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AN ARGUMENT OF A FUNCTION IN H1/2
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Abstract Let H1/2 be the Hardy space on the open unit disc. For two non-zero functions f and g in
H1/2, we study the relation between f and g when f/g � 0 a.e. on ∂D. Then we generalize a theorem
of Neuwirth and Newman and Helson and Sarason with a simple proof.
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For 0 < p � ∞, Hp denotes the usual Hardy space on the open unit disc D.
When f and g are in H1/2, and f/g � 0 a.e. on ∂D, we want to know the relation

between f and g. Neuwirth and Newman [5] showed that if g = 1, then f = γg for
some positive constant γ. That is, they proved that there exists no non-constant positive
function in H1/2. Independently, Helson and Sarason [2] showed that if g = zn and n � 0,
then f is a polynomial with degree in the range [n, 2n]. In fact, they proved that f/g is
a rational function with degree less than or equal to 2n. In order to generalize the result
of Helson and Sarason, suppose g = znh, where h is in H1/2 and h−1 is in H∞. Then
f/g = h−1f/zn and h−1f is in H1/2. Hence, if f/g � 0 a.e. on ∂D, then by the result
of Helson and Sarason, h−1f is a polynomial p with degree in the range [n, 2n] and so
f = ph.

For 0 < p � ∞, a non-zero function h in Hp is called strongly outer (or p-strongly
outer) if h satisfies the following: if f is a non-zero function in Hp such that f/g � 0
a.e. on ∂D, then f = γg for some positive constant γ. It is known [3] that there is no
strongly outer function in Hp when 0 < p < 1

2 . When 1
2 � p � ∞, if h is in Hp and h−1 is

in H∞, then h is a p-strongly outer function by the Neuwirth–Newman Helson–Sarason
Theorem (see Lemma 4). Examples of 1-strongly outer functions are known, for instance,
when h−1 is in H1 or when Re h � 0. We have two characterizations of 1-strongly outer
functions [1, 4]. But these characterizations are not easy to check. A 1-strongly outer
function is also called a rigid function, and if it has a unit norm, then it is an exposed
point in the unit ball of H1.
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Unfortunately, we do not know of any examples except the above for H1/2, that is,
when h−1 belongs to H∞. Moreover, we do not have any characterization for 1

2 -strongly
outer functions. However, it is natural to ask the following question.

Question 1. Let f be a non-constant function in H1/2, let n � 0 and let h be a
strongly outer function in H1/2. If f/znh � 0 a.e. on ∂D, then does f = ph hold for
some polynomial p with degree in the range [n, 2n]?

In this paper we answer the above question positively.

Theorem 2. Suppose n is a non-negative integer and h is a strongly outer function in
H1/2. If f is a non-zero function in H1/2 such that f/znh � 0 a.e. on ∂D, then f = ph

and p is a polynomial with degree in the range [n, 2n]. In particular,

p = γ
n∏

j=1

(z − aj)(1 − ājz),

where γ is some positive constant and aj , 1 � j � n, are some complex constants.

Lemma 3. Suppose h2
0 is strongly outer in H1/2 and 0 � j < ∞. If z̄j h̄0/h0 = Q̄k̄/k,

where Q is inner and k is outer in H1, then Q is a Blaschke product with degree less
than or equal to j.

Proof. If Q = q1 · · · qj+1 and q� is a non-constant inner function for 1 � � � j + 1,
then

q̄� =
1 − q�(0)q�

q� − q�(0)
1 − q�(0)q̄�

1 − q�(0)q�

= z̄ ¯̃q�
1 − q�(0)q̄�

1 − q�(0)q�

and so

z̄j h̄0

h0
= z̄j+1

j+1∏
�=1

¯̃q�

∏j+1
�=1(1 − q�(0)q̄�)∏j+1
�=1(1 − q�(0)q�)

k̄

k
,

where q̃� is inner for 1 � � � j + 1. Hence, setting

g =
j+1∏
�=1

(1 − q�(0)q�)k and Q̃ =
j+1∏
�=1

q̃�,

we then obtain that g is still outer and

h̄0

h0
= z̄ ¯̃Q

ḡ

g
=

(1 + z)(1 + Q̃)ḡ
(1 + z)(1 + Q̃)g

.

Hence, h2
0 = γ(1 + z)2(1 + Q̃)2g2 for some constant γ > 0 because h2

0 is strongly outer in
H1/2. Therefore, z(1+ Q̃)2g2/h2

0 � 0 and so h2
0 = γz(1+ Q̃)2g2 for some constant γ > 0.

