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Abstract

The honey bee is associated with a diverse community of microbes (viruses, bacteria, fungi,
and protists), commonly known as the microbiome. Here, we present data on honey bee
microbiota from two localities having different surrounding landscapes – mountain (the
Rhodope Mountains) and lowland (the Danube plain). The bacterial communities of abdo-
men of adult bees were studied using amplicon sequencing of the 16S rRNA gene. The com-
position and dominance structure and their variability within and between localities, alpha
and beta diversity, and core and differential taxa were compared at different hierarchical levels
(operational taxonomic units to phylum). Seven genera (Lactobacillus, Gilliamella,
Bifidobacterium, Commensalibacter, Bartonella, Snodgrassella, and Frischella), known to
include core gut-associated phylotypes or species clusters, dominated (92–100%) the bacterial
assemblages. Significant variations were found in taxa distribution across both geographical
regions and within each apiary. Lactobacillus (Firmicutes) prevailed significantly in the moun-
tain locality followed by Gilliamella and Bartonella (Proteobacteria). Bacteria of four genera,
core (Bartonella and Lactobacillus) and non-core (Pseudomonas and Morganella), dominated
the bee-associated assemblages of the Danube plain locality. Several ubiquitous bacterial gen-
era (e.g., Klebsiella, Serratia, and Providencia), some species known also as potential and
opportunistic bee pathogens, had been found in the lowland locality. Beta diversity analyses
confirmed the observed differences in the bacterial communities from both localities. The
occurrence of non-core taxa contributes substantially to higher microbial richness and diver-
sity in bees from the Danube plain locality. We assume that the observed differences in the
microbiota of honey bees from both apiaries are due to a combination of factors specific
for each region. The surrounding landscape features of both localities and related vegetation,
anthropogenic impact and land use intensity, the beekeeping management practices, and bee
health status might all contribute to observed differences in bee microbiota traits.

Introduction

The western honey bee (Apis mellifera) is a key pollinator of many agricultural crops and wild
plants (Hung et al., 2018). The ongoing trend of honey bee decline throughout the world has
brought the attention to the great loss of ecological services provided by this species, its health
status, and numerous threats it faces (Paudel et al., 2015; Boncristiani et al., 2020). Bees are
associated with a diverse community of microbes (viruses, bacteria, fungi, and protists), com-
monly known as the microbiome. As a superorganism, the honey bee has complex interactions
with its own microorganisms, the microbial communities of food stores, hive surfaces, and
surrounding environments; therefore, four major groups of bee-associated microbiomes
have been distinguished (Smutin et al., 2022). These include gut and body surface microbiota,
microbiota of the in-hive environment (honeycombs, brood combs, propolis, royal jelly, etc.),
and microbiota of the surrounding environment. Recent advances in DNA technologies and
biomolecular analyses enabled new insights into the understanding of microbiota composition,
dynamics, and impact on host biology and health. Except for a few bacterial pathogens that are
widespread in apiaries and causing high mortality (Forsgren, 2010; Genersch, 2010), the func-
tional role of most members of bee-associated microbiota on host and colony health is not

https://doi.org/10.1017/S0007485323000378 Published online by Cambridge University Press

https://www.cambridge.org/ber
https://doi.org/10.1017/S0007485323000378
https://doi.org/10.1017/S0007485323000378
mailto:peter_hristoff@abv.bg
https://orcid.org/0000-0002-7756-4571
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0007485323000378&domain=pdf
https://doi.org/10.1017/S0007485323000378


completely understood (Engel et al., 2016; Khan et al., 2020). The
gut microbiome is the most extensively studied part of the
bee-associated microbiota (Romero et al., 2019) used as a model
for gut microbiota research (Zheng et al., 2018). It is relatively
simple and specialized, consisting of 8–10 recurring phylotypes
or species clusters called Alpha-1 (Bartonella apis), Alpha-2.1
(unclassified species of Acetobacteriaceae family), Alpha-2.2
(Saccharibacter floricola), Beta (Snodgrassella alvi), Bifido
(Bifidobacterium asteroides), Gamma-1 (Gilliamella apicola),
Gamma-2 (Frischella perrara), Firm-4 (Lactobacillus mellis and
L. mellifer), Firm-5 (other Lactobacillus spp. including
(Apilactobacillus) kunkeei) (Sabree et al., 2012; Kwong and
Moran, 2016). Despite the conserved bacterial phylotype compos-
ition, it was found that each honey bee harbors a distinct commu-
nity at the functional level (Ellegaard and Engel, 2019).

