On Injective and Cofibrant Equivariant Minimal Models

MAREK GOLASIŃSKI

Faculty of Mathematics and Informatics, Nicholas Copernicus University, 87-100 Toruń, Chopina 12/18, Poland. e-mail: marek@mat.uni.torun.pl

(Received: 17 June 1998; in final form: 20 October 1999)

Abstract. Let X be a G-connected nilpotent simplicial set, where G is a finite Hamiltonian group. We construct a cofibrant equivariant minimal model of X with the strong homotopy type of the injective minimal model of X defined by Triantafillou.

Mathematics Subject Classifications (2000). Primary: 55P62, 55P91; secondary: 16W50, 18G05.

Key words. category of canonical orbits, cofibrant and injective equivariant minimal models, G-connected nilpotent simplicial set, Hamiltonian group, $\mathcal{O}(G)$ -algebra and $\mathcal{O}(G)$ -module.

Rational homotopy theory provides a first approximation to integral homotopy theory that has attracted much research interest. Sullivan [11] introduced the rational de Rham theory for connected simplicial complexes and applied it to prove that the de Rham algebra A_X^* of \mathbb{Q} -differential forms on a simply connected complex X of finite type determines its rational homotopy type, where \mathbb{Q} is the field of rationals.

Triantafillou [13–15] has generalized the central results of Sullivan theory to an equivariant context but under the assumption that a G-simplicial set X of finite type (with a finite group G action) is G-connected and nilpotent, i.e. the fixed point simplicial subsets X^H are nonempty, connected and nilpotent for all subgroups $H \subseteq G$. In this case not only A_X^* with the induced G-action is considered, but also the de Rham algebras $A_{X^H}^*$ of X^H for all subgroups $H \subseteq G$. Thus, a functor A_X^* on the category $\mathcal{O}(G)$ of canonical orbits is studied and its componentwise injectivity is the key property for the existence of an injective minimal model \mathcal{M}_X^{inj} . This is an equivariant analog of the Sullivan minimal model, for a G-connected simplicial set X. On the other hand, in [6, 7], Lambre showed that \mathcal{M}_X^{inj} could be replaced by a cofibrant minimal model \mathcal{M}_X provided G is the cyclic group \mathbb{Z}_{p^k} with p a prime number and examples of cofibrant equivariant minimal models were presented as well.

This paper grew out of our attempt to study the results presented in [14] and generalize the construction of the cofibrant equivariant minimal model for G a finite Hamiltonian group.

Let DGA_k be the category of (homologically) connected (i.e. $H^0(A) = k$ for $A \in DGA_k$) commutative differential graded k-algebras. It has been proved [1, 10] that this category forms a closed model category in the sense of Quillen [10] and the most important cofibrant algebras are the minimal ones. From [2], it follows that this category structure can be extended to the category $\mathcal{O}(G)$ - DGA_k of $\mathcal{O}(G)$ -algebras provided that G is a finite Hamiltonian group.

We explain how to construct cofibrant minimal models of $\mathcal{O}(G)$ -algebras and list their basic properties. An idea of this construction (for a special case) has been presented in [6] and based on the notion of a Koszul–Sullivan extension considered in [5]. Then, some geometric applications are presented. For any G-connected nilpotent simplicial set X (of finite type) we can consider polynomial forms $A_{X^H}^*$ for all subgroups $H \subseteq G$ to obtain the $\mathcal{O}(G)$ -algebra $\mathcal{A}^*(X)$ over the field $\mathbb Q$ of rationals. We show that the cofibrant minimal model \mathcal{M}_X of $\mathcal{A}^*(X)$ has the (strong) homotopy type of its injective minimal model \mathcal{M}_X^{inj} considered in [14, 15].

