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1. Introduction and statement of the main results

We consider planar real analytic differential systems that can be written in complex
notation z = x + iy, as

ż = iz + F (z, z̄). (1.1)

We are concerned mainly with conditions under which the origin of (1.1) is a centre.
This problem has attracted much attention over the years since the pioneering work of
Poincaré in [17].

In its real formulation, systems like (1.1) are used to model various phenomena such
as crystallization of agates (see [20,25]).

The usual method for looking for non-degenerate centres (i.e. those having purely
imaginary eigenvalues) of planar polynomial vector fields such as (1.1) is to calculate the
successive coefficients vi of the return map of the vector field around the origin. That is,
we choose a segment (0, x0] on the positive x-half-axis transversal to the flow of the vector
field with parameter x, and represent the analytical return map by the series expansion
h(x) = x +

∑
i�2 vix

i. It is known that the constants vi are polynomial functions in the
coefficients of the polynomial vector field. The terms vk are functions of the previous vi,
for i = 2, . . . , k − 1, and it is well known (see, for example, [1, Chapter IX, Lemma 5,
p. 243]) that when k is even vk is zero. Therefore, the only interesting functions are
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those of the form v2i+1. The functions v2i+1 are called the Lyapunov constants of the
polynomial vector field.

When all the v2i+1 vanish, the origin is a centre. The set of coefficients for which all
the vi vanish is called the centre variety of the family of polynomial vector fields, which,
by the Hilbert Basis Theorem, is an algebraic set.

In general is very difficult to study centres, requiring a good knowledge not only of
common zeros of the polynomials vi but also of the finitely generated ideal that they
generate in the ring of polynomials with variables that are the coefficients of the poly-
nomial vector field. Furthermore, in general, the calculation of the Lyapunov constants
is not easy, and the computational complexity of finding their common zeros grows very
quickly. A number of algorithms have been developed to compute them automatically
(see [3,6,7,13–16] and the references therein).

The classification of centres in polynomial vector fields started with the quadratic ones
in the works of Dulac, Kapteyn, Bautin, Żo�la̧dek and others (see [19] for references). It
continued with symmetric cubic systems (those without quadratic terms) and projec-
tive quadratic systems [12,21,26]. Lyapunov constants are also well known for Liénard
systems [2,27].

Our goal is to study the centres of general eight-parameter families of polynomial vector
fields with arbitrary homogeneous nonlinearities. Despite the fact that nonlinear systems
with quadratic and cubic nonlinearities are well understood [15,18,26], very few families
of centres of arbitrary degree are known. See, for example, [5,11] for the case of four-
parameter families of polynomial vector fields of arbitrary degree and [10,23] for the case
of six-parameter families of polynomial vector fields. We emphasize that in the present
paper we are dealing with general eight-parameter families of polynomial vector fields.
It turns out that the two extra parameters make computations substantially harder and
much more involved. We note that some eight-parameter families were considered earlier,
in [24]; in fact, that paper deals with systems with an arbitrary number of parameters
greater than or equal to six, with nonlinearities of arbitrary degree, but having very
particular structure.

In this paper we shall use complex notation z = x + iy. Then, any real polynomial
differential system having the linear part at the origin of the form ẋ = −y, ẏ = x can be
written as

ż = iz +
∑

i+j�2

Aijz
iz̄j ,

with Aij ∈ C. The dot denotes derivative with respect to the independent variable t.
The complex notation is especially convenient for theoretical work. For instance, the
conditions for which a polynomial vector field is symmetric with respect to a line can be
easily obtained in this notation; later on we shall use this fact.

We consider the family of real polynomial differential equations in (x, y) ∈ R
2 that in

complex notation can be written

ż = iz + Azn1 z̄j1 + Bzn2 z̄j2 + Czn3 z̄j3 + Dzn4 z̄j4 , (1.2)

with A, B, C, D ∈ C \ {0}, and where n1, j1, n2, j2, n3, j3, n4 and j4 are non-negative
integers such that (n1, j1) �= (n2, j2) �= (n3, j3) �= (n4, j4), nk + jk > 1 for k = 1, 2, 3, 4,

https://doi.org/10.1017/S001309150800014X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150800014X


Centres of arbitrary degree 513

n1 + j1 = n2 + j2 = n3 + j3 = n4 + j4, |1 − n3 + j3| = |1 − n2 + j2| �= |1 − n1 + j1| and
j4 = n4 − 1.

Note that since j4 = n4 − 1, n4 + j4 = 2n4 − 1 is odd and thus system (1.2) is a
nonlinear system with homogeneous nonlinearities of odd degree 2n4 − 1. Furthermore,
from the facts that (n1, j1) �= (n2, j2) �= (n3, j3) �= (n4, j4), j4 = n4 − 1 and the nonlinear
part of (1.2) is homogeneous, we get that jk �= nk − 1 for k = 1, 2, 3 and

1 − n3 + j3 = −(1 − n2 + j2) = n2 + j2 − 1. (1.3)

Hence, by (1.3) we can always assume that (1 − n1 + j1)(1 − n2 + j2) > 0.
We consider the case in which the parameters A, B, C, D are all non-zero since the case

when at least two of the parameters are zero is studied in [11] in the more general case
of the nonlinearity of the vector field not necessarily being homogeneous. Furthermore,
the case in which D = 0 and A, B, C �= 0 is studied in [23] and the case in which D �= 0
and either A = 0 or B = 0 or C = 0 is studied in [10] also in the more general case of
the not necessarily homogeneous nonlinearity.

For completeness of the present paper, the results in [10, 11, 23] are given in the
appendix. The main results are the following.

Theorem 1.1. We consider the family of polynomial differential systems (1.2). Then
the following statements hold:

(a) vk = 0 for any k such that k/(n4 − 1) �∈ N;

(b) Re(D) = 0 is a necessary condition for system (1.2) to have a centre at the origin;

(c) Im(BC) = 0 is a necessary condition for system (1.2) restricted to Re(D) = 0 to
have a centre at the origin.

Set N1 = |1 − n1 + j1|, K1 = |1 − n2 + j2|, M1 = gcd{N1, K1}, N1 = M1N2 and
K1 = M1K2. Note that, since N2, K2 � 1 and gcd{N2, K2} = 1, N2 +K2 � 3. Moreover,
as pointed out before, n1+j1−1 = 2(n4−1) is even, N1, K1 � 1, N1 �= K1 and jk �= nk−1
for k = 1, 2, 3.

