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1. Introduction. In 1955, Suranyi and P. Turén [8] con-
sidered the problem of existence and uniqueness of interpolatory
polynomials of degree < 2n-1 when their values and second
derivatives are prescribed on n given nodes. Around this kind
of interpolation - aptly termed (0, 2) interpolation - considerable
literature has grown up since then. For more complete biblio-
graphy on this subject we refer to J. Balazs [3]. Later we con-
sidered [10] the problem of modified (0, 2) interpolation when

the abscissas are the zeros of ('1—x2) Tn(x) , where Tn(x) is
the Tchebycheff polynomial of the first kind (Tn(x) =cosn 6,

x = cos 0) . We modified the original problem of P. Turén in the
sense that we asked for polynomials Rn(x) of degree < 2n1

with the values of Rn(x) being prescribed on the above abscissas,
but the values of R'(x) were to be given only on the zeros of
n
T (x) . Later, in a lecture at Stanford in 1963, Professor P. Turan
n

proposed the problem of finding the explicit form of the interpola-
tory polynomials on Tchebycheff abscissas in the '"pure' (0, 2)
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interpolation which was not modified in the sense explained above.
The object of this paper is to resolve this problem and to obtain

the convergence properties of the interpolatory polynomials for a
certain class of functions.

A comparison of our convergence theorem 3.1 with the
corresponding result of Balazs and Turan [2] and G. Freud [5] on
m - abscissas (zeros of wn(x) = (1-x2) P! 1(x) , Pn 1(x) being the

n- -

Legendre polynomial of degree < n-1), shows that our result is
weaker than theirs. However, we can prove for the modified
(0,2) interpolation on Tchebycheff abscissas that our result is in
a sense the best possible. We are not able to do the same for
the "pure' (0,2) case, but it seems plausible that this is so in
view of our result for the '"modified" case.

2. Explicit representation of interpolatory polynomials in

pure (0,2) case.

Let

= -1<x < <. .. < < = +
Xn+2 Xn+'1 Xn ~XZ X'l !

2
be the zeros of (1-x )Tn(x) and let S (x) be the polynomial of
n

degree < 2n-1 such that

(2.1) S(x)=a., S'(x)=b., j=2,3,...,n+t1 .
nj i’ T

Obviously Sn(x) is given by

n+1 n+1
(2.2) S(x)= £ a . u(x)+ Z b, v.(x),
n . i1 . i i
i=2 i=2
where u (x) and v (x) are the fundamental polynomials of first
i i

and second kind whose explicit forms are given by

THEOREM 2.1. For n evenand i=2,3,...,ntl, we
have
.3 = '
(2.3)  w)=p T, 4pl T () +r ()
1
2.4 =
(2.4) Vi(X) q; ri(X) taq, rn+2(X) + Pi(X) ,
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where

2

"

(2.5) pi+pi —2—'—*‘2—'—
n (’1-xi)

. 4 A;
(2.6) pP.-p, =
L 4n? (-9 T (x)
1 n 1
' 2(1-x7)
(2.7) qi + qi = > L ,
n
2 A
(2.8)  q-q = — :
! (4n"-1) T ' (X))
n 1
(1- 2)1/4 T (x) x Tn(t) x /zi(t)
(2.9) p.(x) = = {A dt +
! 2T (%) T (1—t2)1/4 -1 (1-t)
n 1
+1 +1
(2.10) Aif T apy f LSO P ,
1 (1_t2)1/4 -1 (1_t2)1/4
T (t)
(2.10a) jzi(t) = (tl_‘x) T ) i=2,3,...,nH,
i n i
(2.11) r1(x) = 1%‘ Ti(x) + (1-x2) Tn(x) T;l(x) - Bn(X)Tn(X) ,

2.12)  r,0 = 1000 - ()T () T'(x) - B ()T (),

n+2 2 n
T '(t)
1 21/4 n
(2.13) B (x)=—(1-x") — dt.
n 2 f-1 (1-t2)1/4
533
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Also for 2< i< n+l, we have

