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Abstract. The problem of binary asteroids orbit determination is of particular interest, given
knowledge of the orbit is the best way to derive the mass of the system. Orbit determination
from observed points is a classic problem of celestial mechanics. However, in the case of binary
asteroids, particularly with a small number of observations, the solution is not evident to derive.
In the case of resolved binaries the problem consists in the determination of the relative orbit
from observed relative positions of a secondary asteroid with respect to the primary. In this work,
the problem is investigated as a statistical inverse problem. Within this context, we propose a
method based on Bayesian modelling together with a global optimisation procedure that is based
on the simulated annealing algorithm.
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1. Introduction
The study of binary asteroids may have important implications for the theoretical

models of the Solar System’s dynamical evolution. For instance, their relative orbit de-
termination allows us to derive the mass of the system, and consequently its density if
the size is known: both are essential physical characteristics of the objects.

Parameter estimation directly from observations can be tackled using the inverse prob-
lem framework based on Bayesian analysis. This approach is commonly used in astron-
omy for the determination of unmeasurable parameters from space observations. In the
problem of binary orbit determination, these unmeasurable parameters can be the six
Keplerian elements: semi-major axis (a), eccentricity (e), inclination (i), longitude of
ascending node (Ω), argument of periapsis (ω), time of periapsis passage (τ) with the
orbital period (P ). These seven parameters are the independent parameters. If the mass
of the binary is unknown, the period and the semi-major axis are considered indepen-
dent, otherwise they are related to each other through the third Keplerian law. The
observations consist of a set of time of observation and two coordinates (x, y) on the sky
plane of the relative position of the secondary asteroid, with the primary asteroid at the
origin.

Several statistical methods for different orbit determination problems have been de-
veloped previously. Bayesian orbit computation using the Monte Carlo technique was
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developed by Virtanen et al. (2001). This method, also called statistical ranging, has been
investigated for single asteroid heliocentric orbit, described by six parameters, namely
the Keplerian orbital elements. The statistical ranging method makes use of the observa-
tions sampling within their observational errors and allows to derive the orbital element
probability density. A similar approach adding a Markov Chain to parameters’ sam-
pling for binaries relative orbit determination was applied by Oszkiewicz et al. (2013).
This approach is based on the classical Thiele-Innes method (Aitken 1964) for binary
stars, that is combined with a Markov chain Monte Carlo (MCMC) algorithm that uses
a Metropolis-Hastings sampler (Hastings 1970). In this problem, which requires seven
parameters for orbit determination, sampling was made through observed positions and
additional through the orbital period parameter.

In this work unlike previous methods we directly sample orbital parameters, rather
than through observations. It allows us on each iteration to avoid computation of orbit
from observations, thus avoid solving non-linear equations system (Aitken 1964). More-
over, we combine Bayesian modelling with a global optimization technique in order to
derive the best-fit orbit, even with a small number of observations and absence of any
initial estimated parameters. To sum up, the method not only allows to examine the
orbital element phase space, but also identifies an optimal solution and its margin of
error.

2. Model construction
Orbit determination means finding the best trajectory parameters fitting their posi-

tions to given observations. The observed and calculated positions are related to each
other through an observational equation:

D = f(X, t) + ε (2.1)

where D is the data given by the set of N observations at times t = (t1 , ..., tN ),

D = (x1 , y1 ; ...;xN , yN ).

The function f(X, t) computes the sky-plane positions, corresponding to each observation
time. The relative motion between observer and binary system as well as time light
delay are taken into account. The quantity X represents the set of unknown parameters
describing the relative orbit:

X = (a, e, i,Ω, ω, τ, P )

The errors ε are considered random variables that are supposed to be independently
identically distributed. Their distribution is also unknown. Thus, the problem here is
given by the determination of X such that the effect of ε is minimal.

According to this, an a posteriori probability density function is build, which represents
the conditional probability density of the unknown parameters X given the observational
data D. From the Bayes’ theorem, this conditional probability density is:

p(X|D) ∝ p(X)L(D|X) (2.2)

where p(X) = exp(−U(X)) is the a priori density, and L(D|X) = exp(−U(D|X)) is the
likelihood term. The functions U(X) and U(D|X) are two functions called, the a priori
energy and the conditional data energy, respectively. Their expressions are given in the
following.
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Likelihood term The conditional data or the likelihood energy term is defined as the
sum of absolute differences between observed and calculated positions.

