Irish Section of The Nutrition Society, 17-19 June 2009

No effect of vitamin D supplementation on circulating glucose, insulin or homeostasis model of insulin resistance (HOMA-IR) in adults aged 20–40 years and ≥ 64 years

S. Muldowney¹, T. R. Hill¹, A. Lucey¹, K. Seamans¹, J. M. W. Wallace³, G. Horigan³, M. S. Barnes³, K. D. Cashman^{1,2} and M. Kiely¹

¹Department of Food & Nutritional Sciences and ²Department of Medicine, University College Cork, Cork, Republic of Ireland and ³Northern Ireland Centre for Food and Health, University of Ulster, Coleraine BT52 1SA, UK

Observational studies have shown that vitamin D insufficiency is associated with increased risk of type 2 diabetes, insulin resistance and higher plasma glucose concentrations⁽¹⁾; however, intervention trials to date have been limited^(2,3). The effect of vitamin D supplementation (0, 5, 10 and 15 µg cholecalciferol/d) on serum glucose and insulin concentrations and the HOMA-IR was investigated in two randomised placebo-controlled double-blind 22-week intervention studies in men and women aged 20–40 years (n 215; during winter 2006– $7^{(4)}$) and \geq 64 years (*n* 215; during winter 2007–8⁽⁵⁾) in Cork and Coleraine. Fasting serum levels of glucose were measured by an enzymic colorimetric assay and fasting serum insulin, intact parathyroid hormone (iPTH), and 25-hydroxyvitamin D (25(OH)D) were measured by ELISA at baseline and end point.

Supplement dose	Group 1 Pleasebo				Group 2				Group 3				Group 4				
	Baseline		End p	point	Baseline		End point		Baseline		End point		Baseline		End point		
	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Р
20-40 years	(<i>n</i> 56)				(<i>n</i> 50)				(n 57)				(<i>n</i> 52)				
Glucose (mmol/l)	5.04	0.7	5.04	0.7	4.90	0.8	5.18	1.4	4.90	0.5	4.98	0.6	4.92	0.8	4.99	0.7	0.653
Insulin (µU/l)	14.2	8	15.2	8	15.1	9	15.2	7	15.0	9	14.1	6	15.9	10	14.4	6	0.275
HOMA-IR	3.3	2	3.5	2	3.4	2	3.5	2	3.4	2	3.2	2	3.6	3	3.2	2	0.350
25(OH)D (mmol/l)	76.8	33	41.8 ^a	18	71.3	27	53.4 ^b	15	77.6	33	62.1 ^c	22	79.7	30	72.4 ^d	21	< 0.0001 ⁽⁴⁾
≥ 64 years	(<i>n</i> 56)				(<i>n</i> 51)				(<i>n</i> 57)				(<i>n</i> 51)				
Glucose (mmol/l)	4.90	1.1	4.90	1.2	5.20	1.1	5.03	0.8	5.23	1.2	5.04	0.9	5.11	0.8	5.12	1.0	0.264
Insulin (µU/l)	9.1	8	11.9	11	12.6	17	11.7	15	11.1	10	12.6	14	10.6	7	11.3	10	0.926
HOMA-IR	2.1	3	2.8	3	2.9	4	2.7	3.4	2.6	3	2.9	3	2.4	2	2.6	2	0.958
25(OH)D (mmol/l)	59.3	23	43.1 ^a	17	57.2	23	58.0 ^b	16	59.3	26	70.6 ^c	18	53.7	18	76.2 ^c	21	< 0.0001 ⁽⁵⁾

a,b,c,d Means with unlike subscript letters were significantly different across the four treatment groups (P < 0.05).

ANOVA showed no baseline differences in serum levels of glucose, insulin, HOMA-IR or 25(OH)D between the four treatment groups. In adults aged 20–40 years linear regression analysis showed BMI as the main predictor of baseline serum glucose (β 0.344, P<0.0001), insulin (β 0.357, P<0.0001) and HOMA-IR (β 0.0.382, P<0.0001). Male gender was predictive of higher serum glucose concentration $(\beta - 0.184, P < 0.005)$, while increasing age was predictive of lower insulin concentration $(\beta - 0.151, P < 0.025)$. In adults aged ≥ 64 years BMI and iPTH were the main predictors of baseline serum glucose (β 0.184, P<0.008; β -0.204, P<0.003 respectively), whereas the main predictor for insulin and HOMA-IR was BMI (\$0.404, P<0.0001; \$0.409, P<0.0001 respectively). In both age-groups ANCOVA revealed no significant effect of the intervention on glucose, insulin or HOMA-IR concentrations across the four treatment groups, adjusting for centre, age, gender, BMI, vitamin D and calcium intakes, iPTH and 25(OH)D at baseline.

In conclusion, vitamin D supplementation had no effect on fasting serum glucose and insulin concentrations or the HOMA-IR in apparently-healthy adults aged 20–40 and ≥ 64 years.

We wish to acknowledge the UK Food Standards Agency and the Irish Department of Agriculture, Food & Fisheries through the Food Institutional Research Measure for their support.

- Pittas AG, Lau J, Hu FB et al. (2007) J Clin Endocrinol Metab 92, 2017-2029.
- Nagpal J, Pande JN & Bhartia A. (2009) Diabet Med 26, 19-27.

- Pittas AG, Harris SS, Stark PC *et al.* (2007) *Diabetes Care* 30, 980–986.
 Cashman KD, Hill TR, Lucey AJ *et al.* (2008) *Am J Clin Nutr* 88, 1535–1542.
 Cashman KD, Wallace JMW, Horigan G *et al.* (2009) *Am J Clin Nutr* 89, 1–9.