21
(1-X2) l.z(x) (1-x) /4 Tn(x)
(2.14) T (x) = 21 + >
1-xi (1-xi) TI;(xi‘)
x Tn(t) (Z—xi2 X ﬂi(t) X )\i(t)
A dt + f ————dt+f———dt
: f-1 (1-£5) 1% 2(1-xiz) 1 -t 1 (1ot
2. 1
xili(t)— 2(1-t ). (t) Tn(t) '
(2.15) xi(t) = 2t - Xi) ,Ei(t) :W’ i=2,3,...,nH,
2
+1 Tn(t) (.z-xi ) fH £i(t)
(2.16) A' + dt
! f—i (1-t2)1/4 2('1-xi2) -1 (1—t2)1/4
+1 >\i(t)
21 = .
+f_1 (1-£) /4 dt=0
Proof. The polynomials ri(x) and pi(x) are the funda-

mentals in the "modified" (0, 2) interpolation and formulae

(2.14) and (2.9), giving their explicit forms, have been obtained

in our earlier work [10]. The values of p,, p', q, and q' as
i i i i

stated above follow from the observation that ri(x) , T +2(x) ,

n
pi(x) and r (x) are polynomials of degree < 2n+1 in x while
3 b

u.(x) and v (x) are polynomials in x of degree < 2n-1 .
i i -

2n+1
Hence equating to zero the coefficient of x n and xZn on the
right in (2.3) and (2.4) we get (2.5) - (2.8).
3. Convergence Theorems. Let us consider the sequence
of points
3.1 1= > ce > = -
( ) xin *2n Z > X‘r1+'1, n Xn+2, n L,
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where {xk } stand for the zeros of (1—x2) T (x) . Then forming
n n

the interpolatory polynomials for each even n, we shall write

the fundamental functions as rkn(x) , pkn(x) . Let f(x) be de-
fined and continuous for [-1, +1]; we consider the sequence of
polynomials

n+2 n+1
(3.2) Rn(x, f) = kE_1 f(an) rkn(x) + k)gz Sknpkn(x)

with arbitrary numbers § We shall prove the following

kn

THEOREM 3.1. Let f(x) have a continuous derivative
of order 1 in [-1, +1] and let f'(x) e Lipa, a>1/2 . If

1/2

€ n

n
(3.3) |6kn|5(1 2 , k=2,3,...,n+,

—xkn
with
(3.4) Lt e =0,

n->=o n

then the sequence Rn(x,f) converges to f(x) uniformly in

[-1, #1] . The class Lip o, o> 1/2 cannot be replaced by
Lip 1/2 even if all 6kn are zero.

THEOREM 3.2 (Pure (0,2) case). Let f(x) have a
continuous derivative of order 1 in [-1, +1], and let
f'(x) ¢ Lipa, a>1/2 . If

1/2
enn
(3.5) Binz_——é_ , i=2,3,...,n+ ,
1-x.
in
with
(3.6) Lt e =0,

n—= 0 n

then the sequence S (x,f) converges uniformly to f(x) in
n in
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[-1, +1], where

n+1 n+1
= + = .
G- s n= T by et D e )

For the proof of these two convergence theorems we shall
need the estimates of the fundamental polynomials. From now
onwards, for the sake of typographical convenience, we shall
write x, for Xin , ﬂi(x) for ﬁin(x) and so on. The proofs of

these convergence theorems are outlined in §9 .
4. We shall need the following lemmas.
LEMMA 4.1. If x=cos 6, we have

1

x  T_ (t) T(r-=)
-1 (1-t)) (r+7)
4
5 .5
r(;;) i dt . (1 2)3/4 r; LG+
an(3) 1 -t j=0 T+ M
T, S(1-x5 e 2
(4.2) > 174 dt = 3
-1 (1-t) I“(r+z)

+ I sz(x) ,
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X T'Zr(t) 2r1“(r+%) r-1 I‘(j+2)