Theorem 1.2. We consider the family of polynomial differential systems (1.2) with
Re(D) = Im(BC) = 0. Then v2k+1 = 0 for k = 2, 3, . . . , m with m < (n4 − 1)(K2 + N2).

We set
L

K2,N2
A,C = ĀK2C̄N2 − (−1)K2+N2AK2CN2 . (1.4)

Theorem 1.3. We consider the family of polynomial differential systems (1.2) with
Re(D) = Im(BC) = 0. Then there exist real constants Lk, k = 0, . . . , N2, such that, for
m = (n4 − 1)(K2 + N2),

v2m+1 = L
K2,N2
A,C

N2∑
k=0

Lk

(
B

C̄

)k

. (1.5)

Furthermore, if n1 = 0, then

v2m+1 =
1

n2C̄
L

K2,N2
A,C (n2B + n3C̄)

N2∑
k=1

Lk

k−1∑
j=0

(
B

C̄

)k−1−j(−n3

n2

)j

. (1.6)
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Theorem 1.4. We consider the family of polynomial differential systems (1.2) with
Re(D) = Im(BC) = 0. Then there exist real constants Mk, k = 0, . . . , N2 such that, for
m = (n4 − 1)(K2 + N2 + 1),

v2m+1 = DL
K2,N2
A,C

N2∑
k=0

Mk

(
B

C̄

)k

. (1.7)

Furthermore, if n1 = 0, then

v2m+1 =
D

n2C̄
L

K2,N2
A,C (n2B + n3C̄)

N2∑
k=1

Mk

k−1∑
j=0

(
B

C̄

)k−1−j(−n3

n2

)j

. (1.8)

Theorem 1.5. We consider the family of polynomial differential systems (1.2) with
Re(D) = Im(BC) = 0. Then the following hold.

(a) If n1 �= 0 and the constants Lk and Mk in Theorems 1.3 and 1.4 are such that the
unique solution of

N2∑
k=0

Lk

(
B

C̄

)k

=
N2∑
k=0

Mk

(
B

C̄

)k

= 0

is B = 0, the centre manifold variety of system (1.2) is

{(A, B, C, D) ∈ (C \ {0})4 : Re(D) = Im(BC) = L
K2,N2
A,C = 0}.

(b) If n1 = 0, and the constants Lk and Mk in Theorems 1.3 and 1.4 are such that the
unique solution of

N2∑
k=0

Lk

k−1∑
j=0

(
B

C̄

)k−1−j(−n3

n2

)j

=
N2∑
k=1

Mk

k−1∑
j=0

(
B

C̄

)k−1−j(−n3

n2

)j

= 0

is B = 0, the centre manifold variety of system (1.2) is

{(A, B, C, D) ∈ (C \ {0})4 : Re(D) = 0, n2B + n3C̄ = 0}
∪ {(A, B, C, D) ∈ (C \ {0})4 : Re(D) = Im(BC) = L

K2,N2
A,C = 0}.

We emphasize that Theorem 1.5 characterizes the centre manifold variety of sys-
tem (1.2).

The proofs of Theorems 1.2, 1.3 and 1.4 are strongly based on algebraic properties of
the Lyapunov constants of the polynomial vector fields. More concretely, to prove that
the Lyapunov constants are zero, we will first see which are the admissible monomials
that appear in v2m+1 for each m. After this, we will compute the coefficients of the
polynomial v2m+1. To do that we will use our knowledge of several types of centres for
the systems (1.2): reversible centres and Hamiltonian centres (see § 3 for their definition).

The paper is organized as follows. In § 2 we illustrate our results with a family of
nonlinear systems with homogeneous nonlinearities of odd degree n. In § 3 we present
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some basic results. In § 4 we prove Theorem 1.1 and in § 5 we provide the proof of Theo-
rem 1.2. Theorems 1.3 and 1.4 are proved in § 6, while Theorem 1.5 is proved in § 7. For
completeness, the case when at least two of the parameters A, B, C, D are zero (studied
in [11]), the case in which D �= 0 and either A = 0 or B = 0 or C = 0 (studied in [10])
and the case in which D = 0 and A, B, C �= 0 (studied in [23]) are given in the appendix.

2. Example

We consider the following linear systems with homogeneous nonlinearities of odd degree
n, n � 5:

ż = iz + (zz̄)(n−3)/2(Az̄3 + Bzz̄2 + Cz3 + Dz2z̄), (2.1)

with n � 5 odd and A, B, C, D ∈ C \ {0}. We note that when n = 3 we are considering
a well-known homogeneous cubic system (for more details see [15,18]). We refer to this
system since it serves as a test for our results for infinitely many examples. Computing
numerically the Lyapunov constants (see [15] for a more detailed explanation of the
numerical method to compute the Lyapunov constants when n = 3 and [9] for a more
detailed explanation of the computation of the Lyapunov constants when n � 5 odd)
and removing the non-zero multiplicative factors, we have that

vk = 0 if 1 � k � n − 1 and vn = D + D̄,

vk = 0 if n + 1 � k � 2n − 2 and v2n−1 = B̄C̄ − BC,

vk = 0 if 2n � k � 3n − 3,

v3n−2 = −
(

3 +
B

C̄

)
(ĀC̄2 + AC2)

(
(5 − n) − (3 + n)

B

C̄

)
,

vk = 0 if 3n − 1 � k � 4n − 4,

v4n−3 = −
(

3 +
B

C̄

)
D(ĀC̄2 + AC2)

(
(n − 3) + (n + 1)

B

C̄

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.2)

In the notation of (1.2), we have that n1 = (n − 3)/2, j1 = (n + 3)/2, n2 = (n − 1)/2,
j2 = (n + 1)/2, n3 = (n + 3)/2, j3 = (n − 3)/2 and n4 = (n + 1)/2, j4 = (n − 1)/2.
Furthermore, N1 = 4, K1 = 2 and thus M1 = 2, N2 = 2 and K2 = 1.

