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Abstract

Functions in the meromorphic Besov, Q p and related classes are characterized in terms of double integrals
of certain oscillation quantities involving chordal distances. Some of the results are analogous to the
corresponding results in the analytic case.
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1. Introduction and results

Let H(D) denote the algebra of all analytic functions in the unit disc D := {z : |z|< 1}
of the complex plane C. For 0< p <∞ and −1< α <∞, the weighted Bergman
space Ap

α consists of those f ∈H(D) for which

‖ f ‖p
Ap
α
:=

∫
D
| f (z)|p(1− |z|2)α d A(z) <∞,

where d A denotes the element of the Euclidean area measure on D. It is well known
that

‖ f − f (0)‖p
Ap
α
'

∫
D
| f ′(z)|p(1− |z|2)p+α d A(z) (1.1)

for all f ∈H(D) [5, 9]. As usual, the symbol ' refers to the asymptotic equality
which means that the quantities in other sides of the symbol are comparable, that is,
their quotient is bounded and bounded away from zero.

Let M(D) denote the class of all meromorphic functions in D. For f ∈M(D), the
spherical derivative of f at z is defined as f #(z) := | f ′(z)|/(1+ | f (z)|2). The chordal
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distance between the points z and w in the extended complex plane Ĉ :=C ∪ {∞} is

χ(z, w) :=


|z − w|√

1+ |z|2
√

1+ |w|2
if z, w 6= ∞,

1√
1+ |z|2

if w =∞.

The following result establishes a partial analogue of the asymptotic equality (1.1) for
functions in M(D).

THEOREM 1.1. Let 1≤ p <∞ and −1< α <∞, and let f ∈M(D). Then there
exists a positive constant C, depending only on p and α, such that∫

D
χ( f (z), f (0))p(1− |z|2)α d A(z)≤ C

∫
D
( f #(z))p(1− |z|2)p+α d A(z)

|z|
.

Analogously to the analytic case, the meromorphic Bergman class M p
α is defined as

the set of those f ∈M(D) for which

‖ f ‖p
M p
α
:=

∫
D
χ( f (z), 0)p(1− |z|2)α d A(z) <∞.

Theorem 1.1 implies that

‖ f ‖p
M p
α

.

∫
D
( f #(z))p(1− |z|2)p+α d A(z)

|z|
+ χ( f (0), 0)p (1.2)

for all 1≤ p <∞, −1< α <∞ and f ∈M(D). The notation A . B means that
there exists a positive constant C such that A ≤ C B. The symbol & is understood
in a similar fashion. We do not know whether the converse of the asymptotic
inequality (1.2) holds or not.

Theorem 1.1 has several consequences. The first one shows that functions in the
Besov classes satisfy a certain double integral condition. For 0< p <∞, the Besov
class B#

p consists of those f ∈M(D) for which

‖ f ‖p
B#

p
:=

∫
D
( f #(z))p(1− |z|2)p−2 d A(z) <∞.

For studies on meromorphic Besov classes, see [1, 2, 7, 12, 16]. For a ∈D, we define
ϕa(z) := (a − z)/(1− az). Then ϕa is the automorphism of D which interchanges the
origin and the point a.

THEOREM 1.2. Let 1≤ p <∞ and −1< α <∞, and let f ∈M(D). Then there
exists a positive constant C, depending only on p and α, such that∫

D

∫
D

χ( f (z), f (w))p

|1− wz|4
(1− |ϕw(z)|2)α d A(z) d A(w)≤ C‖ f ‖p

B#
p
.
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A result by Stroethoff [15] states that f ∈H(D) belongs to the analytic Besov space
Bp, 2< p <∞, if and only if∫

D

∫
D

∣∣∣∣ f (z)− f (w)

z − w

∣∣∣∣p

(1− |z|2)(p/2)−2(1− |w|2)(p/2)−2 d A(z) d A(w) <∞.

The case α = (p/2)− 2>−1 of Theorem 1.2 establishes the following partial
meromorphic analogue of this fact. The inequality of the opposite direction for normal
meromorphic functions is discussed in Corollary 1.9.