(4.3) > 1a dt=- —% = sin(2j+1)6 (1-xz)”4
-1 (1-t) D(r+)  j=1 T(+;)
2 n-1
(4.4) AL (t) = n-1,1 (nz- r2— 1) T (x) T (t),
i 2n n =1 r i r

where )\ (t) is defined in (2.15). For the proof of this Lemma
i

see [10]. Lemma 4.1 leads us to formulate

LEMMA 4.2. The following estimates are valid:

X T (t)

(4.5) | [ —P2— gt] <Z for 1<x<H,
2.1/4 =p =53
-1 (1-t))
X £ (t)
4
(4.6) l('l-xz)'l/4 f —12(1/2 dtl < —ni for -1 <x< +1,
-1 (1-t%)
k = 2,3, ,n+l
+1 zk(t) 4
(4.7) 0< 2 1/4 dt_<_;, k =2,3, ,n+l ,
-1 (1-t)
x T (t) (2 + 4
2.1/4 ’ n 2 4 1/2
(4.8) [(1-x") —— dt| < < n
2.1/4 = n 3, =
-1 (1-t7) r‘(-z- +Z)

for -1<x< +1.

Proof. We shall prove (4.5) only for p even; for p odd
the proof follows similarly from (4.2).
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Setting
X
2.-1/4
I(x) = [ (1-t) 14 4
-1

which is continuous and > 0 in [-1, +1] and from the well
known estimate [Natanson [6] page 329]

T(a+ B +n+1)
T(e+n +1)

(4.9) = O(nﬁ) , ninteger, a> -1, B> -1,

we have from (4.1) and Abel's inequality

1 1
X T - r =
2r(t) N(r ) I(x) F(r+4)
S 2173 9l < 5 |16 © 1 <
-1 (1-t7) D(r+) (r-~)
4 4
because from Abel's inequality, we have
r-1 I"(i+§-)
| = cos (21 +1)6 sin 6
i=1 I‘(1+Z)
I‘(r+1) P . .
< 4 max ’ >~ cos (21+1) 6 sin ©
1 1< p< r-1 i=
(- =) <p<r i=1
4
1
N(r+=
. (r+7)
= L 1)
(r-7

This proves (4.5). From a well known result of L.. Fejer

1 2 n-1
(4.10) 0, (%) = —+— T (x,)T (x), cos 6 = x,
k n n req r k' r
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we have

X £ (t)
('1—x2)1/4 ——12( 174 dt = 1(1-x2)1/4 I(x) +-2-S1 +ES2 )
1 (1-£2) n n n
where
51 x T (t)
2 2.1/4 ) 2r
S1 = = TZr(Xk) (1-x) —,1/4 dat ,
r=1 -1 (1-t")
n/2 x T (t)
2.1/4 2r-1
S.= = T (x. )(1-x°) e
- 1
2 r=1 2r-1 k L4 (1-t2) /4

In order to prove (4.6), it is enough to show that lSil <10,

and ]82, < 10 . For this, we need the following easily verified

identities:
271 1“(11%)
(4.11) Y ———— cos (2i+1)6 sin 6
=0 I(i+7)
n
1 =_
r@ +=) 27! )
2 4 1 4 . .
= — - Z = ——-—3— sin 216 ,
ZF(E - Z) i=1 l“(i+z)
3 o1
21“(2) o  I(j- Z)
(4.12) z = z
() j=1 T(+7)
4 4

Further we need the following estimate which is an immediate
consequence of Abel's inequality.
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-1 1 5
2 I“(j+j;) n(3) p
(4.13) z — sin 2j 0 sin 6} < — maxn Z sin 2j6 sin©
j=t T(+3) oy ixpzy U=t
From (4.12) it follows that
n
= 1
27! )
(4.14) r —— cos 2r ek <2.
r=1 F(r+Z)
Now using (4.11), (4.13), (4.14) and (4.1) we have
I"(i') 1 5-1 sin 2r 6 cos 2r Bk
ISHS_ 3 +E+lsin9 Z 1 ’,
ZF(Z) r=1 2(r +Z)
>4
2° sin 2r (8 + 6,) + sin 2r (0 - 0,)
<1+| =
r=1 4r +1
Since
1 1 1

4r ~ 4Ar+1  4r(4r+1)

and

we have IS1I < 10 . The proof that ISZI < 10 1is analogous.