Then, since n4 − 1 = (n − 1)/2, Theorems 1.1 and 1.2 imply that if Re(D) = 0 and
Im(BC) = 0, then vk = 0 for k < 3n − 2 and also that vk = 0 for 3n − 1 � k � 4n − 4.
This matches perfectly well with the computed values of vk in (2.2). Furthermore, for
the value v2m+1 with m = (n4 − 1)(K2 + N2), i.e. for v3n−2, from Theorem 1.3 we have
that since system (2.1) has L

1,2
A,C = ĀC̄2 + AC2, and not necessarily n1 = 0, using that

BC = B̄C̄, B �= 0, we obtain

v3n−2 = (ĀC̄2 + AC2)
(

L0 + L1
B

C̄
+ L2

(
B

C̄

)2 ))2 )
.

This is the same as v3n−2 in (2.2) taking L0 = 3(n − 5), L1 = 4(n + 1) and L2 = 3 + n.
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Furthermore, by Theorem 1.4 and using the fact that D̄ + D = 0, BC = B̄C̄, B �= 0,
we obtain

v4n−3 = D(AC2 + ĀC̄2)
(

M0 + M1
B

C̄
+ M2

(
B

C̄

)2 )
.

This matches with v4n−3 in (2.2) taking M0 = 3(3 − n), M1 = −4n and M2 = −(n + 1).

3. Preliminary results

Using polar coordinates r2 = zz̄, θ = arctan(Im(z)/ Re(z)), in a neighbourhood of the
origin system (1.1) becomes

dr

dθ
=

r2P2(θ) + r3P3(θ) + · · ·
1 + rQ2(θ) + r2Q3(θ) + · · · , (3.1)

where
Pk(θ) = Re(e−iθFk(eiθ, e−iθ)), Qk(θ) = Im(e−iθFk(eiθ, e−iθ)),

and
F (z, z̄) =

∑
k�2

Fk(z, z̄) =
∑
k�2

Fk(eiθ, e−iθ)rk.

Here Fk denotes the homogeneous part of degree k of F in the variables z and z̄.
Consider the solution r(θ, x) of (3.1) that takes the value x at θ = 0. Then,

r(θ, x) = u1(θ)x + u2(θ)x2 + · · · ,

with u1(0) = 1 and uk(0) = 0 for k � 2. Then h(x) = r(2π, x) is the return map. Assume
that system (3.1) satisfies uk(2π) = 0 for k = 2, 3, . . . , 2m and u2m+1(2π) �= 0. Therefore,
v2m+1 = u2m+1(2π) is the mth Lyapunov constant.

It is known that the Lyapunov constant v2m+1 is a polynomial in the coefficients of
Fi, i = 2, 3, . . . , 2m + 1, and their conjugates. We set

F (z, z̄) =
∑

k+l�2

Aklz
kz̄l

and we will use the notation

v2m+1 = v2m+1(F2, F3, . . . , F2m+1) = v2m+1(Akl, Ākl).

Some algebraic properties of the Lyapunov constants are established in the following
well-known result. For its proof and additional properties of the Lyapunov constants we
refer the reader to [4,8,22,26] and the references therein.

Proposition 3.1. Let v2m+1 be the mth Lyapunov constant of system (1.1). Then it
satisfies the following properties:

(a) v2m+1(λ1−k+lAkl, λ
−(1−k+l)Ākl) = v2m+1(Akl, Ākl);

(b) v2m+1(λk+l−1Akl, λ
k+l−1Ākl) = λ2mv2m+1(Akl, Ākl).
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Now there is an easy way to list the monomials that appear in v2m+1. For K ∈ R let

M̂ = K

( r∏
i=1

Ami

kili

)( r+s∏
i=r+1

Āmi

kili

)
(3.2)

be a monomial of v2m+1. Then, Proposition 3.1 (a) implies

r∑
i=1

(1 − ki + li)mi =
r+s∑

i=r+1

(1 − ki + li)mi, (3.3)

and Proposition 3.1 (b) implies

r+s∑
i=1

(ki + li − 1)mi = 2m. (3.4)

These last two equalities will be very useful for effective computation of the Lyapunov
constants of system (1.2).

We say that a system (1.1) is reversible if it is invariant under the change of variables
w̄ = eiγz, τ = −t. For system (1.2) we have the following result.

Lemma 3.2. System (1.2) is reversible if and only if A = −Āe−i(1−n1+j1)γ , B =
−B̄e−i(1−n2+j2)γ , C = −C̄e−i(1−n3+j3)γ and D = −D̄ for some γ ∈ R. Furthermore, in
this situation the origin of system (1.2) is a centre.

Proof. The proof follows directly from the definition of reversibility. �

We say that a system (1.1) is Hamiltonian if it satisfies Re(∂F/∂z) = 0. For sys-
tem (1.2) we have the following result.

Lemma 3.3. If n1 �= 0, system (1.2) is never Hamiltonian. Furthermore, if n1 = 0, then
system (1.2) is Hamiltonian if and only if Re(D) = 0 and n2B + n3C̄ = 0. Furthermore,
in this situation, the origin of system (1.2) is a centre.

Proof. The proof follows directly from the definition of a system being Hamiltonian,
taking into account the fact that A �= 0. �

From (3.2) with An1j1 = A, An2j2 = B and An3j3 = C we have that the monomials
which appear in v2m+1 are of the form

M̂ = KAm1Bm2Cm3Dm4Ām5B̄m6C̄m7D̄m8 ,

with K ∈ R and m1, m2, m3, m4, m5, m6, m7, m8 being non-negative integers satisfying
(3.3) and (3.4), that is,

(1 − n1 + j1)(m1 − m5) + (1 − n2 + j2)(m2 − m6) + (1 − n3 − j3)(m3 − m7) = 0, (3.5)

and since n1 + j1 = n2 + j2 = n3 + j3 = n4 + j4 = 2n4 − 1 we get

(n4 − 1)[m1 + m5 + m2 + m6 + m3 + m7 + m4 + m8] = m. (3.6)
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From (1.3) and (3.5) we have that

σ1N1(m1 − m5) + σ2K1(m2 − m6 + m7 − m3) = 0, (3.7)

where, for k = 1, 2,

σk =

{
1 if 1 − nk + jk > 0,

−1 if 1 − nk + jk < 0.
(3.8)