It is well known that S. alvi, G. apicola, two species of
Lactobacillus (L. apis and L. helsingborgensis), and Bifidobacterium
spp. are ubiquitous and can be found in every adult honey bee
worker worldwide, often considered as part of the core gut micro-
biome composition (Erban et al., 2017; Nowak et al., 2021). Other
microbial species, e.g., B. apis, Apibacter adventoris, F. perrara, and
species of the family Acetobacteraceae, have been sometimes
found in the gut of many workers, but exceptions exist (Jones
et al., 2018; Raymann and Moran, 2018). The gut bacteria showed
specific spatial distribution related to different sections of the
honey bee digestive system (Martinson et al., 2012; Callegari et al.,
2021). Snodgrassella alvi and G. apicola dominate in the ileum
region of the hindgut, F. perrara occupy the pylorus near the
beginning of the ileum, while the Lactobacillus strains and
Bifidobacterium spp. are most abundant in the rectum region of
the hindgut (Raymann and Moran, 2018).

The functional role of the gut microbiome was mainly related
to host nutrition and metabolism, regulation of the immune sys-
tem, and pathogen resistance (Emery et al., 2017; Kwong et al.,
2017; Bonilla-Rosso and Engel, 2018; Daisley et al., 2020;
Castelli et al., 2021), and alterations in gut microbiota (such as
dysbiosis) may affect host metabolic homeostasis and immunity
(Yuan et al., 2019; Zhu et al., 2020). Multiple factors, such as
bee age, caste and social activity, presence of pathogens and para-
sites, exposure to agrochemicals and anthropogenic toxins, the
microbiota of in-hive environment and stored food, as well as
the landscape heterogeneity and related local environmental con-
ditions (including vegetation diversity, land-use type, season), are
known to affect honey bee gut microbiome composition and
dynamics (Anderson et al., 2013; Graystock et al., 2015; Engel
et al., 2016; Kwong and Moran, 2016; Jones et al., 2018;
Bosmans et al., 2018; Ribière et al., 2019; Kešnerová et al., 2020;
Muñoz-Colmenero et al., 2020). The versatility and potential util-
ity of the western honey bee, including its associated microbiota,
as biomonitors of environmental pollutants, pesticides use, pres-
ence of pathogens, climate change, and ecosystem health, has
been recognized and recently reviewed (Cunningham et al., 2022).

Traditionally, the microorganisms associated with honey bees
and their food are determined by examination, and subsequent
isolation and identification, using appropriate tests and taxo-
nomic keys (see Snowdon and Cliver, 1996; Gilliam, 1997 for
reviews). Very often taxonomic identification is difficult to imple-
ment in species with similar morphological features. This requires
an application of high-sensitivity methods such as DNA sequen-
cing including DNA barcoding (Porter and Hajibabaei, 2018;
Eberle et al., 2020). Recently, a novel method (environmental
DNA metabarcoding) comprising DNA isolation from mixed or

bulk environmental samples, amplification, high-throughput
sequencing (HTS), and bioinformatics was widely applied for
studying and monitoring biological diversity including micro-
biome diversity (Deiner et al., 2017; Piper et al., 2019; Kennedy
et al., 2020). HTS of 16S and internal transcribed spacer riboso-
mal RNA (rRNA) markers is now one of the most effective and
extensively used approaches in microbiome studies that also pro-
vides quantitative estimates of the microbial community compos-
ition (Bukin et al., 2019).

In this study, we investigated the bacterial communities asso-
ciated with honey bees from two regions in Bulgaria (mountain
and lowland) by applying DNA metabarcoding approach based
on 16S rRNA gene. The objectives were: (i) to detect ‘core’
bee-associated bacteria and differential taxa specific to each local-
ity and (ii) to compare the bacterial community structure and
diversity within and between localities.