1. Preliminaries

Let k be a zero characteristic field and DGA_k the category of homologically connected commutative differential graded k-algebras. For a map $\gamma: B \to E$ in DGA_k , where B is augmented, Halperin [5] considers its 'minimal factorization'. Namely, he defines a *minimal KS-extension* as a sequence of augmented DGA_k 's $\mathbb{E}: B \xrightarrow{i} C \xrightarrow{\pi} A$ such that

- (i) A is a free graded algebra generated by a graded vector subspace $X \subset A$;
- (ii) there is a commutative diagram of algebra homomorphisms

where $\varepsilon: A \to k$ is the augmentation map;

(iii) there is a homogeneous basis $\{x_{\alpha}\}_{{\alpha}\in I}$ of X indexed by an ordered set I with $d(x_{\alpha}) \in B \otimes A_{<\alpha}$ and $\deg x_{\beta} < \deg x_{\alpha}$ implies $\beta < \alpha$, where $A_{<\alpha}$ is the subalgebra of A generated by the x_{β} with $\beta < \alpha$.

In [5] the following result is proved.

THEOREM 1.1. For any map $\gamma: B \to E$ of connected DGA_k 's, where B is augmented, there is a unique (up to isomorphism) minimal KS-extension

$$\mathbb{E}: B \xrightarrow{i} C \xrightarrow{\pi} A$$

and a homology isomorphism $\rho: C \to E$ such that $\rho \circ i = \gamma$.

The extension \mathbb{E} together with the map $\rho: C \to E$ is called a *KS-minimal model* of the map γ . In particular, a minimal algebra M_A together with a homology isomorphism $\rho_A: M_A \to A$ is isomorphic to the *minimal model* for A.

Let now G be a finite group and G- DGA_k the category of differential graded algebras with an action of G. Then a notion of a minimal KS-extension may be considered in G- DGA_k as well and in [3] (see also [9, 13]) it has been shown that an equivariant version of Theorem 1.1 yields a G-KS-minimal model of a map $\gamma: B \to E$ in G- DGA_k .

Let $\mathcal{O}(G)$ be the category of canonical orbits; its objects are the left cosets G/H as H ranges over all subgroups of G and morphisms are the equivariant maps $G/H \longrightarrow G/K$ with respect to left translation. Following [8], we define a partial order (which is crucial for the sequel) on the set $\operatorname{Is}(\mathcal{O}(G))$ of isomorphism classes $\overline{G/H}$ of objects G/H in $\mathcal{O}(G)$ by

$$\overline{G/H} \leqslant \overline{G/K}$$
 if $\mathcal{O}(G)(G/H, G/K) \neq \emptyset$.

This induces a partial ordering on the set $\operatorname{Is}(\mathcal{O}(G))$. We say that $\overline{G/H} < \overline{G/K}$ if $\overline{G/H} \leqslant \overline{G/K}$ and $\overline{G/H} \neq \overline{G/K}$. The group G is finite, so $\mathcal{O}(G)$ is a *cofinite* category (i.e. each $\overline{G/H}$ isomorphism class of an element G/H has finitely many predecessors). Thus, for any $G/H \in \operatorname{Ob} \mathcal{O}(G)$ we can define its *height* as the maximum length of a chain $\overline{G/H_0} < \cdots < \overline{G/H_n} = \overline{G/H}$.

Denote by $\mathcal{O}(G)$ - DGA_k the category of covariant functors from the category $\mathcal{O}(G)$ to the category DGA_k . Objects of $\mathcal{O}(G)$ - DGA_k are called $\mathcal{O}(G)$ -algebras.

Throughout the rest of this section, G will be a finite Hamiltonian group (i.e. each subgroup of G is normal). In light of [4, Corollary 10.3.4] any finite Hamiltonian group is nilpotent and the key example of a non-abelian finite Hamiltonian group is the quaternion group. A full description of these groups has been presented by Hall in [4, Theorem 12.5.4]. Observe that for such a group G the automorphism group G any object G/H in O(G) can be identified with the quotient group G/H. Moreover, any map $\phi: G/H \to G/K$ in O(G) determines an element $g \in G$ with $g^{-1}Hg \subseteq K$ and an epimorphism $\hat{\phi}: G/H \to G/K$ given by $\hat{\phi}(xH) = g^{-1}xgK$ for any xH in G/H. Consequently, we may state that the category O(G) has the additional property (useful in the construction below).

