BULL. AUSTRAL. MATH. SOC. VOL. 10 (1974), 31-37.

Nonlinear differential equations in reflexive Banach spaces

W.E. Fitzgibbon

Let X be a reflexive Banach space and $\{A(t) \mid t \in [0, T]\}$ be a family of weakly continuous operators which map X to X. Conditions are provided which guarantee the existence and the uniqueness to the Cauchy initial value problem u'(t) + A(t)u(t) = 0; u(0) = x.

1. Introduction

In this paper we shall be concerned with the existence of solutions to the Cauchy initial value problem,

(1.1) u'(t) + A(t)u(t) = 0 ; u(0) = x ,

where $\{A(t) \mid t \in [0, T]\}$ is a family of operators which map a reflexive Banach space X to itself. Basically we require that the operator $A(\cdot)$: $[0, T] \times X \to X$ be weakly continuous and that for each $t \in [0, T]$ the operator A(t) satisfy a modified accretivity condition. In [1] Browder provides a local solution to (1.1) in case X is a complex Hilbert space. More recently, Diaz and Weinacht [3] and Medeiros [11] discuss the uniqueness of solutions to (1.1) in Hilbert spaces; Goldstein in [6] extends their results to general Banach spaces; and Chow and Schuur [2] guarantee local existence to (1.1) in case X is a separable reflexive, Banach space. In [5] the author establishes the global existence of solutions to (1.1) in case $A(t) \equiv A$ is accretive.

Received 20 August 1973.

31

W.E. Fitzgibbon

2. Preliminaries

Throughout this paper X will denote a Banach space and $\|\cdot\|$ will be its norm. The dual space of X will be X^* .

DEFINITION 2.1. Let X be a Banach space, then the duality map $F : X \neq 2^{X^*}$ is defined in the following manner: if $x \in X$, then $x^* \in F(x)$ iff $x^*(x) = ||x||^2$ and $||x^*|| = ||x||$.

In general the duality map is not single valued; however, in [7], Kato shows that if X is a Banach space having uniformly convex dual X^* , then the duality map is uniformly continuous on bounded subsets of X.

The following definition makes clear our notions of operator continuity.

DEFINITION 2.2. Let $\{A(t) \mid t \in [0, T]\}$ be a family of operators which map X to X. Then $\{A(t) \mid t \in [0, T]\}$ is said to be weakly continuous provided that $t_n \rightarrow t_0$ and $x_n \rightarrow x_0$ imply $A(t_n)x_n \rightarrow A(t_0)x_0$. If $t_n \rightarrow t_0$ and $x_n \rightarrow x_0$ implies $A(t_n)x_n \rightarrow A(t_0)x_0$, then $\{A(t) \mid t \in [0, T]\}$ is said to be demi-continuous.

We now define an accretive operator and give two useful characterizations of accretive operators.

DEFINITION 2.3. Let X be a Banach space and A an operator mapping a subset of X to X; then A is said to be accretive provided (2.4), $||x+\lambda Ax-(y+\lambda Ay)|| \ge ||x-y||$ whenever $x, y \in D(A)$ and $\lambda \ge 0$.

Although Definition 2.3 is easily stated it is difficult to apply. In [8] Kato shows that an operator is accretive if $(Ax-Ay, f) \ge 0$ for $x, y \in D(A)$ and some $f \in F(x-y)$ where F is the duality map. An accretive operator A is said to be *strongly accretive* provided that $(Ax-Ay, f) \ge 0$ for all $f \in F(x-y)$. It is easily shown that weakly continuous accretive operators are strongly accretive. Martin [10] shows that if A is strongly accretive, then

(2.4)
$$\lim_{h \to 0^+} (\|x-y-h(Ax-Ay)\|-\|x-y\|)/h \le 0 \text{ for all } x, y \in D(A)$$
.

We now make precise our notion of strong solutions to the Cauchy problem.

DEFINITION 2.5. A function $u(\cdot) : [0, T] \rightarrow X$ is said to be a strong solution to the Cauchy problem

$$(2.6) u'(t) + A(t)u(t) = 0 ; u(0) = x ,$$

provided that u is Lipschitz continuous on [0, T], u(0) = x, u is strongly differentiable almost everywhere and u'(t) + A(t)u(t) = 0 for $t \in [0, T]$ almost everywhere.

LEMMA 2.7. Let X be a Banach space and g be a function from the number interval (a, b) to X. Define p(t) = ||g(t)|| for $t \in [a, b]$; then if ${g'}^+(t)$ exists, ${p'}^+(t)$ exists and

$$p'^{+}(t) = \lim_{h \to 0^{+}} ||g(t) + hg'^{+}(t)|| - ||g(t)|| /h$$

3. Existence of solutions

The following lemma provides a local solution to Definition 2.5.