Materials and methods

Sites description and sampling

Bee specimens were collected during honey production season
(June 2018) from two different localities: the ‘Experimental
Apiary of the Research Center of Stockbreeding and
Agriculture’, located on the outskirts of Smolyan city (41°
35′40′′N, 24°40′39′′E), the Rhodope Mountains (RM), Southern
Bulgaria and from a private apiary in a lowland village near to
Byala city (43°25′6′′N, 25°49′14′′E), Danube plain (DP) region,
Northeastern Bulgaria. Both sites differed considerably by their
topography and landscape characteristics, altitude, dominant
land use type, and vegetation. The locality in the Rhodope Mtn
is mountainous with an average altitude of about 1160 m, a
very heterogeneous environment, steep slopes, more diverse land-
scape structures, numerous grasslands and pastures, and conifer-
ous tree vegetation. In contrast, the landscape of the lowland
locality in the Danube plain region is slightly hilly (altitude ranges
100–300 m a.s.l.), surrounded by agroecosystems with annual and
perennial crops, broadleaved vegetation, small forest patches.

To identify bee-associated microbiota, 15 hives from each api-
ary were randomly selected. From each hive, one bee forager
returning to the hive with pollen on their legs was collected
with sterile tweezers from each hive near to hive entrance. Each
bee specimen was placed in a sterile 50 μl falcon and immediately
frozen on dry ice in the field. The samples were brought to the
laboratory of the Institute of Biodiversity and Ecosystem
Research and stored at −20°C before processing.

DNA extraction, PCR amplification, and sequencing

Prior to DNA extraction, the posterior body segment of bee speci-
mens (known also as metasoma or abdomen) was cut-off with
sterile scissors. For pragmatic reasons, we will use the term abdo-
men in this text. After that, the bees were mechanically homoge-
nized by sterile pestle in a total of 350 μl Lyse T buffer
(GeneMATRIX Tissue DNA Purification kit, Cat.no. E3550,
EURx Sp. z o.o.; Gdansk, Poland) to complete the destruction
of the abdomen. After removal of all tissue fragments, total
DNA isolation was performed according to the manufacturer’s
instructions. DNA concentration and quality were measured
using an Analytikjena spectrophotometer (Analytik Jena GmbH,
Germany). The extracted DNA was then sent to the AIM
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laboratory (https://www.aimethods-lab.com/) for DNA metabar-
coding using NGS (sequencing and bioinformatics processing).

From each sample, 5 μl of extracted genomic DNA was used,
along with Plant MyTAQ (Bioline, Luckenwalde, Germany).
The V3–V4 hypervariable regions of the bacterial 16S rRNA
gene were amplified with the adapted primers 16s-barcode pri-
mers (341f – TACACGACGCTCTTCCGATCTTCATCCTACGG
GNGGCWGCAG – and 785r – CAGACGTGTGCTCTTCCGA
TCCGCTCAGACTACHVGGGTATCTAATCC) (Morinière et al.,
2016; Thijs et al., 2017; Morinière et al., 2019). Amplification suc-
cess and fragment length were assessed using gel electrophoresis.
Amplified DNA was cleaned up and resuspended in 50 μl molecu-
lar water for each sample before proceeding. Illumina Nextera XT
(Illumina Inc., San Diego, USA) indices were ligated to the samples
in a second PCR reaction applying the same annealing temperature
as for the first PCR reaction but with only seven cycles, and ligation
success was confirmed by gel electrophoresis. DNA concentrations
were measured using a Qubit fluorometer (Life Technologies,
Carlsbad, USA), and samples were combined into 40 μl pools con-
taining equimolar concentrations of 100 ng each. Pools were puri-
fied using MagSi-NGSprep Plus (Steinbrenner Laborsysteme
GmbH) beads. A final elution volume of 20 μl was used. HTS
was performed on an Illumina MiSeq using v3 (2 × 300 bp, 600
cycles, maximum of 25 mio paired-end reads) chemistry.