This contradicts the statement that h0 is outer and so Q is a finite Blaschke product of
degree � � j. �
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Proof of Theorem 2. Let h = h2
0 for an outer function h0 in H1. Let f = qk2 for an

outer function k in H1 and an inner function q. Let φ = |f |/f . Then

φ = z̄n h̄0

h0
= q̄

k̄

k
.

In particular, by Lemma 3, q is a Blaschke product of degree less than or equal to n.
Hence, H1 ∩ φ̄H̄1 contains {zjh0}n

j=0 and qk. Since h0(0) �= 0, there exists a polynomial
pn in Pn such that qk − pnh0 = zn+1s and s ∈ H1 where Pn is the set of all analytic
polynomials of degree less than or equal to n. If qk �∈ Pn × h0, then s �≡ 0. Hence, if
g is the outer part of s, then 0 �= zn+1g ∈ H1 ∩ φ̄H1. Therefore, there exists a function
ψ ∈ H1 such that zn+1g = φ̄ψ̄. Since |φ| = 1, ψ = Qg for some inner function Q. Thus,
z̄nh̄0/h0 = z̄n+1Q̄ḡ/g. This contradicts Lemma 3 because g is outer and zn+1Q is inner.
Thus, qk = pnh0 for some pn in Pn with degree less than or equal to n. Now it is enough
to prove the theorem only when the degree of pn is just n. Hence,

qk = γ1

n∏
j=1

(z − αj)h0,

where γ1 ∈ C, αj ∈ C, |αj | < 1, 1 � j � �, and |αj | � 1, j � � + 1, and so

q =
�∏

j=1

z − αj

1 − ᾱjz
.

Hence,

k = γ1

�∏
j=1

(1 − ᾱjz)
n∏

j=�+1

(z − αj)h0.

Therefore,

f = qk2 = γ2
1

�∏
j=1

(z − αj)(1 − ᾱjz)
n∏

j=�+1

(z − αj)2h2
0.

Since ( �∏
j=1

(z − αj)(1 − ᾱjz)
)

1
z�

� 0,

we have (
γ2
1

n∏
j=�+1

(z − αj)2
)

1
zn−�

� 0,

and necessarily |αj | = 1, � + 1 � j � n, because if |αj | > 1 and (z − αj)2/z � 0, then

z − αj

1 − ᾱjz
|1 − ᾱjz|2 =

(z − αj)2

z
� 0.

This contradiction shows |αj | = 1, � + 1 � j � n. Now the theorem follows. �
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Lemma 4. If g is a function in H1/2 such that g−1 belongs to H∞, then g is a strongly
outer function in H1/2.

Proof. Suppose f is in H1/2 and f/g � 0 a.e. on ∂D. Then f = qh2, where q is
inner and h is outer in H1. Since g is outer, g = g2

0 , where g0 ∈ H1 and g−1
0 belongs to

H∞. Since qh2/g2
0 � 0 a.e. on ∂D, qhg−1

0 = h̄ḡ−1
0 . Hence, qhg−1

0 is a constant c because
H1 ∩ H1 = C. Therefore, hg−1

0 and q are constants. Thus, qh2/g2
0 is a positive constant.

This implies the lemma. �

Corollary 5. Suppose F is a non-zero non-negative function such that qF belongs to
H1/2 for some inner function q. If q is a constant, then F is a non-negative constant. If

q =
n∏

j=1

z − bj

1 − b̄jz

and |bj | < 1, 1 � j � n, then there are complex numbers aj , 1 � j � n, such that

F = γ
n∏

j=1

(z − aj)(1 − ājz)
(z − bj)(1 − b̄jz)

,

where γ is some positive constant.

Proof. If q is a constant, then F is a non-negative constant because 1 is strongly
outer in H1/2. If f = qF , then f belongs to H1/2. Since

q = zn
n∏

j=1

|1 − b̄jz|2
(1 − b̄jz)2

and
f

q
� 0 a.e. on ∂D,

we have
f

zn

n∏
j=1

(1 − b̄jz)−2 � 0 a.e. on ∂D.

By Theorem 2 and Lemma 4, there exist a positive constant γ and complex numbers aj ,
1 � j � n, such that

f = γ

n∏
j=1

(z − aj)(1 − ājz) ×
n∏

j=1

(1 − b̄jz)−2

and so

F = γ

n∏
j=1

(z − aj)(1 − ājz)
(z − bj)(1 − b̄jz)

.
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