For any map $\phi: G/H \to G/K$ in $\mathcal{O}(G)$, there is an epimorphism $\hat{\phi}: G/H \to G/K$ with $\phi \circ \gamma = \hat{\phi}(\gamma) \circ \phi$ for all γ in $\operatorname{Aut}(G/H) = G/H$ and $\widehat{\psi} \phi = \hat{\psi} \hat{\phi}$ for a map $\psi: G/K \to G/L$ in $\mathcal{O}(G)$.

For a given \mathcal{A} in $\mathcal{O}(G)$ - DGA_k and a map $\phi: G/H \to G/K$ there is an action of the quotient group G/H on $\mathcal{A}(G/K)$ and $\mathcal{A}(\phi): \mathcal{A}(G/H) \to \mathcal{A}(G/K)$ is an G/H-map. Denote by $I_{\phi}(G/H)(\mathcal{A})$ the ideal in $\mathcal{A}(G/H)$ generated by elements a-ga, for $a \in \mathcal{A}(G/H)$ and $g \in \ker \hat{\phi}$. Then $\mathcal{A}_{\phi}(G/H) = \mathcal{A}(G/H)/I_{\phi}(G/H)(\mathcal{A})$ is an object in G/K- DGA_k and the induced map $\mathcal{A}_{\phi}(G/H) \to \mathcal{A}(G/K)$ preserves the G/K-action.

For a fixed G/K in Ob $(\mathcal{O}(G))$, let $\mathcal{O}(G)_{G/K}$ be the category, where objects are pairs $(G/H, \phi)$, where $\phi : G/H \to G/K$ is a non-isomorphism and maps from $(G/H_1, \phi_1)$ to $(G/H_2, \phi_2)$ are determined by maps $\psi : G/H_1 \to G/H_2$ such that $\phi_2 \psi = \phi_1$.

We also have a functor $\overline{\mathcal{A}}_{G/K}: \mathcal{O}(G)_{G/K} \to DGA_k$ such that $\overline{\mathcal{A}}_{G/K}(G/H, \phi) = \mathcal{A}_{\phi}(G/H)$. Hence $\overline{\mathcal{A}}(G/K) = \lim_{\substack{\to \ \mathcal{O}(G)_{G/K} \ \text{is}}} \overline{\mathcal{A}}_{G/K}$ is an object in G/K- DGA_k and there is the induced G/K-map $\overline{\rho}(G/K): \overline{\mathcal{A}}(G/K) \to \mathcal{A}(G/K)$. The algebra $\overline{\mathcal{A}}(G/K)$ is augmented and we may take the G/K-KS-minimal model

of the map $\overline{\rho}(G/K)$.

We say that an object \mathcal{M} in $\mathcal{O}(G)$ - DGA_k is KS-minimal if $\mathcal{M}(G/H) \cong \widetilde{\mathcal{M}}(G/H)$ for any object $G/H \in Ob(\mathcal{O}(G))$. We recall from [2] that the category $\mathcal{O}(G)$ - DGA_k is a closed model category in the sense of Quillen [10] with respect to the following three classes of maps. A map $f: \mathcal{A} \to \mathcal{B}$ in $\mathcal{O}(G)$ - DGA_k is called a weak equivalence (resp. fibration) if for all $G/H \in Ob(\mathcal{O}(G))$ the maps $f(G/H): \mathcal{A}(G/H) \to \mathcal{B}(G/H)$ are homology isomorphisms (resp. surjections) in the category DGA_k . A map $f: \mathcal{A} \to \mathcal{B}$ is a cofibration if it has the left-lifting property with respect to all maps which are both fibrations and weak equivalences, i.e. trivial fibrations.