Bioinformatic processing

Paired-end merging was done using the -fastq_mergepairs utility
of the USEARCH suite v11.0.667_i86linux32 (Edgar et al., 2011).
Adapter sequences were removed using CUTADAPT (Martin,
2011) (default parameters). The remaining pre-processing steps,
namely quality filtering, dereplication, chimera filtering, and clus-
tering were carried out using the VSEARCH suite v2.9.1 (Rognes
et al., 2016). Sequences were trimmed to a length of 400 bp and
were only included in the analyses that matched perfectly to the
barcode. 16S rRNA genes were classified using the SILVA data-
base (Quast et al., 2012) and NCBI database (O’Leary et al.,
2016) both with a minimum similarity threshold of 97%. The
resulting file could then be used to map the reads to the oper-
ational taxonomic units (OTUs) to create the OTU table. To
reduce likely false positives, a cleaning step was employed which
excluded read counts in the OTU table that constituted less
than 0.01% of the total number of reads in the sample. OTUs
were blasted against a custom database downloaded from
GENBANK using Geneious (v.10.2.5 – Biomatters, Auckland –
New Zealand), and following methods described in Morinière
et al. (2016). OTUs were additionally removed from the results
based on negative control samples, i.e., if the combined number
of reads in the negative controls constituted more than 20% of
the total number of reads in the OTU. OTUs were also annotated
with the taxonomic information from NCBI (downloaded from
https://ftp.ncbi.nlm.nih.gov/pub/taxonomy/), followed by a cre-
ation of a taxonomic consensus between BOLD, NCBI, and RDP.

A total of 1,667,218 raw reads of the V3–V4 region of the bac-
terial 16S rRNA were obtained and assembled in 833,609 clean
sequences with an average sequence length of 411 bp, and with
a maximum of one expected error. These sequences were obtained
from the 20 assayed samples (13 from the Rhodope Mountains
and 7 from the Danube plain). Before chimera detection, 419 bac-
terial OTUs were identified at the 97% sequence similarity cut-off.
After chimera filtering and removing data with low-quality scores
for three bee specimens from Danube plain locality and OTUs

identified as organelle DNA (chloroplast and mitochondria), 66
OTUs and 17 samples remained for further analyses
(Supplementary table S1).

Data analyses

The microbiome data analyses were performed using the web-
based platform MicrobiomeAnalyst (Dhariwal et al., 2017;
Chong et al., 2020) based on the OTUs abundance table for 17
samples containing raw counts of 66 OTUs. Taxonomy data in
text table format and the metadata file were uploaded and further
analyzed in the Marker-gene Data Profiling (MDP) module. Taxa
having less than a 10% prevalence with a read number ≤2 were
filtered out. The 39 most frequent and abundant OTUs were fur-
ther involved in the analyses after data filtering. The OTU abun-
dances were rarefied to the minimum library size (Supplementary
fig. S1a) (Kandlikar et al., 2018) and normalized. Rarefaction
curves per each sample are presented (Supplementary fig. S1b).
Core bacterial taxa were distinguished and visualized by setting
up a 20% prevalence value and 0.01 for the relative abundance
(RA) value. Three alpha-diversity measures (Shannon diversity,
Simpson diversity, and Chao1 indices) were calculated at OTUs
and generic levels and visualized (McMurdie and Holmes,
2013). Chao1 index estimates taxa richness by accounting for
taxa (e.g., OTUs, species, or genera) that are undetected because
of low abundance. Shannon and Simpson’s indices are based on
taxa richness and their abundances (or evenness). Pairwise com-
parisons and the significant differences between both groups were
calculated using the non-parametric Mann–Whitney U test (P≤
0.05). To observe the average dissimilarity in the composition of
microbial communities in both regions of the country, beta diver-
sity was estimated based on Bray–Curtis similarity distances and
visualized with non-metric multidimensional scaling (NMDS)
ordination (McMurdie and Holmes, 2013). The statistical signifi-
cance of the clustering pattern in ordination plots was evaluated
using the permutational multivariate analysis of variance
(PERMANOVA). Differences in taxonomic classification between
both geographical regions were illustrated using heat tree analysis
(Foster et al., 2017). It leverages the hierarchical structure of taxo-
nomic classifications to quantitatively (using the median abun-
dance) and statistically (using the non-parametric Wilcoxon
rank-sum test, P < 0.05) depict taxonomic differences between
microbial communities (view mode: comparison) or abundance
profiles (view mode: abundance). Linear discriminant analysis
of effect size (LEfSe) was applied to identify bacterial taxa specific
to each locality using a significance level of P < 0.05 (Segata et al.,
2011).