Then, since N1 = M1N2, K1 = M1K2, after dividing by M1, (3.7) becomes

σ1N2(m1 − m5) + σ2K2(m2 − m6 + m7 − m3) = 0. (3.9)

Let
s1 = m2 + m7, s2 = m3 + m6. (3.10)

Then from (3.9) we obtain

σ1N2(m1 − m5) = σ2K2(s2 − s1). (3.11)

Now, since gcd{N2, K2} = 1, from (3.11) we have that there exists r ∈ Z ∪{0} such that

m1 = m5 + σ2K2r and s2 = s1 + σ1N2r. (3.12)

4. Proof of Theorem 1.1

Proof of Theorem 1.1 (a). By (3.6), vm = 0 if m is not divisible by n4 − 1. This
finishes the proof of Theorem 1.1 (a). �

Proof of Theorem 1.1 (b). We can assume that m = n4 − 1, since for m < n4 − 1
we have that m is not divisible by n4 − 1 and in view of Theorem 1.1 (a) we get vm = 0.
Therefore, we will compute v2m+1 = v2n4−1. Recall that n1 −j1 −1 = σ1N1, n2 −j2 −1 =
σ2K1 and n3 − j3 − 1 = −(n2 − j2 − 1) = −σ2K1, and thus if we introduce the notation

FA(θ) = Re(A) cos(σ1N1θ) − Im(A) sin(σ1N1θ),

GB,C(θ) = (Re(B) + Re(C)) cos(σ2N2θ) − (Im(B) − Im(C)) sin(σ2N2θ),

HA(θ) = Re(A) sin(σ1N1θ) + Im(A) cos(σ1N1θ),

IB,C(θ) = (Re(B) − Re(C)) sin(σ2N2θ) + (Im(B) + Im(C)) cos(σ2N2θ),

system (1.2) in polar coordinates takes the form

ṙ = r2n4−1(Re(D) + FA(θ) + GB,C(θ)),

θ̇ = 1 + r2(n4−1)(Im(D) + HA(θ) + IB,C(θ)),

and thus,

dr

dθ
=

r2n4−1(Re(D) + FA(θ) + GB,C(θ))
1 + r2(n4−1)(Im(D) + HA(θ) + IB,C(θ))

.
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Therefore, in a neighbourhood of r = 0, dr/dθ can be written as

dr

dθ
= r2n4−1(Re(D) + FA(θ) + GB,C(θ))

− r4n4−3(Re(D) + FA(θ) + GB,C(θ))

× (Im(D) + HA(θ) + IB,C(θ)) + O(r6n4−5). (4.1)

We denote by r(θ, x) the solution of (4.1) such that r(0, x) = x and write it as

r(θ, x) = x + u2n4−1(θ)x2n4−1 + · · · .

Computing in (4.1) the terms with x2n4−1, we deduce that

du2n4−1(θ)
dθ

= Re(D) + FA(θ) + GB,C(θ) (4.2)

and thus, since u2n4−1(0) = 0, we have that

u2n4−1(θ) = Re(D)θ +
Re(A)
σ1N1

sin(σ1N1θ) +
Im(A)
σ1N1

cos(σ1N1θ)

+
Re(B) + Re(C)

σ2N2
sin(σ2N2θ) +

Im(B) − Im(C)
σ2N2

cos(σ2N2θ)

− Im(A)
σ1N1

− Im(B) − Im(C)
σ2N2

. (4.3)

Now, writing h(x) = r(2π, x) we have from (4.2) that

h(x) := x + v2n4−1x
2n4−1 + · · ·

= u1(2π)x + u2n4−1(2π)x2n4−1 + · · ·
= x + 2π Re(D) + O(x2n4).

Therefore, in order that v2n4−1 := u2n4−1(2π) �= 0, Re(D) = 0 must hold, which yields
that Re(D) = 0 is a necessary condition for system (1.2) to have a centre at the origin.
This finishes the proof of Theorem 1.1 (b). �

Proof of Theorem 1.1 (c). We restrict (4.1) and (4.3) to Re(D) = 0 and compute
u4n4−3(θ). From (4.1) and (4.3), computing the coefficients of x4n4−3, we obtain that

du4n4−3

dθ
= (2n4 − 1)u2n4−1(θ)(FA(θ) + GB,C(θ))

− (FA(θ) + GB,C(θ))(HA(θ) + IB,C(θ))

and, since u4n4−3(0) = 0,

v4n4−3 = u4n4−3(2π) =
∫ 2π

0

du4n4−3

dθ
dθ

= Re(B) Im(C) + Im(B) Re(C)

= Im(BC).
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Therefore, to have v4n4−3 = 0 we must have Im(BC) = 0, which means that Im(BC) = 0
is a necessary condition for system (1.2) restricted to Re(D) = 0 to have a centre at the
origin. �

5. Proof of Theorem 1.2

By Theorem 1.1 (a), m = (n4 − 1)m̂, for some positive integer m̂. Thus, (3.6) together
with (3.12) imply that

2m5 + 2s1 + m4 + m8 + (σ2K2 + σ1N2)r = m̂. (5.1)

We consider two different cases.

Case 1 (1 + j1 > n1 and 1 + j2 > n2). In this case, if m̂ < K2 + N2, then
the unique solution of (3.12) and (5.1) with σ1 = σ2 = 1 is r = 0. Indeed, since m̂ <

K2 + N2 and m4, s1, m5, m8 are positive integers, from (5.1) with σ1 = σ2 = 1, we
have that r � 0. Similarly, from (3.12) and (5.1) with σ1 = σ2 = 1 we obtain that
2m1 + 2s2 + m4 + m8 − (K2 + N2)r = m̂ < K2 + N2. Now, using the fact that m1, s2,
m4, m8 are positive integers, we deduce that r � 0. Thus, r = 0 and from (3.12) and
(5.1) we have that m1 = m5, s2 = s1 and 2(m5 + s1) + m4 + m8 = m̂.

Let s3 = m4 + m8, and introduce the set

S = {(m5, s1, s3) ∈ N
3 : 2(m5 + s1) + s3 = m̂}.