This completes the proof of (4.6). The proof of (4.7) follows
from the identity (4.4141) and from the result
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n
3, 5-1 1
o de s rerg) 2 G- |
(4.16) f 2174 :"2‘;(71') | 5 - = 5~ cos 2] ekl
IR L0 =t TGy !
n 1
~-1 T(j-— ‘
1 1/2]? Ly o T(j-7)]
=5_(m) = . 5. (1-cos 2j6,) + = —— >0,
e j=1 T+ Ko r(j+é)J
=3 4

which in turn, is a consequence of (4.1), (4.2) and (4.10). An
equivalent expression for the integral in (4.16) shall be useful
later, and is easy to verify; it is

+1 lk(t)
(4.17) 2 1/4 dt
-1 (1-t)
n
7 —-1 .3
2Tr1/2 ZF(Z) 2 r(j+7)
= sin 6 + X —-—-- sin(2j+1)6. sin®b
n 5 . .. 5 k k
- T i=t TG+

Lastly, the proof of (4.8) follows on using Abel's inequality in
(4.3).

5. Estimates for the Polynomials pkn(x) .

The following Lemma gives us the estimates of the funda-
mental polynomials of the second kind in modified (0,2) inter-
polation.

LEMMA 5.1. For -1<x< +1 and for k=2,3,...,nH
we have (n even)

(5.1) lp, ()] < (1-x7)) 21/2 T2

2 /2] -1/2 L () 41
-1 (1-t) n
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n+1

45
(5.2) (x| <+
k=2 k \/‘n

Inequality (5.2) is best possible in the sense that if

T h
= = — -, e
dn cos Xn , Xn > 4n W ave
n+1 c
.3 = d —_
(5.3) o) > 7 n2mg
k=2
Proof. Using (4.7) we see that (5.2) follows at once from

(5.1). From formula (4.1) and (4.9) we have

+ T (1)
1 -3/2
(5.4) | —2— dt]< - n ,
f-i (1-t2)1/4 2

so that (5.1) follows at once from (2.9), (2.10), (4.5), (4.6) and
(4.7). In order to prove (5.3) we first need the following inequality:

2 1/4 dn Tn(t)

n) 1 ('1-t2)1/4

1
dtlz—‘ for n>n

(5.5) |(1-d T2 >n,

In order to prove (5.5), we observe from (4.1) and (4.9)
that for this purpose it suffices to show that

n
-1 5
2 T(j+7) 1/2
. 2 . n
(5.6) sin X ——— cos (2jH1) x>
n . .3 n 16
j=0 T(j+7)

Now from the identity (4.11), we see that
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z 5
2 (j+=)

2
sin y ) cos (2j+1)x
n . . n
=0 +—
] r(j+7)
n
- 1 —-1 1 -
siny [DE+-) 2 o(j+-)
2 4 . 1 4 .
> > a1 sinnx -3 z sin 2j Xy
nG-3) j=t 0+ J
1 1/2
Since |sin an, =50 sin X, = cos 4—1; > 2 / , we have (5.6) on

using (4.13), from which follows (5.5).

