ON THE GENERALIZED HANKEL AND K TRANSFORMATIONS
E. L. Koh

(received February 17, 1969)

1. Introduction. The K transformation (also called the Meijer
transformation) has been extended by Zemanian [1; 2] to a class of
generalized functions, }(' o For f ¢ ')-(' a’ he defined the K

M My ar

transform of f by

(1) kpf = {f(x), ~sx Kp(sx) >, Re s > o, = max(a, 0).

In [2, Section 6.6] the following inversion theorem for the K transform
of f is proven:

1 o+ir
(2) f(x) = lim — f (k £f)(s)N'sx I (sx)ds
mi B [

r—>o0 o-ir

in the sense of weak convergence in D'(I). Here, o is any fixed real
number greater than T W is zero or a complex number with positive

real part and D'(I) is the space of Schwartz distributions on I = (0, ).
In the conventional sense where the K transform of a suitably restricted
function f(x) is given by

[o¢]
(3) kp[f(x)] = fo f(x) Nsx Kp(sx)dx

the inversion formula is also given by Equation (2) [3, page 125].

Weiss [4] suggested that, in the conventional sense, Equation (2)
can be derived from the Hankel inversion theorem. It is the purpose of
this paper to show this derivation in the generalized sense.
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We first recall our definition of the generalized Hankel transform-
ation [5]. Our notation shall be that of [5]. For a real number p and

a positive real number a, 3’ is defined as the space of smooth
K2

functions ¢(x) for which

1
) M %e) = sup e N MESN(0) < w, k=0,1,2,..
k M
O<x <o

where

k -p-i 2pt+1 —p-tk d

S = (x" ®Dx Dx" %) and D = 33 .

"

$ is a Fréchet space when supplied with the topology generated

Ms>a
by the collection of seminorms {-rt’ a} . For each fixed complex number

y in the strip @ = {y : llrn y| < a, y # 0 or a negative number} ,
311 a contains the function Nyx JM(YX) . The Hankel transformation,

h , is defined on the dual space f}' as follows. Let p be restricted
B B, a

-

to -3 < p < o. Then for f ¢ ?51 2’
(5) D) & i), NyxJ(yx)), yeo.

I y is restricted to the positive real axis, then (5) is inverted by

r
(6) f(x) = lim [ (b ) () Vxy 3, Gey)dy

r—»owo 0
in the sense of weak convergence in D'(I).
2. Derivation of the K inversion theorem. We shall now derive

the transform pair (1) and (2) from the pair (5) and (6). In order to
assign a sense to the K transform of f ¢ §' a we prove
i

LEMMA 1. Let p be restricted to -3 < g < 0 and let

sel = {s:Res>0, s #0}. Then@KH(sx.)eﬁ

Boa
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Proof. It is easily shown that

-ax -p-1 k -ax 2k +pu+i -
Ie XM ‘ZSFL N sx Kp(sx)l = le axg M 2 (sx) MI:{u(sx)l .

If we now restrict s as in the hypothesis, the series and asymptotic
expansions of KH(Z) [6, pages 5 and 86] yleld

-2 -2pt2 2
a1x +a2x +...+b0+b1x + ... 0<x<1

'(sx)-HK (sx), <
" =

1
ex M2 [slx 1 < x< o

Therefore, for -3 < u < 0,
-ri’a Nsx K“(sx)) < o,

LEMMA 2. Let p be restrictedto -3 < u < 0 andlet s ¢ I'.
Let F(s) = k f = {f(x), Nsx Kp(sx) D, fe j}l 2 Then, in the sense
M ’

of weak convergence in D'(I),

ir
f(x) = lim 1-:;i f F(s)'\/’_é;IH(sx)ds .

r—>00 -ir

Proof. Consider the transform pair (5) and (6). By virtue of
Equations 7 and 15 of [6, pages 4-5], we can write (5) as

ENEES

(M) (06 =2 i, RS K i)

+ % < f(x), ei%(“+%)ﬂ\/—i;)f Kp(ixy)>

Substituting (7) into (6) we obtain
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T 1 1 TT
(8) f(x) = lim {1 [ Fleipe 2T T Gey)dy

T—> 00 0

T

1 il(u+L
+ = f F(iy)elz“L 2)m Nxy J (Xy)dy} .
™ 0 n
Let -iy = s in the first integral and let iy = s in the second integral

of (8). We obtain

-1 .
f(x) = lim Jti / F(s)e—lé(p+%)ﬂ(ixs)%J (ixs)ids
™ 0 K

r—>00

ir .
+ 1 f F(s)el%(“+%)ﬂ(-ixs)% J (—ixs)(—ids)} i
™ 0 v

The lemma follows from the identities [6],

l .
I (z) e 2 M g (iz) -m < arg z < iw
n n

l.
I(z) = e2 M g (-iz) In<argz < ow
n n

and the observation that if C is a right-hand semicircle of radius &
around the origim,

1, f F(s) Nsx I (sx)ds - 0 as & = 0
i "
C
uniformly on compact subsets of 0 < x < o0,

THEOREM. Let p be restricted to -3 < p < 0 and let s ¢ T.
Let F(s) = kp.f’ f e %;,, a for some a > 0. Then for a fixed real non-

negative o,
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o+ir
f(x) = lim e f F(s)'\/’s_;clp(sx)ds

r—> 0 g-ir

in the sense of weak convergence in D'(I).