COROLLARY 1.3. Let 2< p <∞ and f ∈M(D). Then there exists a positive
constant C, depending only on p, such that∫

D

∫
D

(
χ( f (z), f (w))

|1− wz|

)p

(1− |z|2)(p/2)−2(1− |w|2)(p/2)−2 d A(z) d A(w)

≤ C‖ f ‖p
B#

p
.

An application of Theorem 1.1 with α = 0 to the function ( f ◦ ϕw)(r z) yields∫
D(w,r)

χ( f (z), f (w))p d A(z).

∫
D(w,r)

( f #(z))p(1− |z|2)p d A(z)

|ϕw(z)|
, (1.3)

where D(w, r) := {z : |ϕw(z)|< r} is the pseudohyperbolic disc of (pseudohyper-
bolic) center w ∈D and radius r ∈ (0, 1), and the constant of comparison depends
only on r . This fact can be used to prove Theorem 1.4. The class M#(p, q, s) [13, 16]
consists of those f ∈M(D) for which

‖ f ‖p
M#(p,q,s)

:= sup
a∈D

∫
D
( f #(z))p(1− |z|2)q(1− |ϕa(z)|

2)s d A(z) <∞.

THEOREM 1.4. Let 1≤ p <∞, −2< q <∞, 0≤ s <∞ and 0< r < 1. Let
α, β, γ, δ ∈R such that α + β = q − p and γ + δ = s, and let f ∈M(D). Then

sup
a∈D

∫
D

(
1

|D(z, r)|

∫
D(z,r)

χ( f (z), f (w))p(1− |z|2)α(1− |w|2)β

· (1− |ϕa(z)|
2)γ (1− |ϕa(w)|

2)δ d A(w)

)
d A(z). ‖ f ‖p

M#(p,q,s)
.

Here |D(z, r)| denotes the Euclidean area of D(z, r), so

|D(a, r)| = πr2 (1− |a|2)2

(1− |a|2r2)2
(1.4)

by [6, p. 3].
The class N of normal functions consists of those f ∈M(D) for which the

family { f ◦ ψ}, where ψ is a Möbius transformation of D, is normal in D in the
sense of Montel. It is known that f ∈M(D) is normal if and only if ‖ f ‖N
:= supz∈D f #(z)(1− |z|2) <∞ [11]. The following result establishes a sufficient
condition for normal meromorphic functions to belong to M#(p, q, s).
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THEOREM 1.5. Let 1≤ p <∞, −2< q <∞, 0≤ s <∞ and 0< r < 1, and let
f ∈N . Let α, β, γ, δ ∈R such that α + β = q − p and γ + δ = s. Then

‖ f ‖p
M#(p,q,s)

. sup
a∈D

∫
D

(
1

|D(z, r)|

∫
D(z,r)

χ( f (z), f (w))(1− |w|2)α/p(1− |z|2)β/p

· (1− |ϕa(w)|
2)γ /p(1− |ϕa(z)|

2)δ/p d A(w)

)p

d A(z).

Theorems 1.4 and 1.5 together with Hölder’s inequality yield the following
characterization of functions in M#(p, q, s). Analogous results for analytic functions
can be found in [14].

THEOREM 1.6. Let 1≤ p <∞, −2< q <∞, 0≤ s <∞ and 0< r < 1, and let
f ∈N . Let α, β, γ, δ ∈R such that α + β = q − p and γ + δ = s. Then the
following conditions are equivalent:
(1) f ∈ M#(p, q, s);

(2) sup
a∈D

∫
D

(
1

|D(z, r)|

∫
D(z,r)

χ( f (z), f (w))(1− |w|2)α/p(1− |z|2)β/p

· (1− |ϕa(w)|
2)γ /p(1− |ϕa(z)|

2)δ/p d A(w)

)p

d A(z) <∞;

(3) sup
a∈D

∫
D

(
1

|D(z, r)|

∫
D(z,r)

χ( f (z), f (w))p(1− |z|2)α(1− |w|2)β

· (1− |ϕa(z)|
2)γ (1− |ϕa(w)|

2)δ d A(w)

)
d A(z) <∞.