Now, from (2.9), (2.10), (5.5) and (4.7) we obtain

2.1/4 - d T d
(1-dn)/ T @) / — noog (6)dt
lp. _(d)] A — =l =zl
- 2.1/4 2 4
kn m 2T (x, ) LRl (-9 / -1 (1-t )1/
n kn
(5.7)
-3/2 " +2) M0 (t) 1
2 24" 1 k at - 22|
= ' n 1. 32n 2.1/4 “n |
lTn(xkn)l rG-3) -1 (1-t7) l
for n>n . From the above, it then follows that in order to prove
(0]
(5.3) it is enough to prove that
3
n+1 1 +1 Jzk(t) 4 F(Z)
(5.8) 1= £ —_— dt > — ——
21/4 - 5
k=2 | T )] -1 (1-t9) / o n(;)

This inequality follows on using (4.16), since the left side of (5.8)
now becomes
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Interchanging the order of summation in the above and observing

that
n+1
(5.9) 2  sin (2r +1) 6, = cosec (2r+1)—ﬁ" ,
k 2n
k=2
we have
I=A+B
where
3
r —
1 (4) T
A =— cosec —
2 1"(2 2n
n 4
L) 1
1 2 F(r—z)
T T
B = > - —_ L7,
[ cosec(2r-1) o cosec(2r+1) >n ]

(an) r=1 I“(r+z)

This shows that B> 0 since for 1< r S? -1, we have

0< (2r+1) = < I , and sin € is increasing for 0< 6< us
2n — 2 - =2

. . . ._m 1

Using the inequality s1nZ < a0 we have
3

AT (7))

SN

mal ()

which proves (5.8) and this completes the proof of (5.3). We shall
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need in future the following inequalities:

21/2  (2k-1)w Kk
x < U= < —

5.10 1- k=2,3,...,4+1 ,
(5.10)  (1-x) R R
2.1/2 -k
(5.11) (1-x) /2 fokm k==+42,...,n+1
k — n 2

6. Estimates for the polynomials rk(x) .

In order to obtain the estimates of the fundamental poly-
nomials of the first kind we shall need the following lemmas.

LEMMA 6.1. For -1<x< +1,

n+1 “1 XZ >
(6.1) z ) fycs .
k=2 -
(1 Xk)
Proof. Since
2 2 2
1-x —1—xk+(x—xk) —Zx(x—xk),
we have
2.2
n+1 (1-x7) 2 (x)
k
= 2
k=2 1 - Xk
2
n+1 ’ T (x) n+1 n+1 Ilk(x)l
< Z L (x)+ Zi+—lx' z ——
= 2 2.1/2
k=2 < n k=2 n k=2 (1-x) /

Using Schwarz inequality for the last sum on the right hand side
and the inequality due to Fejer, viz.
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2
(6.2) z L(x)<2,
k —
k=2
we get (6.1).
LEMMA 6.2. For -1<x<+1 and for k=2,3,...,n+,
x . (t)
21/4
(6.3) |Jk(x)];|(1—x)/ ——kz‘—mdt | < 23n.
-1 (1-t)
Also for k=2,3,...,n+,
1) (t) (nZ_1 +1 ﬂk(t) 1/2
(6.4) lf 21/4dt-————)—2 *‘2—“£dt|§2n
-1 (1-t") 1 (1-t9)

Proof. From the formula (4.4) and (4. 6) we have

2 1/4 x Y (t)
|7 ()] < —)—! —5— at |
k f-1 (1-t5) 1%
1n-1 x T (t)
+ [; = ('1 x2)1/4 r(Xk) —2 11 tl
r=1 -1 (1-t7)

< 21n +2n = 23n,

whence the formula (6.3) follows on using (4.5) and (4.6). Proof
f (6.4) follows on (4.5) and (4.6).

LEMMA 6.3. The following estimates are valid for

k=2,3,...,n+1 (n even) .
7 n+1 g (1)
(6.5) 8I‘(4) < = -(—ﬁe—s- ——m dt < 12,
1/2 _5 k=2 ST T4 (1-t9)
)
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+1 +1 t
n ﬂk( )

(6.6) 0< X —1_3 f 11 dt§8n3/2 ,
k=2 (sin ek) -1 (1-t)
5/ '
2 n+1
(6.7) n16 < = |———-k—-—— l515n5/2 ,

2.
k=2 (1—xk)Tn(xk)

where A{{ is given by (2.16).