The expression for v2m+1 with m = (n4 − 1)m̂ becomes

v2m+1 =
∑

(m5,s1,s3)∈S

(AĀ)m5

s3∑
m4=0

Dm4D̄s3−m4

×
s1∑

m2=0

s1∑
m6=0

βm2,m6,s3,m4B
m2B̄m6Cs1−m6C̄s1−m2 , (5.2)

with βm2,m6,s3,m4 real constants. Let Γ1 = ei(1−n1+j1)γ and Γ2 = ei(1−n2+j2)γ . From
Lemma 3.2, if Ā = −AΓ1, B̄ = −BΓ2, C̄ = −CΓ−1

2 and D̄ = −D, then v2m+1 = 0, and
thus

0 =
∑

(m5,s1,s3)∈S

(−1)m5+s1+s3A2m5Γm5
1 Γ s1

2 Ds3

×
s1∑

m2=0

s1∑
m6=0

(−1)m6−m2Γm2+m6
2 Bm2+m6C2s1−(m2+m6)

s3∑
m4=0

(−1)m4βm2,m6,s3,m4 .

(5.3)

Now, we note that (5.3) is valid for any values of the complex numbers A, B, C and D.
Thus, computing the different powers of A, D and the degree of BC (which is 2s1), we
have that, for every (m5, s1, s3) ∈ S,

s1∑
m2=0

s1∑
m6=0

(−Γ2)m2+m6Bm2+m6C2s1−(m2+m6)
s3∑

m4=0

(−1)m4βm2,m6,s3,m4 = 0. (5.4)
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Let r = m2 + m6. Then (5.4) becomes

( s1∑
r=0

r∑
m2=0

+
2s1∑

r=s1+1

s1∑
m2=r−s1

)
(−Γ2)rBrC2s1−r

s3∑
m4=0

(−1)m4βm2,r−m2,s3,m4 = 0,

where we have used the notation( s1∑
r=0

r∑
m2=0

+
2s1∑

r=s1+1

s1∑
m2=r−s1

)
ar,m2 =

s1∑
r=0

r∑
m2=0

ar,m2 +
2s1∑

r=s1+1

s1∑
m2=r−s1

ar,m2 .

Then, for each degree 2s1, computing the different powers of B and C, we have that, for
r = 0, . . . , s1,

r∑
m2=0

s3∑
m4=0

(−1)m4βm2,r−m2,s3,m4 = 0

and thus,

β0,r,s3,0 = −
r∑

m2=1

βm2,r−m2,s3,0 −
r∑

m2=0

s3∑
m4=1

(−1)m4βm2,r−m2,s3,m4 . (5.5)

Furthermore, for r = s1 + 1, . . . , 2s1 we deduce that
s1∑

m2=r−s1

s3∑
m4=0

(−1)m4βm2,r−m2,s3,m4 = 0,

and thus

β0,r,s3,0 = −
s1∑

m2=r−s1+1

βm2,r−m2,s3,0 −
s1∑

m2=r−s1

s3∑
m4=1

(−1)m4βm2,r−m2,s3,m4 . (5.6)

Now, we write v2m+1 in (5.2) as

v2m+1 =
∑

(m5,s1,s3)∈S

(AĀ)m5

s3∑
m4=0

Dm4D̄s3−m4

×
( s1∑

r=0

r∑
m2=0

+
2s1∑

r=s1+1

s1∑
m2=s1−r

)
βm2,r−m2,s3,m4B

m2B̄r−m2

× Cs1−r+m2C̄s1−m2 . (5.7)

Then, (5.7) together with (5.5) and (5.6) imply

v2m+1 =
∑

(m5,s1,s3)∈S

(AĀ)m5D̄s3

×
( s1∑

r=0

r∑
m2=1

+
2s1∑

r=s1+1

s1∑
m2=s1−r

)
βm2,r−m2,s3,0

× [−B̄rCs1−rC̄s1 + Bm2B̄r−m2Cs1−r+m2C̄s1−m2 ]
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+
∑

(m5,s1,s3)∈S

(AĀ)m5

( s1∑
r=0

r∑
m2=1

+
2s1∑

r=s1+1

s1∑
m2=s1−r

)

×
s3∑

m4=1

βm5,s1,m2,r−m2,s3,m4

× [(−1)m4+1B̄rCs1−rC̄s1D̄s3 + Bm2B̄r−m2Cs1−r+m2C̄s1−m2Dm4D̄s3−m4 ].
(5.8)

Clearly, we can rewrite v2m̂+1 in (5.8) as

v2m+1 =
∑

(m5,s1,s3)∈S

(AĀ)m5D̄s3

×
( s1∑

r=0

r∑
m2=1

+
2s1∑

r=s1+1

s1∑
m2=s1−r

)
βm5,s1,m2,r−m2,s3,0B̄

r−m2Cs1−rC̄s1−m2

× [−Bm2Cm2 + B̄m2C̄m2 ]

+
∑

(m5,s1,s3)∈S

(AĀ)m5

( s1∑
r=0

r∑
m2=1

+
2s1∑

r=s1+1

s1∑
m2=s1−r

)

×
s3∑

m4=1

βm5,s1,m2,r−m2,s3,m4B̄
r−m2Cs1−rC̄s1−m2D̄s3−m4

× [(−1)m4+1Bm2Cm2D̄m4 + B̄m2C̄m2Dm4 ]. (5.9)

Since by hypothesis Re(D) = Im(BC) = 0, i.e. D = −D̄ and BC = B̄C̄, from (5.9) we
conclude that v2m+1 = 0 for any 2m = (n1 + j1 − 1)m̂ with m̂ < N2 + K2. This finishes
the proof of the theorem.

Case 2 (1 + j1 < n1 and 1 + j2 < n2). In this case 1 − n1 + j1 = −N1 and
1−n2 + j2 = −K1. The same arguments as were used in Case 1, but working with (3.12)
and (5.1) with σ1 = −1, σ2 = −1, imply the theorem in this case.

6. Proof of Theorems 1.3 and 1.4

Let m = (n4 − 1)(K2 + N2 + λ), λ ∈ {0, 1}. We note that when λ = 0 we are proving
Theorem 1.3 and when λ = 1, we are proving Theorem 1.4. We fix λ ∈ {0, 1}. We consider
two different cases.

