - 1<co(Va) 'co(Va)e = e

for a sufficiently large, where we have used the continuity of / at e. Thus
ka -> se weakly, and from the continuity of the convolution, ka*fi-+ ee*fi =
/i. Since fi / 0 there exists a for which ka*n / 0, and v = ka*/i e Ll(K).

Now \v\ <£ v and hence by the first paragraph \v\ e / . Let x e supp(|v|)
and write ha = co({x~}*Va)~

xl;{x-}ifV . NowbyJewett (1975), Lemma 4.2D

pos(/zj * supp(M) = pos(ha * \u\)

where pos(A) = {x: h(x) > 0} . Now x~ e pos(ha) and x e supp(|^|) so
that e € {x~}*{x} c pos(A0*|i/|). Since ha*\v\ e C(K) we see that ha*\u\
is strictly positive in a neighbourhood V of e .

For a sufficiently large, Va c V in which case fca<y < /za * \v\. For such
a we have kaco e I, and since / is a closed ideal and (A:Q) is in fact an
L'(^)-bounded approximate identity it follows that Ll(K) c / .

We are now able to give the promised characterisation theorem which is
an easy consequence of Lemmas 3.1 and 3.2.

3.3. THEOREM. Let KX,K2 be hypergroups, T: M{KX) -> M{K2) an
isometric isomorphism. Then T restricted to Ll(K{) is an isometric isomor-
phism between ^'(A^,) and Ll(K2).

PROOF. Both T and T~l preserve the property of being a closed left
ideal. We also see that if / is an ideal in LX{KX) satisfying (3) then T(I)
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also satisfies (3). Indeed for 7> e T(I), Tv e M(K2), Tv LTX whenever
T(i ± TX (recall that T is onto), and by Lemma 3.1

Since T is an isometry this entails that

so that v _L X whenever ft ± k. By (3), v € / and Tv e 77 as required.
Similarly if / is an ideal in Ll(K2) satisfying (3) then T~l(I) also satisfies
(3).

It remains to observe that intersections are also preserved so that by Lemma
3.2, T is an isometric isomorphism of L (Kx) onto L (K2).

We can prove the converse of Theorem 3.3 by making use of Wendel's
theorem for hypergroups.

3.4. THEOREM. Let KX,K2 be hypergroups, T:Ll{Kx) -> LX{K2) an
isometric isomorphism. Then T extends to an isometric isomorphism between
M{KX) and M(K2).

PROOF. Denote by ^f(Ll(Kf), Ll(Kt)) the space of bounded linear op-
erators from L (Kt) into itself, / = 1,2. Then T extends to an isometric
isomorphism T from 5?{L\KX), Ll{Kx)) onto 5?{L\K2), L\K2)) via
TS = TST~l where S e ^{L\KX), L\KX)) . Also if 5 commutes with
convolution then so does IS, as can be seen from the chain of equalities

(JS){f*g) = (TST-i)(f*g) = l l l ^

It remains to observe that M(Kt) can be identified (isometrically) with the
subspace of S?(l} {K^, L1 (Kt)) consisting of those operators that commute
with convolution; see Theorem 2.8.

4. Isomorphisms of hypergroups

We have already observed that an isomorphism between two hypergroups
is in fact an isomorphism between their measure algebras. However such a
map does lead to a homeomorphism between the underlying locally compact
spaces. We first need to identify the extreme points of the unit ball of M(X),
something that is well known for X compact (see, for example, Dunford and

https://doi.org/10.1017/S1446788700035102 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700035102


[13] Isomorphisms of hypergroups 395

Schwartz (1958), Lemma V.8.6, p. 441) or for real measures. However we
can find no explicit reference to the more general result; our proof which is
quite direct is included for completeness.

4.1. LEMMA. Let X be a locally compact Hansdorff space, M(X) the set
of complex Radon measures on X, and B the closed unit ball in M{X).
Then ext(fl) = {yex: x eX, \y\ = 1}.

PROOF. TO show the forward inclusion we consider fi e ext(B). First
note that \\fi\\ = 1. Indeed if n = 0 then 0 = \fi + j(-fi') where ||//|| < 1
shows that 0 cannot be extremal. If fi ^ 0 then fi — \\fi\\n + (1 - ||^||)/^
would give the same conclusion if \\fi\\ < 1.

Now suppose there exist x, y e supp(|i) with x ^ y. We can find an
open neighbourhood U of x with Uc disjoint from y; and x e supp(/i)
shows that \n\(U) > 0. Put fi{ = n\v and ji2 — n\x\v • Then /* = n{ + ji2

and ||0|| = | |^ | | + ||/i2||. Thus

(\fi\(X\U) > 0 as y G supp(/i)). Also H/̂ H < \\/i\\ < 1 and \\n2\\ < \\/i\\ < 1
shows that n cannot be an extreme point of B. Hence supp(^) = {x} for
some x e X, and \\fi\\ — 1 means that pi — yex for some y with |y| = 1.