PROPOSITION 1.2. If G is a finite Hamiltonian group, then any KS-minimal object \mathcal{M} in $\mathcal{O}(G)$ -DGA_k is cofibrant.

Proof. Consider a commutative diagram

in $\mathcal{O}(G)$ - DGA_k , where \underline{k} is the constant $\mathcal{O}(G)$ -algebra determined by the field k and p is a trivial fibration. We proceed inductively with respect to height of objects in $\mathcal{O}(G)$. For an object $G/H \in \mathrm{Ob}(\mathcal{O}(G))$ of height 0, there is a map $\beta(G/H): \mathcal{M}(G/H) \to \mathcal{D}(G/H)$ such that $p(G/H) \circ \beta(G/H) = \alpha(G/H)$, since

 $\mathcal{M}(G/H)$ is G/H-KS-minimal. Suppose now that for all $G/K \in \mathrm{Ob}(\mathcal{O}(G))$ of height smaller than height of G/H there are maps $\beta(G/K) \colon \mathcal{M}(G/K) \to \mathcal{A}(G/K)$ such that $p(G/K) \circ \beta(G/K) = \alpha(G/K)$. Hence, we get a map $\overline{\beta}(G/H) \colon \overline{\mathcal{M}}(G/H) = \lim_{\substack{\longrightarrow \\ \mathcal{O}(G)_{G/H}}} \overline{\mathcal{M}}_{G/H} \longrightarrow \mathcal{D}(G/H)$. Then, in the commutative diagram

$$\overline{\mathcal{M}}(G/H) \xrightarrow{\overline{\beta}(G/H)} \mathcal{D}(G/H)$$

$$\overline{\rho}(G/H) \downarrow \qquad \qquad \downarrow p(G/H)$$

$$\mathcal{M}(G/H) \xrightarrow{\alpha(G/H)} \mathcal{E}(G/H),$$

there is a filler $\beta(G/H)$ since the map $\overline{\mathcal{M}}(G/H) \to \mathcal{M}(G/H)$ is a cofibration in the category G/H- DGA_k .

2. The Main Result

Let \mathcal{A} be in $\mathcal{O}(G)$ - DGA_k and let $\rho: \mathcal{M} \to \mathcal{A}$ be a weak equivalence, where \mathcal{M} is KS-minimal. Then \mathcal{M} is called the KS- (or *cofibrant*) *minimal model* of \mathcal{A} . Proposition 2.2 below (cf. [1, 6]) implies that this definition is meaningful. First, however, we establish a lemma that plays an important role in the proof of this proposition.

LEMMA 2.1. If G is a finite Hamiltonian group, then for a diagram in $\mathcal{O}(G)$ -DGA_k commutative up to homotopy

where q is a cofibration and f a weak equivalence, there exists an arrow γ making this diagram commutative up to homotopy.

Proof. Using [2, Theorem 1.3], we may factor the map f as $\mathcal{C} \xrightarrow{q'} \mathcal{C}' \xrightarrow{p'} \mathcal{D}$ with q' a trivial cofibration and p a trivial fibration. Every object in $\mathcal{O}(G)$ - DGA_k is fibrant, hence by [10] the map $q': \mathcal{C} \to \mathcal{C}'$ has a homotopy inverse $q'': \mathcal{C}' \to \mathcal{C}$. But the map $q: \mathcal{A} \to \mathcal{B}$ is a cofibration, so there are maps $\beta': \mathcal{B} \to \mathcal{D}$ and $\gamma': \mathcal{B} \to \mathcal{C}'$ such

that $\beta \simeq \beta'$ and the diagram

strictly commutes. Then $\gamma = q'' \circ \gamma'$ is the required map.

