
INTERNATIONAL ASTRONOMICAL UNION

SYMPOSIUM No. 56

CHROMOSPHERIC FINE STRUCTURE

Edited by R. GRANT ATHAY

INTERNATIONAL ASTRONOMICAL UNION D. REIDEL PUBLISHING COMPANY DORDRECHT-HOLLAND / BOSTON-U.S.A.

https://doi.org/10.1017/S0074180900069230 Published online by Cambridge University Press

Chromospheres undoubtedly exist in the majority of stars; and by implication, chromospheric fine structure exists in the majority of stars as well. Only in the case of the Sun, however, can we hope to isolate and identify the true nature of the fluid motions giving rise to spectral line broadening and to the transport and dissipation of mechanical energy. No student of stellar atmospheres and convective layers can afford to be ignorant of or disinterested in the nature of solar fine structure.

The devotion of an I.A.U. symposium entirely to the topic of chromospheric fine structure at a time when models of the spherically symmetric chromosphere are still evolving constitutes a valid recognition of the growing feeling among solar astronomers that the chromosphere cannot be understood independently of its discrete structural features. Network structure, which seemingly borders the photospheric supergranule cells, persists intact throughout the chromosphere and most of the chromosphere-corona transition region. The network is the locus of the bright coarse mottles, and the spicule bushes and is the terminus for one end of the quiet chromospheric fibrils as well. Additionally, it is the locus of most of the magnetic flux of the quiet chromosphere. It is not surprising, therefore, that current studies of the chromosphere tend to center around efforts to better describe the network phenomena and to ascertain the physical properties of the network features. Clearly, the supergranule cells and associated network structures constitute a fundamental and singularly important feature of solar structure in the boundary layers. By implication, these same phenomena are equally fundamental to the structure and nature of the sub-photospheric convection zone.

D. REIDEL PUBLISHING COMPANY DORDRECHT-HOLLAND / BOSTON-U.S.A.

CHROMOSPHERIC FINE STRUCTURE

INTERNATIONAL ASTRONOMICAL UNION UNION ASTRONOMIQUE INTERNATIONALE

SYMPOSIUM No. 56

HELD AT SURFER'S PARADISE, QLD., AUSTRALIA, 3-7 SEPTEMBER 1973

CHROMOSPHERIC FINE STRUCTURE

EDITED BY

R. GRANT ATHAY

High Altitude Observatory of the National Center for Atmospheric Research (Sponsored by the National Science Foundation), Boulder, Colo., U.S.A.

D. REIDEL PUBLISHING COMPANY

DORDRECHT-HOLLAND / BOSTON-U.S.A.

1974

Published on behalf of the International Astronomical Union by D. Reidel Publishing Company, P.O. Box 17, Dordrecht, Holland

All Rights Reserved Copyright © 1974 by the International Astronomical Union

Sold and distributed in the U.S.A., Canada, and Mexico by D. Reidel Publishing Company, Inc., 306 Dartmouth Street, Boston, Mass. 02116, U.S.A.

Library of Congress Catalog Card Number 74-79568

Cloth edition: ISBN 90 277 0266 7 Paperback edition: ISBN 90 277 0288 8

No part of this book may be reproduced in any form, by print, photoprint, microfilm, or any other means, without written permission from the publisher

Printed in The Netherlands by D. Reidel, Dordrecht

TABLE OF CONTENTS

PREFACE

ORGANIZING COMMITTEE

IX XI

XIII

LIST OF PARTICIPANTS

PART I

THE QUIET CHROMOSPHERE: LIMB PHENOMENA

- R. MICHARD / Spicules and Their Surroundings
- R. G. ATHAY / Radiation Pressure in Stellar Atmospheres with Application to Solar Spicules
- **R.** BHAVILAI / Chromospheric Fine Structures near the Solar Limb in H α 25
- K. O. KIEPENHEUER / Recent Developments in Improving Daytime Angular Resolution from the Ground
- J. M. PASACHOFF, F. S. HARRIS, and J. M. BECKERS / Spatial and Spectral Structure of Chromospheric Lines

PART II

THE QUIET CHROMOSPHERE: DISK PHENOMENA

H. U. SCHMIDT / Why the Chromosphere has Its Discrete Fine Structure	35
R. B. DUNN, J. B. ZIRKER, and J. M. BECKERS / Properties of the Solar Filigree	
Structure	45
H. ZIRIN / Spicules are Bright and Dark	49
L. CRAM / High Resolution Spectroscopy of the Disk Chromosphere. III:	
Evidence for the Propagation and Dissipation of Mechanical Energy in the	
Chromosphere	51
K. B. GEBBIE and R. STEINITZ / Comparison of Ha and Call H and K Spectro-	
heliograms as a Diagnostic Probe	55
M. R. KUNDU, T. VELUSAMY, and R. H. BECKER / Fine Structure of the Sun	
at Centimeter Wavelengths	65

PART III THE UPPER CHROMOSPHERE

J. T. JEFFERIES	/ Fine Structure	of the Upper Chromos	sphere 71
-----------------	------------------	----------------------	-----------

W. M. BURTON, C. JORDAN, A. RIDGELEY, and R. WILSON / Further Obser-	
vations of the Structure of the Chromosphere-Corona Transition Region	
from Limb and Disk Intensities	89
P. DELACHE / Non-Static Structure of the Chromosphere-Corona Transition	
Region	91
U. GROSSMANN-DOERTH / On the Design of Chromospheric Models	93

PART IV

MOTION AND EXCITATION IN THE CHROMOSPHERE

E. N. FRAZIER / Motions of Chromospheric Fine Structures	97
R. G. GIOVANELLI / Waves and Oscillations in the Chromosphere in Active	
and Quiet Regions	137
K. TANAKA / Chromospheric Oscillations in Plages	153
Y. NAKAGAWA / Trapped Oscillations in the Chromosphere in the Presence	
of a Magnetic Field	157

PART V

THE CHROMOSPHERE IN ACTIVE REGIONS

161
177
179
183
193
197

PART VI

EVOLUTION OF CHROMOSPHERIC FINE STRUCTURES

D. VRABEC / Streaming Magnetic Features near Sunspots	201
C. ZWAAN / On the Relation between Moving Magnetic Features and the	
Decay Rates of Sunspots	233
F. MEYER, H. U. SCHMIDT, N. O. WEISS, and P. R. WILSON / A Theoretical	
Model for the Convection of Magnetic Flux in and near Sunspots	235
K. TANAKA / Evolution of Chromospheric Fine Structures on the Disk	239
D. DRAVINS / Evolution of Structures in the Bright H α Network	257
FL. DEUBNER / Ha Fine Structure and the Dynamics of the Solar Atmo-	
sphere	263

VI

PART VII

ENERGY BALANCE, HEAT TRANSFER AND HEATING MECHANISMS IN CHROMOSPHERIC FINE STRUCTURES

J. H. PIDDINGTON / The Chromospheric Energy Balance	269
P. SOUFFRIN / Ray Trapping in Stellar Envelopes, Pulsational Instabilities	
and Heating of External Layers	293
A. H. GABRIEL / A Magnetic Model of the Chromosphere-Corona Transition	
Region	295
Y. UCHIDA and O. KABURAKI / Excess Heating of Corona and Chromo-	
sphere above Magnetic Regions by Non-Linear Alfvén Waves	299
P. R. WILSON / The Stability of a Magnetic Flux Rope and Its Relation to	
Sunspots, Faculae and Flares	301
GENERAL DISCUSSION	303
INDEX OF SUBJECTS	309