U(D|X) =
N∑

i=1

|Di − f(X, ti)|

The calculated positions are obtained by using within f the current orbital parame-
ters together with the corresponding associate observation time. The residual between
observed and calculated positions is

|Di − f(X, ti)| =
√

(xO
i − xC

i )2 + (yO
i − yC

i )2

A priori term The a priori energy term serves as a regularisation term, which constrains
the phase space of possible orbits. This term combines density functions of each unknown
parameter. For the first approach if there is no a priori information about the parameters,
so the distributions are chosen to be uniform on a large range of possible values. For
example, U [0, 1] for eccentricity, U [0, π] for inclination and ascending node and U [0, 2π]
for the argument of periapsis. The semi-major axis and the orbital period also have
uniform a priori distributions, but here their corresponding limits are determined using
the observations and the analysis of known binaries in population.

U(X) =
7∑

i=1

log p(Xi).

Proposed solution The estimate of the X vector we propose is the MAP (Maximum A
Posteriori), that is the parameter vector value that maximises the conditional distribution
Eq. 2.2. This maximum is also the minimum of the sum of the likelihood and a priori
energy terms.

X̂ = argmax p(X|D) = argmin [U(D|X) + U(X)]

3. Simulated annealing
The orbital parameters estimator is computed using the simulated annealing, a global

optimisation technique Kirkpatrick et al. (1983). The name of the algorithm is inspired by
the annealing processes in metallurgy. In principle, the algorithm converges in distribu-
tion to the uniform law on the configuration sub-space made of those values maximising
the conditional probability Eq.2.2. This is done by means of an algorithm parameter
called, temperature. At high temperatures, all the possible parameter values are taken
into account, while at temperatures approaching 0, only those states minimising the en-
ergy of the system are accepted. If the initial temperature is high enough, and if the
temperature is cooled in the appropriate manner and at a sufficiently slow speed, then
the local optima are avoided.
The major steps of the algorithm are:

(a) Fix the initial temperature T0 and start a Metropolis-Hastings like algorithm with
an initial set of parameters. These initial conditions are given by any value of each
unknown parameter in their corresponding definition domain.

X0 = (a0 , e0 , i0 ,Ω0 , ω0 , τ0 , P0)

(b) At each iteration n a small change to the current state is done and a new state is
obtained: Xnew . Practically we change one randomly chosen parameter at a time. This
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Table 1. Astrometric data, where x = (α2 −α1 )cosδ1 and y = δ2 −δ1 , where α is right ascension,
δ is declination, refereed to primary (1) and secondary (2), respectively. The σ uncertainties in
the final digits are indicated in parentheses.

UT date and hour x(arcsec) y(arcsec)

06/08/2006 6.3999 -0.1718(11) +0.0630(41)
25/07/2007 1.9308 -0.1633(16) -0.0367(17)
07/08/2007 22.3433 -0.2768(21) -0.0074(10)
06/10/2007 21.5019 -0.0528(10) +0.0455(19)
12/11/2007 9.2313 +0.1405(14) -0.0632(12)
25/07/2008 7.1686 +0.1572(13) -0.0086(14)
11/12/2009 9.4078 -0.3653(30) +0.0379(30)

change is done within a small neighbourhood of its current state.
Acceptance probability The state Xnew is accepted with the probability:

α = min
(

1,
p(Xnew |D)1/Tn

p(Xold |D)1/Tn

)

with Tn the temperature at the iteration n.
Temperature scheduling As stated before, the convergence of the algorithm is reached
if the cooling schedule for the temperature is slow enough. Here, the temperature is
decreased at the end of each iteration by multiplying it by a constant 0.95 < c < 1. Thus
the cooling scheme is exponentially decreasing temperature:

Tn = T0c
n

where n is the iteration number. An alternative cooling schedule that can be considered is
1/(log(n) + 1). In theory, the algorithm should run until the system is completely frozen
with a theoretical proved cooling schedule. In practice, a cooling schedule is chosen,
then the algorithm starts with a relatively high initial temperature and it runs until a
pre-defined low temperature is attained.