PROPOSITION 2.2. Let G be a finite Hamiltonian group and let M and M' be KS-minimal $\mathcal{O}(G)$ -algebras, and $\rho: \mathcal{M} \to \mathcal{A}$, $\rho': \mathcal{M}' \to \mathcal{A}$ be weak equivalences. Then:

П

- (1) there is an isomorphism $\theta: \mathcal{M} \to \mathcal{M}'$ in $\mathcal{O}(G)$ -DGA_k such that $\rho'(G/H) \circ \theta(G/H) \simeq \rho(G/H)$ in the category G/H-DGA_k for all $G/H \in \mathrm{Ob}(\mathcal{O}(G))$;
- (2) if $\hat{\theta}: \mathcal{M} \to \mathcal{M}'$ is a map in $\mathcal{O}(G)$ -DGA_k such that $\rho'(G/H) \circ \hat{\theta}(G/H) \simeq \rho(G/H)$ in the category G/H-DGA_k then $\hat{\theta}$ is an isomorphism and $\hat{\theta}(G/H) \simeq \theta(G/H)$ in the category G/H-DGA_k, for all $G/H \in Ob(\mathcal{O}(G))$.

Proof. (1) We again proceed inductively with respect to height of objects in $Ob(\mathcal{O}(G))$. If $G/H \in Ob(\mathcal{O}(G))$ has height 0, then $\mathcal{M}(G/H)$ and $\mathcal{M}'(G/H)$ are G/H-minimal and by [5, Proposition 4.3] there is an G/H-isomorphism $\theta(G/H): \mathcal{M}(G/H) \to \mathcal{M}'(G/H)$ such that $\rho'(G/H) \circ \theta(G/H) \simeq \rho(G/H)$ in the category G/H- DGA_k .

Suppose that for all $G/K \in \text{Ob}(\mathcal{O}(G))$ of height smaller than that of G/H, there exists $\theta(G/K) : \mathcal{M}(G/K) \to \mathcal{M}'(G/K)$ such that $\rho'(G/K) \circ \theta(G/K) \simeq \rho(G/K)$ in the category G/K- DGA_k and the diagrams commute

for $\overline{G/L} < \overline{G/K}$. Then, we obtain the induced isomorphism $\overline{\theta}(G/H)$: $\overline{\mathcal{M}}(G/H) \to \overline{\mathcal{M}}'(G/H)$. But the map $\alpha(G/H)$: $\overline{\mathcal{M}}(G/H) \to \mathcal{M}(G/H)$ is a cofibration in the category G/H- DGA_k and $\rho(G/H)$: $\mathcal{M}(G/H) \to \mathcal{A}(G/H)$ is a weak equivalence, hence by Lemma 2.1 there is an G/H-map

 $\theta'(G/H): \mathcal{M}(G/H) \to \mathcal{M}'(G/H)$ such that the diagram

commutes up to homotopy. In particular, $\theta'(G/H) \circ \alpha(G/H) \simeq \alpha'(G/H) \circ \overline{\theta}(G/H)$. But the map $\alpha(G/H)$ is a cofibration, hence there is a map $\theta(G/H)$ such that $\theta'(G/H) \simeq \theta(G/H)$ and $\theta(G/H) \circ \alpha(G/H) = \alpha'(G/H) \circ \overline{\theta}(G/H)$. The maps $\alpha(G/H)$ and $\alpha'(G/H)$ are G/H-KS-minimal extensions and $\overline{\theta}(G/H) : \overline{\mathcal{M}}(G/H) \to \overline{\mathcal{M}}'(G/H)$ is an isomorphism, hence by [5, Proposition 4.6] the map $\theta(G/H)$ is an isomorphism.

(2) If $G/H \in \text{Ob}(\mathcal{O}(G))$ has height 0, then $\mathcal{M}(G/H)$ and $\mathcal{M}'(G/H)$ are G/H-minimal and by [5, Proposition 4.3] the map $\hat{\theta}(G/H)$ is an G/H-isomorphism and $\theta(G/H) \cong \hat{\theta}(G/H)$ in the category G/H- DGA_k .