For the reverse inclusion, let x e l , \y\ = 1 and suppose yex — bfil +
(1 - b)n2 for some nx,n2eB, 0 < b < 1. Clearly ||//,|| = ||ju2|| = 1. We
want to show that yex = n{ = n2.

We first show that if A € CC(X) vanishes on an open neighbourhood U
of x then

/ hdnx= I hdfi2 = 0.
Jx Jx

We can assume without loss of generality that H^ll^ < 1 • Since X is a T7>\
space there exists k e C(X) such that II^H^ < 1, k(x) = 1 and k — 0
outside U. In fact by choosing such k with respect to a relatively compact
open subset of U containing x we can further assume that k has compact
support. Now

f f f
b I kd/i, + (1 — b) I k dpi7 — y\ kde = yk(x) — y.

Jx Jx Jx
But \y\ = 1 gives that y is an extreme point of the closed unit ball in C.
Since

' kdMi
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for i = 1, 2 , we can deduce that

y= f kdnx = / kdnr
Jx Jx

Similarly ||/r -H /c||oo < 1 gives the same equalities with h + k replacing k so
that

This shows that /nx, n2 vanish on ^T\{x} and hence supp(Ju1) = supp(//2) =
{x}. Thus fix = yxex and fi2 = y2ex for some yx, y2 with \yx\ = \y2\ = 1;
and

gives y = byx + (1 — b)y2 . Thus y = yx = y2 as y is extremal in the closed
unit ball of C, and nx = n2 = yex as required.

Now suppose that T: M(KX) —> M{K2) is an isometric isomorphism.
Then T{BX) = B2, where Bt denotes the closed unit ball of M{Kt), i =
1,2. Clearly T{ext(Bx)) = ext(S2). Indeed if /i G ext(5,) and T// = aj/, +
(1 - a)v2 where 0 < a < 1, vx, v2 G B2 then /* = aT"1!/, + (1 - a)T~lv2 ,
and | | r~V, | | < 1, IIT"1!/^! < 1 shows that n = T~xvx = T~xv2 and
Tfi = v{ = v2 . Thus 7> G ext(52) and r(ext(5,)) C ext(B2). Since T~x is
also an isometric isomorphism we have r~'(ext(52)) c ext(B1), and these
combine to give the desired equality.

The above paragraph shows that for each x G Kx there exists y G K2

such that Tex — y(x)ey where |y(jc)| = 1. We write y = x{x). As can be
expected T preserves some of the structure of Kx and K2 . We first need a
result on the vague convergence of measures.

4.2. THEOREM, (a) If (na) is norm bounded in M{K) and ||(/ia - n) *
/ | | , - 0 for all f G LX{K) then /*a -> n vaguely.

(b) If na,n& M+{K) with na - n then \\(jia - fi) * f\\x - 0 for all
feL\K).

PROOF, (a) For / G L\K) and g e C0{K) we have using Jewett (1975),
Lemma 4.2H

(4) Jf*g~ d{n~ - /T) = J g *f~d(pa -n) = J{fia -fi)

by the assumption on (fia). Now L1 * C0(K) is dense in C0(K); indeed
if (kp) is the bounded approximate unit in Ll(K) given in the proof of
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Lemma 3.2 then kp -* ee weakly, and appealing to Jewett (1975), Lemma
4.2F for g e C0(K) we have

lim\\kfi *g-ee* g\\ = 0

so that kp* g G l) * C0(K) approximates g.
We now use the norm boundedness of (jua) and (4) to deduce that na^> H

on C0(K) as required.
(b) To prove this we follow the proof of Theorem D(a) given in Granirer

and Leinert (1981). The only part that needs attention is the property that
Ha * / —> fi * / uniformly on each compact set for / e CC(K). But this
has been proved in Bloom and Heyer (1989), Theorem 2.9, and the result is
complete.

4.3. COROLLARY. Every hypergroup K is homeomorphic to {ex: x e K}
where the latter is given the point-norm convergence topology as a space of
operators on l) (K); that is xa -> x if and only if \\ex *f-ex*f\\l -»0 for

all feLl(K).

4.4. THEOREM. The isometric isomorphism T: M(K{) -> M(K2) induces
a homeomorphism r:Kl—*K2 that preserves compact subhypergroups.

PROOF. First note that T is one-to-one as T(XJ) = r(x2) implies y(xl)Tex

= y(x,)Ter and Ter = T(y(x,)y(x7)er ) . Since T is one-to-one ev =
y(xi)y(x2)ex , and considering the supports of these two measures we have
xx= x2.