LEMMA 3.1. Let X be a reflexive Banach space and suppose that $\{A(t) \mid t \in [0, T]\}$ is a weakly continuous family of operators which map X to X; then there is a finite interval $[0, T_0]$ such that the Cauchy problem has a strong solution on $[0, T_0]$.

Proof. Let $x \in X$. By virtue of the weak continuity of $\{A(t) \mid t \in [0, T]\}$ there exist T_1, R and $K_1 > 0$ such that if $0 \leq t \leq T_1$ and $y \in S_R(x)$ then $||A(t)y|| \leq K$. Choose $T_0 = \min\{R/K, T_1\}$. Let $\varepsilon_n \neq 0$. We shall recursively define a sequence of functions which solve the approximate equations

$$(3.2) \qquad u_n'(t) + A(t)u_n(t-\varepsilon_n) = 0 ; \quad u(0) = x ;$$

$$u_n(t) = \begin{cases} x \text{ if } t < 0 , \\ x - \int_0^t A(s)u_n(s-\varepsilon_n)ds \text{ if } t \in [j\varepsilon_n, (j+1)\varepsilon_n] , \\ j = 0, \dots, [T_0/\varepsilon_n] - 1 . \end{cases}$$

We argue that $u_n(t) \in S_R(x)$. If $t \in [0, \varepsilon_n]$ then $\|u_n(t)-x\| \leq t \sup_{s \in [0,T]} \|A(s)x\| \leq (R/K)K = R$. If we assume the desired result for $t \in [0, j\varepsilon_n]$ and consider $t \in [0, (j+1)\varepsilon_n]$, we have

$$\|u_n(t)-x\| \leq \left\|\int_0^t A(s)u_n(s-\varepsilon_n)ds\right\| \leq t\max\{\|A(s)u_n(s-\varepsilon_n)\| \mid s \in [0, (j+1)\varepsilon_n]\}.$$

By observing that $||u_n(t)-u_n(\tau)|| \leq \int_{\tau}^{t} ||A(s)u_n(s-\varepsilon_n)|| ds \leq |t-\tau|K$ we see that the sequence is uniformly Lipschitz continuous in t.

We now claim that there is a subsequence $\{u_{n'}(t)\}$ of $\{u_{n}(t)\}$ such that $\{u_{n'}(t)\}$ converges weakly to a Lipschitz continuous function $\{u(t)\}$. The argument of Lemma 2.1, [5], is directly applicable to establish this convergence.

Since $u_n(t-\epsilon_n) \rightarrow u(t)$, $A(t)u_n(t-\epsilon_n) \rightarrow A(t)u(t)$. If $f \in X^*$ we take limits of the equation,

$$(u_n(t), f) = (x, f) - \int_0^t (A(s)u_n(s-\varepsilon_n), f)ds$$

to obtain

(3.3)
$$(u(t), f) = (x, f) - \int_0^t (A(s)u(s), f) ds \text{ for } t \in [0, T_0]$$

Applying standard techniques to (3.3) yields

$$u(t) = x - \int_0^t A(s)u(s)ds$$
 for $t \in [0, T_0]$,

and hence that

$$du(t)/dt + A(t)u(t) = 0$$
 for $t \in [0, T_0]$ almost everywhere

We now place further conditions on $\{A(t) \mid t \in [0, T]\}$ which allow us to extend the local solution of Lemma 3.1.

THEOREM 1. Let X be a reflexive Banach space and suppose that $\{A(t) \mid t \in [0, T]\}$ is a weakly continuous family of operators which maps X to X. Further assume that for each $t \in [0, T]$ the operator A(t) + (1/t)I is accretive. Then there is a strong solution the Cauchy initial value problem, Definition 2.5, on [0, T].

Proof. From the preceding lemma it is clear that there exists a local solution to Definition 2.5 on a maximal interval of existence $[0, T_0]$. We wish to argue that $T_0 < T$ leads to a contradiction. Let $0 < t_0 < T_0$ and define p(t) = ||u(t)||. By virtue of equation (2.4) and Lemmas 2.7 and 3.1 we have

$$p'^{+}(t) = \lim_{h \to 0^{+}} \left(\|u(t) - hA(t)u(t) - u(t)\| \right) / h$$

$$\leq \lim_{h \to 0^{+}} \left(\|u(t) - h\{A(t)u(t) + (1/t)u(t) - A(t)0\} \| - \|u(t)\| \right) / h$$

$$+ (1/t) \|u(t)\| + \|A(t)0\|$$

$$\leq \sup_{t \in [0,T]} \|A(t)0\| + (1/t) \|u(t)\|$$

$$\leq (1/t) \|u(t)\| + M \text{ for some } M \geq 0.$$

Thus

$$(3.4) \qquad \qquad \left\{ (1/t) \| u(t) \| \right\}^{\prime +} \leq (1/t)M ;$$

integrating on (t_0, t) we have

$$(1/t) \| u(t) \| \leq (1/t_0) \| u(t_0) \| + M'$$
 for some M' .