Results

Bacterial community structure, composition, and variability

The taxonomic assignment of the 39 most common and abun-
dant OTUs revealed five phyla, six classes, 12 orders, 15 families,
and 22 genera (fig. 1, Supplementary fig. S2). Among bacterial
phyla, Proteobacteria, Firmicutes, and Actinobacteria dominated
the bee-associated communities at both locations (99–100%,
fig. 1a). Proteobacteria prevailed significantly in all bee specimens
from the lowland locality (DP, 68–87%) and in five bee specimens
from the Rhodope Mtn (RM, 52–79%), followed by Firmicutes
(RM: 17–63%, DP: 10–27%) and Actinobacteria (0.4–14%).
OTUs assigned to Bacteroidetes and Tenericutes were present in
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a very low RA (0.3–0.9%) and occurrence in both localities. A
clear variability within and between localities was also observed
in the RAs for bacterial families (Supplementary fig. S2a) and
genera (fig. 1b). In the bee specimens from the Rhodope Mtn,
on average 43% of reads belonged to the family Lactobacillaceae
(mainly Lactobacillus, 43%); Orbaceae make up 14% of Bacteria
(Gilliamella, 12% and Frischella, 2%), followed by 10% RA
of Rhizobiaceae (Bartonella), 9% – Enterobacteriaceae (mainly
Morganella, 8%), 8% – Neisseriaceae (Snodgrassella), and about
7% of Bifidobacteriaceae (Bifidobacterium) and Acetobacteraceae
(Commensalibacter). Other families, such as Leuconostocaceae
(Fructobacillus), Pseudomonadaceae (Pseudomonas),
Spiroplasmataceae (Spiroplasma), and Sphingomonadaceae
(Sphingomonas), were found in less than 1% of the total OTU
abundance (Supplementary fig. S2a).

In bee specimens from the Danube plain locality, on average
30% of OTUs belonged to the family Rhizobiaceae (Bartonella),
21% – Lactobacillaceae (mainly Lactobacillus – 20%), 18% –
Enterobacteriaceae (Morganella – 10%, Klebsiella – 6%, Serratia –
1%), 14% – Pseudomonadaceae (Pseudomonas spp.), and 7% to
Orbaceae (Gilliamella – 6% and Frischella – 1%). The average
RA of bacteria belonging to families Neisseriaceae (Snodgrassella),
Bifidobacteriaceae (Bifidobacterium), and Acetobacteraceae
(Commensalibacter, Bombella) was lower than 3% (2–4%).
Bacteria from five families (Carnobacteriaceae, Flavobacteriaceae,
Oxalobacteraceae, Sphingobacteriaceae, and Sphingomonadaceae)
were found in low frequency and RAs (>0.3%) (Supplementary
fig. S2a). Heatmaps visualizing bacterial taxa composition and
their RAs at various taxonomical levels (species, genera, families,
and orders) for each locality and individual bee specimens are pre-
sented in the Supplementary fig. S3a–d.

Bacterial diversity, core, and differential taxa

The total number of OTUs found in all bees from both localities
was 66 (Supplementary table 1) with one-third of them (or 27
OTUs) revealed in a very low number of reads (≤10 per bee spe-
cimen) mainly from the Danube plain locality. Lactobacillus and
Gilliamella showed the highest OTU richness. Because of the

limited number of successfully sequenced specimens from this
locality, we could not be sure if these are indeed rare bacterial
phylotypes. Despite this bias in bee specimens’ quantity, the
OTU richness of microbial communities in bees from
the Danube plain was higher as compared to those from the
Rhodope Mtn (29 vs. 35, in total) and per bee specimen
(fig. 2). Twenty-five OTUs and 15 genera were common for
microbial communities of both localities, of them ten OTUs
and five genera were unique for the Danube plain area
(Supplementary fig. S4).