Proof. Using the left inequality in (4.7), (4.47) and (5.9)
we have that the left side of (6.5)

n
_ 7 =-1 3
1/2 (=) 2 T(k+-)
= 2(1721 I»Z ;1 cosec —21; + = — 4 cosec ——L—(Zk;'l =
n
1“(4) k=1 r(k+4) -
n
_ 7 =1 3 -
1/2 7 1T(-) 2 I(k+-) ‘
52(") '2 45 n+ = ‘51 (21:11) §6(n’)1/2< 12,
T () k=t T(k+3) j

where we have used the estimates (4.9) and the inequalities

(2k+1)w n n
< 0<k< —-1
cosec > S for 0< k< >

The proof of the left inequality in (6.5) is clear on using
(4.17). In order to prove (6.6) we proceed as above and use
(4.17) so that the left side of (6.6) is

+ - +=>
ZTT1/2 n+1 r(4) " 2 F(J+4) 1
< > 22— —— + =
ST k=2 2) SO p+2) sins e
- (% J= Ty sm e
_1/2 ™M 1 3/2
< 4n 2 §8n
k=2 sin Ok
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Here we have used (4.9), (5.10) which proved (6.6). Now we
first prove the right side of (6.7) and observe that

! = ! , k=2,3,...,n+1 .

[(1-x)) T G| k

Now using (2.16) and (6.4), we have

2
| < n3/2 ;((Z—Xk) . (n2—1) 1 ﬁk(t) 1/2

dt + 2n
: 2 2 2.1/4
: I 2(1—xk) -1 (1-t) /

| A

[ |

The right hand side of (6.7) follows on using (6.5) and
n+1
2 cosec Gk < 2n logn

k=2

To prove the lower inequality in (6.7) we have from (2.16) and

(6.4)
} 2
' L ose DM N (2-x)  # 4(1)
ENI S 2173 9t 2 21/4
L1 (119 2(1-x%) -1 (1-t%)
1 ose ety 140 '
24" 2 2172 dt-2n
1 (1-t9)
) IPEEE ) _!
L — —_— gt |
sin2 ek -1 ({L—tz)i/4 |

Hence, using (6.5) and (6.6) we get the required result. This
completes the proof of the Lemma 6.3.

LEMMA 6. 4. For -1<x< 41, we have (for n even)
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n+2
(6.8) =z Jr, (x)] < 140 n
k=1 kn

3/2

The inequality (6.8) is best possible in the sense that if

m T
d = X, = =-—= weh
. cos X X, S T ap We have
n+2
3/2
(6.9) = lrk (dn)l>% n / , for nZnO
k=1 o 2
Proof. We shall first need the estimates
. <3n, -1< x< .
(6.10) Irin(x)l§3n, Irn+2,n(x)’— n 1<x<

These estimates follow immediately from (2.11), (4.8),
(2.12) and the observation

ESERCIEEY

On using (6.7), (6.1), (6.3), (4.5), (5.10) and (6.10), the
result (6.8) follows immediately. The inequality (6.9) can be
proved on the same lines as the proof given for (5.3). Here

we have to use (6.3), (6.7), (6.1), (6.2), (4.6), (4.5) and (5.10).
7. Pure (0,2) case:

Estimates of the fundamental polynomials of the second

kind in pure (0,2) case.

LEMMA 7.1. For -1<x<+1, n=2,4,6,... we have
T +1 4. (t) 3
- 21/2 ! 2.1/2 -1 5
(7.1) lv,(x)l <2n 1/2 ('l-xi) / j('l—xi) / —m dt |
1 L -1 (1-t) 1
2 -3
< 10(1—x,)1/2 n /2 ,
- i
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and

n+1
(7.2) > |v.(x)|] < 10n

i=2  *

-1/2

The inequality (7.2) is best possible in the sense that

n+1 (=)
-1/2
(7.3) =z |v.(0)] > 4 Y , n>n
. i 5 -3
i=2 '101."(2)