Thus there is an N > 0 such that ||u(t)|| < N for $t \in [0, T_0]$. Since $A(\cdot)$ maps bounded subsets of $[0, T] \times X$ to bounded subsets of X, there exists an N_1 such that $\int_0^t ||A(s)u(s)|| ds < N_1$ for $t \in [0, T_0]$. This implies that $\int_0^t A(s)u(s) ds$ exists for $t \in [0, T_0]$ and by virtue of the continuity of the integral we can define $u(T_0) = \lim_{t \to T_0} \int_0^t A(s)u(s) ds - x$.

Lemma 3.1 can be applied to continue the solution u(t) past T_0 and thereby contradict the definition of T_0 . In [6] Goldstein insures the

uniqueness of the solution u(t).

If we require that X have uniformly convex dual and that each A(t) is accretive we can relax the continuity requirement. The following theorem is an extension of a time independent result of Kato [7].

THEOREM 2. Let X be a Banach space such that X^* is uniformly convex and let $\{A(t) \mid t \in [0, T]\}$ be a family of demi-continuous operators such that all map bounded subsets of $[0, T] \times X$ to bounded subsets of X. Assume that for each $t \in [0, T]$, A(t) is accretive; then there is a unique solution to (2.6) on [0, T].

Proof. If we provide a local solution to (2.6) we can apply the argument of Theorem 1 to extend the solution to [0, T]. Our local existence argument follows Kato [7]. Let $\varepsilon_n \neq 0$. Choosing $R, T_0, K > 0$ as in Lemma 3.1 we define $u_n(t)$ for $t \in [0, T_0]$ by equation (3.2). We observe that

$$d/dt \left(\left\| u_n(t) - u_m(t) \right\|^2 \right) = -2\langle A(t) u_n(t - \epsilon_n) - A(t) u_m(t - \epsilon_m), F(u_n(t) - u_m(t)) \rangle$$

where F is the duality map. Using the accretiveness of A(t) we obtain $d/dt \left(\|u_n(t) - u_m(t)\|^2 \right)$ $\leq -2 \langle A(t) u_n(t - \epsilon_n) - A(t) u_m(t - \epsilon_m), F(u_n(t) - u_m(t)) - F(u_n(t - \epsilon_n) - u_m(t - \epsilon_m)) \rangle.$

Since F is uniformly continuous the arguments of [7] and [8] are directly applicable to establish the uniform convergence of $u_n(t)$ to u(t) on $[0, T_0]$. We apply the argument of Theorem 1 to see that u(t) can be extended to a solution of (2.6) on [0, T]. The uniqueness of the solution follows from standard methods involving the accretiveness of A(t).

References

- [1] Fellx E. Browder, "Non-linear equations of evolution", Ann. of Math.
 (2) 80 (1964), 485-523.
- [2] Shui-nee Chow and J.D. Schuur, "An existence theorem for ordinary differential equations in Banach spaces", Bull. Amer. Math. Soc. 77 (1971), 1018-1020.
- [3] J.B. Diaz and R.J. Weinacht, "On nonlinear differential equations in Hilbert spaces", Applicable Anal. 1 (1971), 31-41.

- [4] W.E. Fitzgibbon, "Weakly continuous accretive operators", Bull. Amer. Math. Soc. 79 (1973), 473-474.
- [5] W.E. Fitzgibbon, "Weakly continuous accretive operators in reflexive Banach spaces", Proc. Amer. Math. Soc. (to appear).
- [6] Jerome A. Goldstein, "Uniqueness for nonlinear Cauchy problems in Banach spaces", Applicable Anal. (to appear).
- [7] Tosio Kato, "Nonlinear semigroups and evolution equations", J. Math. Soc. Japan 19 (1967), 508-520.
- [8] Tosio Kato, "Accretive operators and nonlinear evolution equations in Banach spaces", Nonlinear functional analysis, 138-161 (Proc. Sympos. Pure Math. 18, Part 1, Chicago, Illinois, 1968. Amer. Math. Soc., Providence, Rhode Island, 1970).
- [9] R.H. Martin, Jr, "A global existence theorem for autonomous differential equations in a Banach space", Proc. Amer. Math. Soc. 26 (1970), 307-314.
- [10] Robert H. Martin, Jr, "The logarithmic derivative and equations of evolution in a Banach space", J. Math. Soc. Japan 22 (1970), 411-429.
- [11] L.A. Medeiros, "On nonlinear differential equations in Hilbert spaces", Amer. Math. Monthly 76 (1969), 1024-1027.
- [12] G.A. Webb, "Continuous nonlinear perturbations of linear accretive operators in Banach spaces", J. Functional Analysis 10 (1972), 191-203.

Department of Mathematics, University of Houston, Houston, Texas, USA.