For 0≤ s <∞, the meromorphic Q#
s -class consists of those f ∈M(D) for which

‖ f ‖2Q#
s
:= sup

a∈D

∫
D
( f #(z))2gs(z, a) d A(z) <∞,

where g(z, a) := −log|ϕa(z)| is the Green function of D [4]. It is known that
Q#

s =N ∩ M#
s , where M#

s = M#(2, 0, s) [16]. Therefore, Theorem 1.6 yields the
following result.

COROLLARY 1.7. Let 0< r < 1 and 0≤ s <∞, and let f ∈N . Let α, β, γ, δ ∈R
such that α + β =−2 and γ + δ = s. Then the following conditions are equivalent:
(1) f ∈ Q#

s ;

(2) sup
a∈D

∫
D

(
1

|D(z, r)|

∫
D(z,r)

χ( f (z), f (w))(1− |w|2)α/2(1− |z|2)β/2

· (1− |ϕa(w)|
2)γ /2(1− |ϕa(z)|

2)δ/2 d A(w)

)2

d A(z) <∞;

(3) sup
a∈D

∫
D

(
1

|D(z, r)|

∫
D(z,r)

χ( f (z), f (w))2(1− |z|2)α(1− |w|2)β

· (1− |ϕa(z)|
2)γ (1− |ϕa(w)|

2)δ d A(w)

)
d A(z) <∞.
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Corollary 1.8 is an immediate consequence of Theorem 1.6. It answers partially
[13, Question 5].

COROLLARY 1.8. Let 1≤ p <∞, −2< q <∞, 0≤ s <∞ and f ∈N . Then

‖ f ‖p
M#(p,q,s)

. sup
a∈D

∫
D

∫
D

(
χ( f (z), f (w))

|1− wz|

)p

(1− |w|2)(q/2)−1(1− |z|2)(q/2)−1

· (1− |ϕa(w)|
2)s/2(1− |ϕa(z)|

2)s/2 d A(w) d A(z).

Corollaries 1.3 and 1.8 yield the following characterization of functions in the
Besov classes.

COROLLARY 1.9. Let 2< p <∞ and f ∈N . Then f ∈ B#
p if and only if∫

D

∫
D

(
χ( f (z), f (w))

|1− wz|

)p

(1− |z|2)(p/2)−2(1− |w|2)(p/2)−2 d A(z) d A(w) <∞.

(1.5)

It is natural to conjecture that (1.5) is a sufficient condition for f ∈M(D) to
be normal. If this is answered in the affirmative, then the assumption f ∈N in
Corollary 1.9 may be deleted.

REMARKS. For 0< p < 2 the behavior of the Besov class B#
p differs a lot from the

case 2≤ p <∞ when
B#

p (
⋂

(p−2)/p<q<1

Q#
q,0 ⊂N0

by [1, Theorem 9], [4, Theorem 3] and [3, Corollary 3]. Here N0 stands for the
class of strongly (little) normal functions which consists of those f ∈M(D) for which
lim|z|→1− f #(z)(1− |z|2)= 0. We can distinguish the following three cases.

(a) If 0< p < 1, then [2, Theorem 5] guarantees that the class B#
p contains

nonconstant analytic functions. This is a clear distinction to the analytic case where
Bp reduces to the space of constant functions for all 0< p ≤ 1 [17].

(b) The class B#
1 contains only either constant or nonnormal functions by

[2, Theorem 4].
(c) If 1< p < 2, then B#

p contains both some nonconstant normal functions (for
example, all polynomials) and nonnormal functions [2, Theorems 4 and 5]. Indeed,
by [2, Theorem 5], for each 1< p < 2 there exists an f p ∈H(D) such that∫

D
( f #

p (z))
p(1− |z|2)p−2 d A(z)≤

∫
D
( f #

p (z))
p(1− |z|2)−1 d A(z) <∞.

Then f p ∈ B#
p and (11) in [2] is satisfied. Therefore, f p is not a normal function and,

in fact, f p satisfies lim supz→ζ f #(z)(1− |z|2)=∞ for all ζ ∈ ∂D [8].