Proof. First we observe that (7.2) is an immediate
consequence of (7.1). Using (2.7), (2.8), (2.11), (2.12) we have

qir1n(x) * qirn+2, n(X)
r X T'(t) 7
= (1_xzi) n-2 Ti(x)—Tn(X) (1—x2)1/4 _—;U; dt
-1 (1-t))
A 2 2
f————— [ xT%(x) +2(1-x) T (x) T (%) ]
n n n

2
(4n"-1) T (x)
n i
whence, on using (2.10), (4.7), (4.8), (5.4) and the observation

(7.4) 1(1-x2) T;l(x)l <n,

we have

lqi r1, n(x) * q; rn+2, n(x)l

/2 | -1 R

1 .
LG * 72 J 2172 9t

< (1—x2_)n
- i 2
('1-x,1) -1 (1-t)

Now combining this result with the known estimate of p.(x) we
i

get the required result as stated in (7.41). In order to prove
(7.3) we note that from (2.411) and (2.12) we get
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1

i 1]
(7.5) rin(o) N rn+2,n(0) 2 {1 - (1) 2.1/4

n/2 0 Tn(t) dt]
-1 (1-t)

Further, from (2.9) and (2.410) we get

I O 0 1,0
p;(0) = [' 2 >z 9t S 2174 9t >
ZT;(X) -1 (1-t) -1 (1-t)

whence from (4.7) and similar results we get

(7.6) lpi(O)lg—% i=2,3,...,nH .

Also from (4.3) we have

1

1, >-1 3

0 T (t) nZ+3) 2° D(r+7)

N m et B0
-1 (1-t) r(5+,) =0 Ir+3)

Since the terms in the summation on the right are monotonically
decreasing and alternately pos1t1ve and negative, the sum on the

F(Z)

right is greater than 5 "5 hence we have
)

o T (t) 1“(2)

1 1/2 "4

(7.8) | [ dt | > —= n —

2 1 4 = 10 5

1 -t (3

Hence, using (2.4), (7.6), (7.8), we have
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0 T'(t)dt

2. 1 n
[v.(0)] > (1-x) = | | [ ==z | -11 - 1p.(0)]

i . 1 (1-t2)1/4 i

3
n+1 (=)
= Iv,(O)[ Zl B n—i/Z for n>n_ .
. i 10 5 2
i=2 ;)

This completes the proof of the above lemma.

8. Estimates of the fundamental polynomials of the first
kind.

Now we shall be able to obtain the estimates of the fundamen-
tal polynomials of the first kind.

LEMMA 8.1. For -1<=x< +1 we have

n+1
(8.1) > ,ui(x)l < 142n log n .
i=2

Proof. From (2.3), (2.5), (2.6) and using (2.11) - (2.16)
we get

(8.2)  u(x) :—%——-———
n (1'Xi) 1-x

+ Fi(x) + Fz(X) + F3(X) + F4(X) ,
where

21/4T

(2-x)(1-x) 0 x L

2(1-x.2)2 T' (x.) 1 ('1—t2)1/4
1 n 1

F1(x) = dt ;
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using (4.6) we have

(8.3) |F (x)]5(1-xi2)'3/2 n 2 i=2,3,...,n4 .

1

FZ(X) is given by the expression

(1M 1 () fx (1)
F_(x) = : ——— gt ;
2 (1-x2) T (x) -1 (1-tH)/4
i n i
using (6.3) we have
(8.4) [Fz(x)lgz3(1-xi2)'“2 , i=2,3,...,n+ .
For F3(x) we have
(1—){2')1/4 Tn(x) x T;l(t)
F (x) = - dt 5
3 nz(i-xiz) -1 (1—1:2)1/4
on using (4.8) we get
[ n—3/2
(8.5) F (x), <
3 (1—x.2)
i
Lastly
Ai Tn(x)
F,(x) = (L,1