Alpha diversity assessed by Shannon, Simpson, and Chao1
indices revealed different trends when calculated at OTUs and
genus levels (Supplementary fig. S5a–f). The bacterial communi-
ties of bees from the Danube plain were significantly more diverse
than those of the Rhodope Mtn when genus data were compared
(Mann–Whitney U test, Shannon (P = 0.04), Simpson (P = 0.059),
and Chao1 (P = 0.01); Supplementary fig. S5d–f). Except for
Chao1’s diversity index (P = 0.004; Supplementary fig. S5c), no

Figure 1. Bar charts illustrating the distribution and relative abundances of bacterial phyla (a) and genera (b). Data are represented for each honey bee specimen
and locality. RM, Rhodope Mountains; DP, Danube plain.

Figure 2. Alpha diversity measure showing the observed variation of OTU numbers
(richness) in the bacterial communities. Data are represented as a box plot. RM,
Rhodope Mountains; DP, Danube plain; Mann–Whitney U test statistic: 0.05, P
value: 0.004.
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significant differences in OTU diversity between both localities
were revealed (P > 0.05; Supplementary fig. S5a, b). Beta diversity
analyses clearly distinguished the bacterial communities from
both localities (P = 0.002) (NMDS; fig. 3). The microbial commu-
nities of bee specimens from the Rhodope Mtn were more similar
to each other than those of the Danube plain region.

Several core bacterial taxa occurring with high frequency and
abundance specific to each locality were revealed (fig. 4).
Bartonella (B. apis), Bifidobacterium sp., Snodgrassella (S. alvi),
Frischella (F. perrara), and phylotypes of Gilliamella,
Lactobacillus, and Commensalibacter, known as honey bee
gut-associated bacteria, dominated in almost all bee individuals
(92–100%). However, the percentage of these specific core gut
bacterial genera was less abundant (32–73%) in a few bee speci-
mens. OTUs assigned to other four genera (Pseudomonas,
Serratia, Morganella, and Klebsiella) were present with higher
RA in bee specimens from the Danube plain and occasionally –
in bees from the Rhodope Mtn (Supplementary fig. S3a, b).

The geographical differences in the bacterial microbiome com-
position and structure were also supported by the results of two
additional analyses – the heat tree analysis (fig. 5) and the
LEfSe (Supplementary fig. S6, table S3). Both analyses showed dif-
ferences in the distribution of seven bacterial genera, i.e.,
Lactobacillus (LEfSe, P = 0.02), Gilliamella (LEfSe, P = 0.03),
Snodgrassella (LEfSe, P = 0.03), Bartonella (LEfSe, P = 0.02),
Pseudomonas (LEfSe, P < 0.00), Serratia (LEfSe, P < 0.00), and
Apibacter (LEfSe, P = 0.01) with the first three genera being sig-
nificantly more abundant in the Rhodope Mtn (Supplementary
fig. S7). Bacteroidetes was found in honey bees from the
Danube plain only (Wilcoxon’s P = 0.001) with Apibacter sp.

occurring in three out of four specimens (LEfSe, P = 0.01,
Supplementary table S3). The order Pseudomonadales, composed
of four Pseudomonas spp., prevailed significantly in bee speci-
mens of the Danube plain region (Wilcoxon’s P = 0.001) (fig.
S6). Other differential taxa distinguishing bee-associated bacterial
communities of both localities are presented in the
Supplementary materials (fig. S6 and table S3).

Discussion

In our study, we focused on the composition and diversity of bac-
terial communities associated with honey bees from two apiaries
located in the Rhodope Mtn and Danube plain regions having dif-
ferent landscape topography – mountain and lowland, respect-
ively. We characterized the bee-associated bacteria at different
hierarchical levels (OTUs to phylum) by applying various
community-based analyses such as composition and dominance
structure, and their variability within and between localities, α
and β diversity, analyses for revealing core and differential taxa.