The remaining part of the present paper is devoted to the proofs of Theorems 1.1,
1.2, 1.4 and 1.5.
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2. Proof of Theorem 1.1

First let p = 1, and let 0< t < 1. Since χ( f (z), f (0))≤
∫ 1

0 f #(t z)|z| dt , Fubini’s
theorem and integration by parts yield∫
D
χ( f (z), f (0))(1− |z|2)α d A(z) .

∫
D

∫ 1

0
f #(t z) dt |z|(1− |z|)α d A(z)

=

∫ 1

0

∫
D(0,t)

f #(w)|w|

(
1−
|w|

t

)α dt

t3 d A(w)

=

∫
D

f #(w)|w|

∫ 1

|w|

(
1−
|w|

t

)α dt

t3 d A(w)

=

∫
D

f #(w)

∫ 1

|w|

(1− s)αs ds
d A(w)

|w|

=

∫
D

f #(w)
(1− |w|)1+α

α + 1

×

(
|w| +

1− |w|
α + 2

)
d A(w)

|w|

.

∫
D
( f #(w))(1− |w|2)1+α

d A(w)

|w|
,

which is the desired asymptotic inequality for p = 1.
If p > 1, choose q > ((p − 1)/p) such that α − pq + p > 0. By Hölder’s

inequality,

χ( f (z), f (0)) ≤
∫ 1

0
f #(t z)|z| dt =

∫ 1

0
f #(t z)(1− t |z|)q

|z| dt

(1− t |z|)q

≤

(∫ 1

0
f #(t z)p(1− t |z|)pq dt

)1/p(∫ 1

0

|z|p/(p−1) dt

(1− t |z|)pq/(p−1)

)(p−1)/p

.

(∫ 1

0
f #(t z)p(1− t |z|)pq dt |z|(1− |z|)p−1−pq

)1/p

from which Fubini’s theorem yields∫
D
χ( f (z), f (0))p(1− |z|2)α d A(z)

.

∫
D

∫ 1

0
f #(t z)p(1− t |z|)pq dt |z|(1− |z|)α+p−1−pq d A(z)

=

∫ 1

0

∫
D(0,t)

f #(w)p(1− |w|)pq
|w|

(
1−
|w|

t

)α−pq+p−1 dt

t3 d A(w)
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=

∫
D

f #(w)p(1− |w|)pq
|w|

∫ 1

|w|

(
1−
|w|

t

)α−pq+p−1 dt

t3 d A(w)

.

∫
D
( f #(w))p(1− |w|2)p+α d A(w)

|w|
.

3. Proof of Theorem 1.2

By the change of variable z = ϕw(u), Theorem 1.1 and Fubini’s theorem,

I ( f ) :=
∫
D

∫
D

χ( f (z), f (w))p

|1− wz|4
(1− |ϕw(z)|2)α d A(z) d A(w)

=

∫
D

∫
D
χ(( f ◦ ϕw)(u), ( f ◦ ϕw)(0))p(1− |u|2)α d A(u)

d A(w)

(1− |w|2)2

.

∫
D

∫
D
(( f ◦ ϕw)

#(u))p(1− |u|2)p+α d A(u)

|u|

d A(w)

(1− |w|2)2

=

∫
D

∫
D
( f #(ϕw(u)))

p(1− |ϕw(u)|2)p(1− |u|2)α
d A(u)

|u|

d A(w)

(1− |w|2)2

=

∫
D
( f #(z))p(1− |z|2)p+α

∫
D
|ϕ′w(z)|

α+2 d A(w)

|ϕw(z)|(1− |w|2)2
d A(z).

But now∫
D
|ϕ′w(z)|

α+2 d A(w)

|ϕw(z)|(1− |w|2)2
= (1− |z|2)−(α+2)

∫
D

(1− |u|2)α

|u|
d A(u)

' (1− |z|2)−(α+2),

and the assertion follows.