Case 1 (1 + j1 > n1 and 1 + j2 > n2). In this case, we first note that 1 −
n1 + j1 = N1, 1 − n2 + j2 = K1 and if m̂ = K2 + N2 + λ, then the unique solution
of (3.12), and (5.1) with σ1 = σ2 = 1, is r ∈ {−1, 0, 1}. Indeed, from (5.1) we get that
2m5 + 2s1 + m4 + m8 + (K2 + N2)r = K2 + N2 + λ. Thus, since m4, s1, m5 and m8 are
positive integers, K2 + N2 � 3 and λ ∈ {0, 1}, we have that r � 1. Furthermore, (3.12)
and (5.1) imply that 2m1 +2s2 +m4 +m8 − (K2 +N2)r = K2 +N2 +λ. Thus, since m1,
s2, m4, m8 are positive integers, K2 + N2 � 3 and λ ∈ {0, 1}, we deduce that r � −1.
Thus, r ∈ {−1, 0, 1}.
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If r = 1, then (5.1) implies that 2m5+2s1+m4+m8 = λ, which yields, since λ ∈ {0, 1},
m5 = s1 = 0 and m4 + m8 = λ. Therefore, (3.12) with σ1 = σ2 = 1 and (3.10) yield
m2 = m7 = m5 = 0, m4 + m8 = λ, and m1 = K2, s2 = m3 + m6 = N2.

If r = 0, proceeding as in the proof of Theorem 1.1, we have that m1 = m5, s2 = s1

and 2m5 + 2s1 + m4 + m8 = N2 + K2 + λ.
Finally, if r = −1, then (5.1) implies that 2m1 +2s2 +m4 +m8 = λ which, again since

λ ∈ {0, 1}, yields m1 = s2 = 0, m4 + m8 = λ. Therefore, (3.12) with σ1 = σ2 = −1 and
(3.10) yield m1 = m3 = m6 = 0, m4 + m8 = λ and m5 = K2, s1 = m2 + m7 = N2.

Let s3 = m4 + m8 and set

S0 = {(m5, s1, s3) ∈ N
3 : 2(m5 + s1) + s3 = N2 + K2 + λ}.

Then v2m+1 becomes

v2m+1 = AK2

N2∑
k=0

B̄kCN2−k
λ∑

m4=0

α̂k,λDm4D̄λ−m4

+ ĀK2

N2∑
k=0

BkC̄N2−k
λ∑

m4=0

γ̂k,λDm4D̄λ−m4

+
∑

(m5,s1,s3)∈S0

(AĀ)m5

s1∑
m2=0

s1∑
m6=0

s3∑
m4=0

βm2,m6,s3,m4,λ

× Bm2B̄m6Cs1−m6C̄s1−m2Dm4D̄s3−m4 , (6.1)

where α̂k,λ, γ̂k,λ and βm2,m6,s3,m4,λ are real constants. Since Re(D) = 0, i.e. D̄ = −D,
from (6.1) we have that

v2m+1 = Dλ
N2∑
k=0

[AK2αk,λB̄kCN2−k + ĀK2γk,λBkC̄N2−k]

+
∑

(m5,s1,s3)∈S0

(AĀ)m5

s1∑
m2=0

s1∑
m6=0

s3∑
m4=0

βm2,m6,s3,m4,λ

× Bm2B̄m6Cs1−m6C̄s1−m2Dm4D̄s3−m4 , (6.2)

where

αk,λ =
λ∑

m4=0

(−1)λ−m4 α̂k,λ and γk,λ =
λ∑

m4=0

(−1)λ−m4 γ̂k,λ.

From Lemma 3.2, if Ā = −AΓ1, B̄ = −BΓ2 C̄ = −CΓ−1
2 , D̄ = −D, then v2m+1 = 0,

and thus

0 = DλAK2

N2∑
k=0

[αk,λ(−1)kΓ k
2 + γk,λ(−1)K2+N2−kΓK2

1 Γ−N2+k
2 ]BkCN2−k

+
∑

(m5,s1,s3)∈S0

(−1)m5+s1+s3A2m5Γm5
1 Γ−s1

2 Ds3

×
s1∑

m2=0

s1∑
m6=0

(−Γ2)m2+m6Bm2+m6C2s1−m2−m6

s3∑
m4=0

(−1)m4βm2,m6,s3,m4,λ. (6.3)
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Now we point out that if K2 + N2 is even, since K2 and N2 are coprime, then K2 and
N2 are both odd. Thus, for any m5 ∈ S0, A2m5 �= AK2 . Furthermore, if K2 + N2 is odd
and λ = 0, then (m5, s1) ∈ S0 satisfy that 2(m5 + s1) � K2 +N2 − 1 and thus the degree
of ABC in the first sum in (6.3) is K2 + N2, while the rest of terms in (6.3) have degree
in ABC equal to 2(m5 + s1) � N2 + K2 − 1. On the other hand, if K2 + N2 is odd
and λ = 1, since s3 ∈ S0, we have that s3 is even. Moreover, the first sum in (6.3) has
degree 1 in the parameter D, while the rest of the terms in (6.3) have degree s3 (even) in
the parameter D. From this discussion, computing the different degrees of A, B, C and D

in (6.3) and proceeding as in the proof of Theorem 1.2, we have that βm2,m6,s3,m4,λ = 0
and

αk,λ(−1)kΓ k
2 + γk,λ(−1)K2+N2−kΓK2

1 Γ−N2+k
2 = 0 for k = 0, . . . , N2.

Now, using the facts that ΓK2
1 Γ−N2

2 = 1 and Γ k
2 �= 0, we obtain

αk,λ + (−1)K2+N2γk,λ = 0 for k = 0, . . . , N2;

that is,

αk,λ = (−1)K2+N2+1γk,λ for k = 0, . . . , N2. (6.4)

Thus, from (6.2) and (6.4) we have that

v2m+1 = Dλ
N2∑
k=0

γk,λ[ĀK2BkC̄N2−k − (−1)K2+N2AK2B̄kCN2−k].