Bacterial OTUs assigned to seven genera (Bartonella (B. apis),
Bifidobacterium sp., Snodgrassella (S. alvi), Frischella (F. perrara),
and Gilliamella, Lactobacillus, and Commensalibacter), known as
specific gut-associated bacteria of A. mellifera, dominated (92–
100%) the bee-associated assemblages in most specimens.
Phylotypes or species clusters from these seven genera are
known as specific gut microbiota that is well-adapted to honey
bees worldwide, mainly transmitted through social interactions
between individuals (Kwong and Moran, 2016). They occupy dif-
ferent sections of the bee digestive system and have evolved spe-
cific host–microbe interactions and functions (Martinson et al.,

Figure 3. Non-metric multidimensional scaling (NMDS) ordination of honey bee communities at OTU level using Bray–Curtis as a dissimilarity measure. Results
from the PERMANOVA test (F, stress, and P values) are represented for each taxonomic level. Individuals from the same colony and explained variances are repre-
sented by the same colors.
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2012). Two ubiquitous Gram-negative genera Snodgrassella (S.
alvi) and Gilliamella (members of the Proteobacteria phylum)
and several Gram-positive Lactobacillus bacteria (Firmicutes phy-
lum) prevailed significantly in the Rhodope Mtn locality. One
Proteobacteria species (B. apis), usually found with lower abun-
dance and frequency, dominated the bacterial communities of
bees from the Danube plain locality. These primary bacterial gen-
era are part of the core gut microbiota of honey bees (Kwong and
Moran, 2016). The F. perrara usually localized in a restricted
niche of the bee gut (Kwong and Moran, 2016), and one uniden-
tified Bifidobacterium species were present in all specimens from
both localities with low and relatively high RA, respectively.
Except for F. perrara (Engel et al., 2015a, 2015b; Maes et al.,
2016), these bee-specific bacterial taxa are considered beneficial
gut symbionts of social bees that have protective and nutritional
functions (Kwong and Moran, 2016). For example, Lactobacillus
spp. has essential roles in carbohydrate metabolism and in pro-
tecting hosts by producing antimicrobial metabolites (such as

organic acids, diacetyl, benzoate, and bacteriocins) and sugars
(Zhang et al., 2022). Bifidobacterium spp. are involved in the bio-
synthesis and assimilation of trehalose that is used for energy stor-
age in insects and its presence and abundance are considered
bacterial indicators for assessing the age of bee workers (Dong
et al., 2020).

The honey bee biology and colony behavior, as well as the
microbiome composition of the in-hive environment, strongly
affect the routes of acquisition and the initial composition of bac-
teria associated with worker bees (Powell et al., 2014; Smutin
et al., 2022). Subsequently, the microbiomes of various in-hive
structures (surfaces), stored foods (e.g., honeycombs, bee wax,
propolis, pollen, royal jelly, honey, etc.), and out-hive environ-
ments (floral nectar and pollen) can contribute to the acquisition
of non-core bee-associated microbiota (Snowdon and Cliver,
1996; Kačániová et al., 2009; Anderson et al., 2011; Rering
et al., 2018; Cullen et al., 2021). Species of the genus
Lactobacillus, the most recognized and diverse honey bee

Figure 4. Heatmap representing the core bacterial genera dominating the honey bee communities from the Rhodope Mountains (a) and Danube plain (b). The
y-axis represents the prevalence of core genera across the detection threshold range (relative abundance) on the x-axis. The prevalence of each core species is
indicated by a color gradient from dark blue (low) to dark red (high).
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symbionts, were commonly found in the in-hive environment
including bee bread, royal jelly, bee pollen, and nectar
(Anderson et al., 2013, 2014). For example, the fructophilic lactic
acid bacteria L. (Apilactobacillus) kunkeei isolated from all beehive
substrates and crop sections of the bee alimentary tract
(Corby-Harris et al., 2014) have been found worldwide on differ-
ent plants, especially associated with floral nectar and pollen
(McFrederick et al., 2012; Neveling et al., 2012; Anderson et al.,
2013; Rering et al., 2018; Casalone et al., 2020; de Oliveira
Scoaris et al., 2021; Rering et al., unpublished).