4. Proof of Theorem 1.4

Routine calculations and (1.4) show that for w ∈ D(z, r) and a ∈D,

1− |z|2 ' 1− |w|2 ' |1− wz| ' |D(z, r)|1/2 (4.1)

and
1− |ϕa(z)|

2
' 1− |ϕa(w)|

2, (4.2)

where the constants of comparison depend only on r . By (4.1), (4.2) and (1.3),

I := sup
a∈D

∫
D

(
1

|D(z, r)|

∫
D(z,r)

χ( f (z), f (w))p(1− |z|2)α(1− |w|2)β

· (1− |ϕa(z)|
2)γ (1− |ϕa(w)|

2)δ d A(w)

)
d A(z)

. sup
a∈D

∫
D

(∫
D(z,r)

( f #(w))p(1− |w|2)p d A(w)

|ϕz(w)|

)
(1− |z|2)q−p−2

· (1− |ϕa(z)|
2)s d A(z)
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from which (4.1), (4.2) and Fubini’s theorem yield

I . sup
a∈D

∫
D

(∫
D(z,r)

( f #(w))p(1− |w|2)q−2(1− |ϕa(w)|
2)s

d A(w)

|ϕz(w)|

)
d A(z)

= sup
a∈D

∫
D

(∫
D(w,r)

d A(z)

|ϕz(w)|

)
( f #(w))p(1− |w|2)q−2(1− |ϕa(w)|

2)s d A(w)

' sup
a∈D

∫
D
( f #(w))p(1− |w|2)q(1− |ϕa(w)|

2)s d A(w).

5. Proof of Theorem 1.5

Let z, w ∈ Ĉ, and define

F(z, w) :=


w − z

1+ wz
, w ∈C,

1
z
, w =∞.

A direct calculation shows that |F(z, w)|2 = χ2(z, w)/(1− χ2(z, w)) for all z,
w ∈ Ĉ. Denote the pseudohyperbolic distance between the points z and w in D by
ρ(z, w) := |ϕz(w)|. By the uniform (ρ, χ)-continuity of f , there is an r1 ∈ (0, 1)
such that χ( f (z), f (w)) < 1

2 for ρ(z, w) < r1 [10]. It follows that

|F( f (z), f (w))| =
χ( f (z), f (w))√

1− χ2( f (z), f (w))
<

2
√

3
χ( f (z), f (w)) (5.1)

for ρ(z, w) < r1. Since f ∈M(D), there is an r2 ∈ (0, 1) such that the function
gz(w) := F(( f ◦ ϕz)(w), f (z)) is analytic in D(0, r2) := {w : ρ(0, w)= |w|< r2}

for all z ∈D, and hence its Maclaurin series is of the form
∑
∞

k=1 ak(z)wk in D(0, r2).
Therefore,

f #(z)(1− |z|2) = |a1| =
2

r4

∣∣∣∣∫
D(0,r)

wgz(w) d A(w)

∣∣∣∣
≤

2

r3

∫
D(0,r)

∣∣∣∣F(( f ◦ ϕz)(w), f (z))

∣∣∣∣ d A(w) (5.2)

for any r ∈ (0, r2). Now let r <min{r1, r2}. Then (5.2) and (5.1) yield

I ( f ) :=
∫
D
( f #(z)(1− |z|2))p(1− |z|2)q−p(1− |ϕa(z)|

2)s d A(z)

≤

∫
D

(
2

r3

∫
D(0,r)

|F(( f ◦ ϕz)(w), f (z))| d A(w)

)p

· (1− |z|2)q−p(1− |ϕa(z)|
2)s d A(z)
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=

∫
D

(
2

r3

∫
D(z,r)

|F( f (u), f (z))|ϕ′z(u)|
2 d A(u)

)p

· (1− |z|2)q−p(1− |ϕa(z)|
2)s d A(z)

≤

∫
D

(
4
√

3r3

∫
D(z,r)

χ( f (u), f (z))|ϕ′z(u)|
2 d A(u)

)p

· (1− |z|2)q−p(1− |ϕa(z)|
2)s d A(z) (5.3)

from which the assertion for r <min{r1, r2} follows by (4.1) and (4.2). If r ≥min
{r1, r2}, choose c > 1 such that r∗ := r/c <min{r1, r2}. Then (5.3) together with (4.1)
and (4.2) give the assertion for r∗. To obtain the assertion for r , it remains to make
the set of integration larger by replacing D(z, r∗) by D(z, r) and note that there is a
constant C , depending only on c, such that |D(z, r∗)| ≥ C |D(z, r)| for all z ∈D.
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