Now, since Im(BC) = 0, i.e. B̄C̄ = BC with the notation introduced in (1.4) we have
that

v2m+1 = Dλ
L

K2,N2
A,C

N2∑
k=0

γk,λ

(
B

C̄

)k

, (6.5)

which finishes the proof of the first statement of the theorem in this case.
Now assume that n1 = 0. By Lemma 3.3 with n1 = 0, if n2B + n3C̄ = 0, we have that

v2m+1 = 0 and thus, from (6.5),

Dλ
L

K2,N2
A,C

N2∑
k=0

γk,λ

(
−n3

n2

)k

= 0, that is, γ0,λ = −
N2∑
k=1

γk,λ

(
−n3

n2

)k

. (6.6)

Therefore, inserting (6.6) into (6.5), we obtain

v2m+1 = Dλ
L

K2,N2
A,C

[
γ0,λ +

N2∑
k=1

γk,λ

(
B

C̄

)k ]

= Dλ
L

K2,N2
A,C

N2∑
k=1

γk,λ

[(
B

C̄

)k

−
(

−n3

n2

)k ]

=
Dλ

n2C̄
L

K2,N2
A,C (n2B + n3C̄)

N2∑
k=1

γk,λ

k−1∑
j=0

(
B

C̄

)k−1−j(−n3

n2

)j

.

This completes the proof of the theorem in this case.
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Case 2 (1 + j1 < n1 and 1 + j2 < n2). In this case 1 − n1 + j1 = −N1 and
1−n2 + j2 = −K1. The same arguments as were used in Case 1, but working with (3.12)
and (5.1) with σ1 = −1 and σ2 = −1 (see (3.8)), imply the theorem in this case.

7. Proof of Theorem 1.5

We recall that Re(D) = Im(BC) = 0. We consider two different cases.

Case 1 (n1 �= 0). In this case we will prove that L
K2,N2
A,C = 0 is a necessary condition

for system (1.2) to have a centre at the origin. We proceed by contradiction. Assume
that the origin of (1.2) is a centre and that L

K2,N2
A,C �= 0. Then, by hypothesis, together

with the fact that B, C �= 0 and making use of (1.5) and (1.7), we have that either

v(n1+j1)(K2+N2)+1 �= 0 or v(n1+j1)(K2+N2+1)+1 �= 0,

a contradiction to the fact that the origin of (1.2) is a centre.
Now, we shall prove that Re(D) = Im(BC) = L

K2,N2
A,C = 0 is also a sufficient condition

for system (1.2) to have a centre at the origin. From Lemma 3.2 we know that system (1.2)
has a reversible centre at the origin if and only if, for some α, we have

A = −Āe−i(1−n1+j1)α,

B = −B̄e−i(1−n2+j2)α,

C = −C̄ei(1−n2+j2)α,

D = −D̄.

Thus, we just need to show that

AK2CN2 = (−1)K2+N2ĀK2C̄N2

and Re(D) = Im(BC) = 0 is a sufficient condition for the centre variety. So, since
BC = B̄C̄, we have that (

−Ā

A

)K2

=
(

−C

C̄

)N2

=
(

−B̄

B

)N2

. (7.1)

Now let θ1 and θ2 be such that eiθ1 = −Ā/A and eiθ2 = −B̄/B. Then from (7.1), together
with the facts that N2 = N1/M1 and K2 = K1/M1, we have that

K1θ1 = N1θ2(mod 2π). (7.2)

Now using the fact that N1 = |1 − n1 + j1|, that K1 = |1 − n2 + j2| and that sgn(1 −
n1 + j1)(1 − n2 + j2) > 0, (7.2) becomes

(1 − n1 + j1)θ1 = (1 − n2 + j2)θ2(mod 2π). (7.3)

Set α = θ1/(1 − n1 + j1). Then, using (7.3), we have that

ei(1−n1+j1)α = eiθ1 = − Ā

A
and ei(1−n2+j2)α = − B̄

B
. (7.4)
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Consequently, the sufficiency of the condition follows from (7.4) and the fact that
Re(D) = Im(BC) = 0. Thus, the theorem is proved in this case.

Case 2 (n1 = 0). In this case we will show that (n2B +n3)L
K2,N2
A,C = 0 is a necessary

condition in order that system (1.2) has a centre at the origin. We proceed by contra-
diction. Assume the origin of (1.2) is a centre and (n2B + n3C̄)LK2,N2

A,C �= 0. Then, by
hypothesis, together with the fact that B, C �= 0, and making use of (1.6) and (1.8), we
get that either

v(n1+j1)(K2+N2)+1 �= 0 or v(n1+j1)(K2+N2+1)+1 �= 0,

a contradiction to the fact that the origin of (1.2) is a centre. Furthermore, Lemma 3.3
states that Re(D) = n2B + n3C̄ = 0 is a sufficient condition in order that system (1.2)
has a centre at the origin and, proceeding as we did in Case 1, we can prove that Re(D) =
Im(BC) = L

K2,N2
A,C = 0 is also a sufficient condition in order that system (1.2) has a centre

at the origin. Thus, the theorem is proved in this case.

Appendix A.

In this appendix we provide the results in [10,11,23].

Proposition A 1 (Llibre and Valls [11]). For system (1.2) with B = C = D = 0
the following hold.

(a) If j1 �= n1 − 1, the centre manifold variety of system (1.2) is the set {A ∈ C \ {0}}.

(b) If j1 = n1 − 1, the centre manifold variety of system (1.2) is the set {A ∈ C \ {0} :
Re(A) = 0}.

We set MK2,N2 = (n − 1)(K2 + N2)/2 (which can be seen to be always an integer
number) and d = (1 − n1 − j1)(1 − n2 − j2).

Proposition A 2 (Llibre and Valls [11]). For system (1.2) with C = D = 0 the
following hold.

(a) If j1 = n1 − 1 and j2 = n2 − 1, the centre manifold variety of system (1.2) is the
set {(A, B) ∈ (C \ {0})2 : Re(A) = Re(B) = 0}.

(b) If j1 = n1 − 1 and j2 �= n2 − 1, the centre manifold variety of system (1.2) is the
set {(A, B) ∈ (C \ {0})2 : Re(A) = 0}.