Proof. The case where ¢ = 0 is contained in Lemma 2. We
therefore let ¢ be a fixed number greater than zero. We shall show
that in the sense of weak convergence in D'(I),

1 o+ir
9) lim o f F(s) Nsx Iu(sx)ds = 0.
r—> 00 ir

Let ¢(x) ¢ D(I). Then we wish to show that

o+ir
oy  {E. [  Kiw, s K (s> W I (sxds, o(x) >

ir

converges to zero as r - o, Since ¢ ¢ D(I) and by the smoothness of
the integrand, it follows that (10) is an iterated integral on (s, x) having
a continuous integrand and a finite domain of integration. Thus, (10)
becomes

o+ir

[~'e]
1_ f <f(t), N st Kp(st)> fo ¢ (x) Nsx Ip.(sx)dxds

ups .
ir

after we change the order of integration. By an argument based on

o+ir
Riemann sums for the integral f *** ds, the last expression can
ir
be written as
o+ir 0

) (i, = [ W K () [ o) Vo I (sx)duds ) .
ir 0
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To show that (11) converges to zero, we shall show that the testing
function in (11) converges in § a to zero. Let
M

)

1 o+ir 0
U (t) = = f Nst K (st) f o (x) Nsx I (sx)dxds .
r mi " v

ir 0

Interchanging the order of integration and carrying the operator SE

under the integral signs, we have

0 o+ir

k P Kk
Su’tUr(t) = = 4} »(x) fir Sp,t (st K“(st)) Nsx Iu(sx)dsdx
1 0 o+ir K
= = f & (x) f st K (st))S (Nsx I (sx))dsdx
™ 7o ir s B X i

i

* k
fo o(x) SH: x Vr(x , t)dx

o+ir
1
where V (x,t) = = f Nst K (st) Nsx I (sx)ds .
T mi v 0

ir

By successive integrations by parts and because ¢ is smooth with
compact support on (0, o),

K e K
(12) S tUr(t) = fo Vr(x,t) SH,Xd:(x)dx.

M

We now evaluate Vr(x, t) by [6, page 90]
s
f st(sx)K“(st)ds = [xIp+1(sx)Kp(st) + th+1(st)Ip(sx)]

x" -t
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and break up (12) into integrals I , I and I3 with integration on

27
0<x<t-6, t-6<x<t+8 and t +86 < x < o, respectively.

—at -y-1
We shall show that Nr(t) = & H 2IZ (t) can be made arbitrarily
small uniformly on 0 < t < w0, 1 < r < © by choosing & small enough.

For convenience, let y(x) = SE x¢(x) and let supp ¢(x) = [A,B] C (0, «).

m

t+6< A or t-562>B, then Y(x) = 0 and Nr(t) 0.

Thus we only have to consider the interval A -86 < t < B + 6. Using
asymptotic expressions for IH(Z) and KH(Z) we have, upon simplifying,

(13) N (1) = e—att-p_;? ft+6 u(x) Ity ir(x-t)
r t-5 2mi x-t
i(e—tr(x+t)_

1) e-ir(x+t)+imr} S+ O(,rl_l))zdx )

x+t

The integrand in (13) is uniformly bounded on the domain A =
{(x,t): A< x< B, A-6<t<B +5} forall r > 1. We shall

show this for the term involving (x - t)_l as it is quite clear for the
other terms. Indeed,

I(x-t)_, 2 3 2

o g
= g~ —_— - —_ - .
— + 2,.(x t) + 3!(x t) +

and therefore remains bounded for all (x,t) ¢ A. Hence, given

an ¢ > 0, we can choose § so small that IN (t)l < € forall r > 0,
r

0<t <oow and A< x< B.

The uniform convergence to zero of the expressions

-at -p-3 -at -p-1
e ML "2
3

and e is verified in a similar manner. Thus

(11) converges to zero for any choice of ¢(x) ¢ D(I) as r = .

An analogous proof shows that

(14) lim 7%1 f F(s) Nsx Ip(sx)ds =0 .

r~> 0 o-ir
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The theorem now follows from Equations (9), (14) and Lemma 2.

3. Remarks. (i) It must be pointed out that the inversion

theorem as proven here is valid for p restricted to —% < u< 0.
This is a departure from the theorem given in [2], where p is zero or
a complex number such that 0 < Re p < 0. Furthermore, the path of
integration in our case may be taken along any line through or to the
right of the imaginary axis whereas the ¢ in [2] has to be a positive
number. These differences, which are not critical, result from the
different topologies assigned to the fundamental spaces 4/“ a and
()(u, a’

(ii) In[5], an I-transformation of generalized functions was
developed and an inversion theorem was stated without proof. This
theorem may be proven in essentially the same steps as employed here.
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