4. Application results
Here we show an example of a trans-neptunian binary orbit determination. The aster-

oid is called 2001 UQ18 (Altjira). The following 7 observations (see Table 1) are used
(published by Grundy et al.(2011)):

Both time light delay and relative motion between observer and binary were taken into
account. For the simulated annealing algorithm we used T0 = 1000 and exponentially
decreasing schedule with c = 0.999. The temperature is decreased every 100 iterations.
This strategy allows to approach the equilibrium regime for the Markov chain simulated
by the algorithm at fixed temperature. In the same time, this choice allows us to slow
even more the cooling schedule, hence all together, improving our results. The simulated
annealing was stopped when T = 1. Figure 1 shows how orbital parameters evaluate and
converge to solution during the simulated annealing.

At that stage, 105 iterations of the algorithm with fixed temperature T = 1 were run.
This is equivalent with a sampling of the a posteriori distribution using a Metropolis-
Hastings algorithm. Being in a stationary regime, statistical inference can be performed.
But before this, in order to reduce correlation effects, the samples were considered every
10th iteration. Hence, our statistical analysis is based on 104 orbital parameter samples.
The resulting values are presented on the Table 2. Figure 2 shows a fitted orbit and
astrometric positions projected onto the sky plane.
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Figure 1. Simulated annealing suite.

Figure 2. Relative astrometric positions and fitted orbit projected onto the sky plane. Solid
circles at the origin is the primary. Open circles show observed relative positions. Plus signs
is the mean fit orbit solutions predicted positions at the observation times. Large dotted line
represents the sky plane projection of the mean fit orbit at the mean time of the observations.

Table 2. Fitted elements’ summary for the asteroid 2001 UQ18.

Parameters Mean ±σ 1st quantile Median 3rd quantile

Semimajor axis, km 9983.3 ± 7.35 9978.8 9984.0 9988.7
Eccentricity 0.3524 ± 0.0003 0.3522 0.3524 0.3526
Inclination, deg 35.641 ± 0.025 35.619 35.652 35.653
Longitude of asc. node, deg 311.98 ± 0.018 311.96 311.98 311.99
Argument of periapsis, deg 148.51 ± 0.01 148.50 148.51 148.51
Time of periapsis, RJD 54251.81 ± 0.01 54251.81 54251.81 54251.82
Period, days 139.633 ± 0.009 139.633 139.634 139.637

5. Method verification
The simulated annealing method has been compared with a classical least squares

method. The classical method can not be applied to the case of asteroid Altjira be-
cause of small number of observations. Moreover this method requires a good parameters
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Table 3. Results for the asteroid Emma.

Simulated annealinga Least squaresa

Semimajor axis, km 582.753 ± 1.33 572.074 ± 19
Eccentricity 0.11043 ± 0.001 0.1378 ± 0.02
Inclination, deg 99.24 ± 0.79 96.39 ± 5
Longitude of asc. node, deg 342.24 ± 0.53 342.35 ± 6.6
Argument of periapsis, deg 344.68 ± 0.15 345.37 ± 11.5
Period, days 3.388 ± 0.00001 3.365 ± 0.006
Mean anomalyb , deg 28.5 ± 0.18 10.9± 10.4

(a) The uncertainties are due to the algorithm’s configurations. (b) At the epoch 53320.4
MJD.

initialisation. We also tested our method using 22 observations of an asteroid Emma
published in Marchis et al. (2008). The least squares method proved to be applicable to
this asteroid. Thus the orbital parameters of Emma were obtained by both simulated
annealing and least squares methods. The results with estimated uncertainties are shown
in the Table 3.

6. Conclusions and perspectives
The proposed method have good results for the asteroid 2001 UQ18 and also for several

other known binaries. At the same time, the method showed results comparable to the
using classical least square method. Our model and cooling schedule choices were chosen
after trail and error. The choice of an optimal cooling schedule for a given problem is
an unsolved mathematical problem. Moreover, we can complete the model construction:
the a priori as well as the likelihood functions. The study of the parameters variability
due to observations uncertainties are also in our future work. We anticipate applying the
developed method to new observations from the Gaia satellite, which should allow us to
use data with unprecedented accuracy (Pravec & Scheirich 2012).
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