(c) If j1 �= n1 − 1 and j2 = n2 − 1, the centre manifold variety of system (1.2) is the
set {(A, B) ∈ (C \ {0})2 : Re(B) = 0}.
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(d) If j1 �= n1 − 1 and j2 �= n2 − 1, we have that

(i) v2m+1 = 0 for m = 1, 2, . . . , MK2,N2 − 1,
(ii) there exists a constant Kn1,j1,n2,j2 such that

v2m+1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Kn1,j1,n2,j2 Im(ĀK2BN2) if d > 0 and K2 + N2 even,

Kn1,j1,n2,j2 Re(ĀK2BN2) if d > 0 and K2 + N2 odd,

Kn1,j1,n2,j2 Im(AK2BN2) if d < 0 and K2 + N2 even,

Kn1,j1,n2,j2 Re(AK2BN2) if d < 0 and K2 + N2 odd.

(iii) If the constant Kn1,j1,n2,j2 introduced in statement (ii) is non-zero, the centre
manifold variety of system (1.2) is

{(A, B) ∈ (C \ {0})2 : Im(ĀK2BN2) = 0} if d > 0 and K2 + N2 even,

{(A, B) ∈ (C \ {0})2 : Re(ĀK2BN2) = 0} if d > 0 and K2 + N2 odd,

{(A, B) ∈ (C \ {0})2 : Im(AK2BN2) = 0} if d < 0 and K2 + N2 even,

{(A, B) ∈ (C \ {0})2 : Re(AK2BN2) = 0} if d < 0 and K2 + N2 odd.

(iv) For K2 + N2 = 2, Kn1,j1,n2,j2 = −2π and for K2 + N2 = 3,

Kn1,j1,n2,j2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3π(n1 − 1)/(1 + j1 − n1) if d < 0 and K2 = 1,

3π(n1 − 1 − 3j1)/(4(1 + j1 − n1)) if d < 0 and K2 = 2,

jπ/(1 + j1 − n1) if d > 0 and K2 = 1,

(3j1 − n1 + 1)π/(4(1 + j1 − n1)) if d > 0 and K2 = 2.

Proposition A 3 (Llibre and Valls [10]). For system (1.2) with D = 0, A, B, C ∈
C \ {0} and j3 = n3 − 1 (note that then n must be odd), the following hold.

(a) Re(C) = 0 is a necessary condition to have a centre at the origin and v2k+1 = 0 for
k = 1, . . . , MK2,N2 .

(b) There exists a constant Kn1,j1,n2,j2 such that

v2m+1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Kn1,j1,n2,j2 Im(ĀK2BN2) if d > 0 and K2 + N2 even,

Kn1,j1,n2,j2 Re(ĀK2BN2) if d > 0 and K2 + N2 odd,

Kn1,j1,n2,j2 Im(AK2BN2) if d < 0 and K2 + N2 even,

Kn1,j1,n2,j2 Re(AK2BN2) if d < 0 and K2 + N2 odd.

(c) If the constants Kn1,j1,n2,j2 introduced in statement (b) are non-zero, then the
centre manifold variety of system (1.2) is the subset of {(A, B, C) ∈ (C \ {0})3}
such that

Re(C) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Im(ĀK2BN2) = 0 if d > 0 and K2 + N2 even,

Re(ĀK2BN2) = 0 if d > 0 and K2 + N2 odd,

Im(AK2BN2) = 0 if d < 0 and K2 + N2 even,

Re(AK2BN2) = 0 if d < 0 and K2 + N2 odd.
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(d) If Re(C) = 0, then for K2+N2 = 2 we have Kn1,j1,n2,j2 = −2π and for K2+N2 = 3,
we have that

Kn1,j1,n2,j2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3π(n1 − 1)/(1 + j1 − n1) if d < 0 and K2 = 1,

3π(n1 − 1 − 3j1)/(4(1 + j1 − n1)) if d < 0 and K2 = 2,

jπ/(1 + j1 − n1) if d > 0 and K2 = 1,

(3j1 − n1 + 1)π/(4(1 + j1 − n1)) if d > 0 and K2 = 2.

Proposition A 4 (Llibre and Valls [23]). For system (1.2) with D = 0, A, B, C ∈
C \ {0}, with j3 �= n3 − 1, the following hold.

(a) vk = 0 for any k such that 2k/(n1 + j1 − 1) �∈ N.

(b) Im(BC) = 0 is a necessary condition for system (1.2) to have a centre at the origin.

(c) If Im(BC) = 0, then v2k+1 = 0 for k = 2, 3, . . . , m with 2m < (n1+j1−1)(K2+N2).

(d) If Im(BC) = 0, there exist real constants Lk, k = 0, . . . , N2, such that, for 2m =
(n1 + j1 − 1)(K2 + N2),

v2m+1 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

L
K2,N2
A,C

N2∑
k=0

Lk

(
B

C̄

)k

, n1 �= 0,

1
n2C̄

L
K2,N2
A,C (n2B + n3C̄)

N2∑
k=1

Lk

k−1∑
j=0

(
B

C̄

)k−1−j(−n3

n2

)j

, n1 = 0.

(e) If Im(BC) = 0 and for some k = 0, . . . , N2, the constants Lk in statement (d) are
non-zero, and L

K2,N2
A,C = 0, the origin of (1.2) is a centre.

With the constants Lk introduced in Proposition A 4, we introduce the set

S1 =
{

C, B ∈ C \ {0} :
N2∑
k=0

Lk

(
B

C̄

)k

= 0
}

if n1 �= 0,

and

S1 =
{

C, B ∈ C \ {0} :
N2∑
k=1

Lk

k−1∑
j=0

(
B

C̄

)k−1−j(−n3

n2

)j

= 0
}

if n1 = 0.

Proposition A 5 (Valls [23]). For system (1.2) with D = 0, A, B, C ∈ C \ {0},
j3 �= n3 − 1 and Im(BC) = 0, the following hold.
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(a) If there exists k1 ∈ {0, . . . , N2} such that the constants Lk in Proposition A 4 satisfy
that Lk1 �= 0 and B, C ∈ S1, then there exist constants D1, D2 ∈ C such that for
2m = (n1 + j1 − 1)(K2 + N2 + 2),

v2m+1 = (D1AĀ + D2CC̄)LK2,N2
A,C .

(b) Under the same hypothesis as statement (a), if N2 + K2 � 5, D1, D2 �= 0 and
C satisfies D2CC̄ = −D1AĀ, there exists a constant L such that for 2m =
(n1 + j1 − 1)(N2 + K2 + 4) we have

v2m+1 = L(AĀ)2L
K2,N2
A,C .
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