(4n2-1)(1-x.2) T (x,)
1 n 1

where

x T (t)
2 2.1
I = (4n"-1)(1-x") /4 — Jt+4nsinnBOsin®+2x T (x) .
1 21/4 n
-1 (1-t)
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Therefore using (4.1) and Abel's inequality we get

n 3
l“(g+z)
I =27 (x)-4———
1 n-1 I‘(£+1)
2 4
5 1 R
) 21/4 5 dt n/z T+
——3—(1—x) f -—-—2'—172- z sin2j0 sinb | .
r(z) -1 (1-t7) j=t l“(j+z)
Since
n 3
—_+_
r(;+y) 1/2
—& = < 2n
N +5)
2 4
and
Do+
2 Iy
| .. 3, sin2j06 sin®
i=1 nGj+7)
5
1“(";) p
< max | = sin2j6sin0],
ny) 1<ps;-1 =t
we have
|11l§_2+8n1/2-3§_26n1/2
Thus we obtain
Af 26 ni/2

8.6) |F,x)]<] - > l
(4n”-1)(1-x.") T;(xi)

Hence from (8.2) on using (8.3) - (8.6) together with (6.7),
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and (6.1) we get at once (8.1).

In order to prove our main convergence theorem we require
a lemma on approximating polynomials.

LEMMA (8.2). Let f(x) have a continuous derivative in
[-1, +1] and let f'(x) ¢ Lip o, 0 < a< 1 ; then there exists a
sequence of polynomial <pn(x) of degree at most n such that

2. 1+a/2 +n-1-a/

(8.7 |ix) - o ()] < Cn 1T [(4-x%) 1,

where C is a constant independent of both x and n . Further,
we have

a-1
1- 2. —5— -
(8.8) lgo'r;(x)l < C1 n %min [(1-x7) 2 n ] for -1<x<1.
The existence of ¢ (x) and the inequality (8.7) is due to
n
Dzydayk [4] and (8.8) follows by using the same method as given

in Lemma 1 in G.Freud [5].

9. Proof of Theorem 3.2. By the above Lemma there exists
a sequence of polynomial ¢ (x) which satisfies (8.7) and (8.8) .
n

Then by the uniqueness theorem we have

n+1 n+1
.00 = T flx)ud+ =B v(x),
i=2 i=2
n+1 n+1
- Z " .
gon(x) . (P(Xi) ui(x) + ‘Z‘ <pn(x1) Vi(x)
i=2 i=2

Therefore

"

|s_(f,%) - £()| = |8 _(x,6) - ¢ (x) + ¢ (x) - £(x)]

IN

|s_(x,6) - ¢ (x)] +[o_(x) - £(x)]
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IN

[Sn(x,f) - (pn(x)! +0o(1) by (8.7)

n+1 n+1
£6) = 0,00 001+ =1 [v,60 |

IA
-
1"
[\

n+1
+ = o' (x)v.(x)] +o0(1)
i:2 n 1 1

1

12+13+I4+o(1).

But by using (8.7) and (8.1) we get

n+1 - n+1
IIZI = 2 |f(x) - ¢ (x)] |u(x)] <2Cn
i=2 1 n 1 1 ;

284 Cnlogn
<
- 1+«
n

= o(1) .

For I3 we have on using (7.1), (3.5), (6.5) and (3.6)

€ 1’11/2
n+1 n +1 4 .(t)
—_— 2. -3 2 -1/2
]13] = (1_X2) 2 (1-x.) n /2+2('1—x, )”‘Zn / —1—5 dt
i=2 i L ! ! -1 (1-t9)
= o(1) .

Lastly on using (8.8) and (7.1) we get

Thus we obtain that |S (f, x) - f(x)| = o(1) .
n

This completes the proof of the theorem 3.2. The proof of
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Theorem 3.1 is on the same lines as above and is left out. That
Theorem 3.1 is best possible can be proved on the same lines as
in the paper of Baldzs and P. Turdn [2] on using (5.3) and (6.9).
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