To show that T is onto choose y e K2 and, since T~l: M(K2) —> M{K{)
is an isometric isomorphism, x e AT, and a with \ay\ = 1 such that

T~]ey = ayex. Then

and again considering supports we have y = r(x) (and T~ er,x) = y(x)ex).
Consider x —> x so that by Corollary 4.3, e —> ev in the point-norm con-

a

vergence topology. Since T: M(KX) —» M(K2) is a norm-preserving algebra
isomorphism we have || Tex * T / - Te^ * Tf\\ , - » 0 . Now appeal to Theorem
3.3 to have that T restricted to L (K{) is an isometric isomorphism between
£'(*,) and Ll{K2) SO that \\Tex *g-Tex* g\\x -+ 0 for all g e L 1 ^ ) .
By Theorem 4.2(a)
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in the vague topology. In particular it must be the case that T(XQ) -> x(x) so
that x is continuous. Similarly from T~ e — y(x~ {y))sx-\, , we see that

x~ is also continuous. Thus x is a homeomorphism.
Let H be a compact subhypergroup of K{ and write o)H for its nor-

malised Haar measure. Then coH is idempotent and

TcoH — T(coH * coH) = TcoH * T(oH

shows that TcoH is idempotent. We now make use of Lemma 4.5 below to
write x(H) = x(swpp(a)H)) = supp{T(oH) which by the continuity of x must
be compact. We also have by Jewett (1975), Lemma 3.2G that

x(H) * x(H) = supp(Ta)H) * s\ipp(TcoH)

= supp(Ta>H * TcoH)

= supv(TcoH) = x(H)

and from Corollary 4.6 below x(H)~~ = x{H~) = x{H). Now appeal to Jewett
(1975), Theorem 10.2F to deduce that x{H) is a compact subhypergroup of
K.

We can show that y has many of the properties of a character of Kx . We
first prove a preliminary result.

4.5. LEMMA. For each n e M^(KX), t(supp(//)) = supp(7» .

PROOF. We first note that T is weakly continuous on M+(K) in the sense
that if fia —* (i then T[ia —> Tfi vaguely. Indeed by Theorem 4.2(b) for such
a net (fia), \\{fia - fi) * f\\{ -> 0 for all / e Ll(K{), and as in the proof of
Theorem 4.4, ||(7>o - Tfi) * g||, -+ 0 for all g e Ll(K2) SO that (note that
{fia) must be norm bounded) by Theorem 4.2(a), Tfia -> Tfi vaguely.

Now we use the property that every positive measure fi with compact sup-
port can be approximated by a positive discrete measure v with supp(v) c
supp(/i) and ||z |̂| = \\fi\\. From Tex — y(x)ex,x) we have

= J y(x)ezex dn{x)^j - j Tex d/i(x) = J y(x)ez(x)

where we have used the weak continuity of T proved above. Then choosing
/ e C(K2) with support disjoint from t(supp(^)) we have

Tti(f) = Jy(x)f(x(x))dn(x) = O

so that supp(rju) c t(supp(yu)).
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In the other direction, we first note that y is continuous on AT,, which fol-
lows immediately from the definition of y and the continuity of T . Choose
y G T(supp(/<)), so that y = t(x0) for some x0 e supp(/z), and a neighbour-
hood V of xQ. Then there exists g G C+(AT,) supported in V such that
fi{g) ^ 0. Now / = g o T"1 G C+(K2), and from the continuity of y

provided V is taken suitably small. Thus y e supp(T/i) and this completes
the proof.

4.6. COROLLARY. T({JC} * {y}) = {x(x)} * {T(>>)} and T(X~) — x(x)~ for
all x, y e AT,.

PROOF. Using Lemma 4.5 we have for x, y e K{

<{x} * {y}) = T(supp(eJC * ey)) = supp(T(eJC * ey))

= supp(rex * Tey) = supp(y(x)y(y)e^{x) * er{y))

For the second equality just take y = x~ to give x({x} * {x~}) = {r(x)} *
{r(x~)}. Then ex e {x} * {x~} gives e2 = x{ex) € {T(X)} * {T(X~)} and
hence T(X~) = T(JC)~ .

4.7. THEOREM. The function y satisfies y(x*y) = y{x)y(y) for all x, y £
Kx. If furthermore TpT — (T/i)~ for all fi e M1^^ then y is a character
ofKx.

PROOF. Let x, y e K{. Then from the weak continuity of T

V(x)y(yK(X) * ^{y) - T(ex *ey) = T(Jes dex * ey(

= J Te5 dex * ey(s) = J y{s)ex(s) dex * ey(s).

Choose / e C(K2) such that / = 1 on x({x} * {y}). Then from Corollary
4.6

y(x *y)= I Y(s)ET{s)(f)dex * ey(s)

= ?{x)y(y)eT{x) * e t ( y )(/) = y(x)y(y).

If TpT = {Tn)~ for all n G M\KX) then

Thus y(x ) - y(x).
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