In some specimens, a substantial deviation from the core
gut-associated taxa was revealed. Several genera (Pseudomonas,
Morganella, Klebsiella, Serratia, and Providencia), belonging to
families Pseudomonadaceae and Enterobacteriaceae, were present
with high RAs mainly in bees from the Danube plain area and
occasionally in a few individuals from the Rhodope Mtn. We
relate the presence of these bacteria to body surface-associated
microbiota. These genera have widespread distribution, found in
various environments (water, soil, plants, insects, and other ani-
mals including humans). However, some species are also known
as potential and opportunistic bee pathogens that can disrupt
gut microbiota and increase host susceptibility to infection and
reduced lifespan (Kwong and Moran, 2016; Raymann et al.,
2017; Lakhman et al., 2021; Al Naggar et al., 2022). When for-
aging on flowers, honey bees can transfer numerous
pollen-associated bacteria that differ significantly in plant species
and pollination type (Manirajan et al., 2018), including some
plant pathogenic species (e.g., Pseudomonas), thereby facilitating
species-specific crop diseases (McArt et al., 2014; Pattemore
et al., 2014).

Alpha diversity indices and beta diversity analyses confirmed
the observed differences in honey bee-associated microbiota
from both localities. One of the possible explanations for the

observed community shifts in bacterial composition and higher
diversity in bees from the Danube plain locality might be related
to the higher infectious rate with Nosema microsporidian para-
sites found in the same apiary (Radoslavov et al., 2017).
Alterations in the community composition and diversity of bee
gut microbiome were found to be positively correlated with the
presence of eukaryotic parasites and pathogens (Cariveau et al.,
2014; Hubert et al., 2017; Felden et al., 2021). Moreover, a higher
microbial diversity was associated with a lower bumblebee resist-
ance against infection by an intestinal parasite (Näpflin and
Schmid-Hempel, 2018).

The presence and higher diversity of non-specific gut bacteria
in bees from the lowland area may have been related to the land-
scape features of the location and the level of anthropogenic
impact. This is a rural area with higher land use intensity.
Increased exposure to agricultural chemicals due to the prevalence
of agroecosystems may have had long-term consequences on bee
health and its microbiome structure and function. As a main pol-
linator of various crops, often located in areas with high land use
intensity, A. mellifera has diverse interactions with the local envir-
onment that can significantly affect bee health and colony per-
formance. In general, each location is a complex of interacting
local, global, and regional environmental factors, some of which
acting as bee stressors. Land use intensity, agrochemicals, and
nutrition quality have been found to contribute to alterations in
the honey bee-associated microbiome (Kakumanu et al., 2016;
Jones et al., 2018; Motta et al., 2018; Muñoz Colmenero et al.,
2020; Cullen et al., 2023). In contrast to the lowland area, the top-
ography of the Rhodope Mtn creates a heterogeneous environ-
ment with more diverse landscape structures and ecosystems
owing to the variations in temperature, vegetation, lack of homo-
geneous monocultures, and lower pollution levels. This leads to a
larger diversity of non-managed habitats, such as natural

Figure 5. Heat tree graph representing the geographical differences in the bacterial communities associated with honey bees. Significantly different taxonomic
ranks are shown on the tree as a light red and dark blue nuance for communities of the Rhodope Mountains and the Danube plain, respectively. Node diameter
is proportional to the number of OTUs classified as that taxon.
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grasslands, low-intensity pastures, forests, patches of shrubs, and
single trees that provide higher plant diversity and nutritional
resources for honey bees. Both sites differed in many aspects,
including elevation, landscape heterogeneity, land use type and
vegetation, access to floral resources, application of agrochemicals
that may affect alone or in combination. However, the lower num-
ber of sampling locations, smaller sampling sizes, and the com-
bined effect of multiple abiotic and biotic factors hinder the
clear interpretation of our findings. Therefore, further studies
with higher sampling rate, involving pathogen and fungal com-
munity analyses, would be required to disentangle the influence
of local and regional factors.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0007485323000378.
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