Suppose that, for all $G/K \in \text{Ob}(\mathcal{O}(G))$ of a height smaller than that of G/H, the maps $\hat{\theta}(G/K)$ are G/K-isomorphisms and there exists an G/K-homotopy $\theta(G/K) \cong \hat{\theta}(G/K)$. Then the diagram

$$\overline{\mathcal{M}}(G/H) \xrightarrow{\alpha(G/H)} \mathcal{M}(G/H)$$

$$\overline{\theta}(G/H) \downarrow \qquad \qquad \downarrow \hat{\theta}(G/H)$$

$$\overline{\mathcal{M}}'(G/H) \xrightarrow{\alpha'(G/H)} \mathcal{M}'(G/H)$$

satisfies the hypothesis of Theorem 10.4 in [5]; hence $\theta(G/H) \simeq \hat{\theta}(G/H)$ in the category G/H- DGA_k and the map $\hat{\theta}(G/H)$ is an isomorphism.

We now show that the cofibrant minimal models exist.

THEOREM 2.3. Let G be a finite Hamiltonian group. Then for any A in O(G)-DGA_k there exist a cofibrant equivariant minimal model \mathcal{M}_A and a weak equivalence $\rho: \mathcal{M}_A \to A$.

Proof. For any A in $\mathcal{O}(G)$ - DGA_k , we construct its cofibrant equivariant minimal model \mathcal{M}_A as follows.

- (1) If $G/H \in \text{Ob}(\mathcal{O}(G))$ has height 0, then for $\mathcal{M}_{\mathcal{A}}(G/H)$ take the G/H-minimal model of $\mathcal{A}(G/H)$. Let $\rho(G/H): \mathcal{M}_{\mathcal{A}}(G/H) \to \mathcal{A}(G/H)$ be a fixed G/H-weak equivalence.
- (2) Suppose that for all $G/K \in \mathrm{Ob}(\mathcal{O}(G))$ of a height smaller than the height of G/H there are G/K-weak equivalences $\rho(G/K) : \mathcal{M}_A(G/K) \to \mathcal{A}(G/K)$ such that

for $\overline{G/K_1}$, $\overline{G/K_2} < \overline{G/K}$ with $\overline{G/K_1} < \overline{G/K_2}$ all diagrams

$$\mathcal{M}_{\mathcal{A}}(G/K_1) \xrightarrow{\rho(G/K_1)} \mathcal{A}(G/K_1)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{M}_{\mathcal{A}}(G/K_2) \xrightarrow{\rho(G/K_2)} \mathcal{A}(G/K_2)$$

commute. To get $\mathcal{M}_{\mathcal{A}}(G/K)$ and a G/H-weak equivalence $\rho(G/H)$: $\mathcal{M}_{\mathcal{A}}(G/H) \to \mathcal{A}(G/H)$, consider the induced G/H-map $\overline{\rho}(G/H)$: $\overline{\mathcal{M}_{\mathcal{A}}}(G/H) \to \mathcal{A}(G/H)$ and its G/H-KS-minimal model

At the end we present briefly some geometric applications of cofibrant minimal models. The de Rham functor A^* of polynomial forms determines the $\mathcal{O}(G)$ -algebra \mathbb{Q} -algebra \mathcal{A}_X^* such that $\mathcal{A}^*(X)(G/H) = A^*(X^H)$ for a G-simplicial set X and $H \subseteq G$.

We say that a G-simplicial set X is G-connected and nilpotent (resp. pointed) if all fixed point simplicial subsets X^H are connected and nilpotent, for all subgroups $H \subseteq G$ (resp. $X^G \neq \emptyset$). By [14, 15], for any G-connected pointed simplicial set X of finite type there is the (componentwise) injective minimal model \mathcal{M}_X^{inj} and a weak equivalence $\mathcal{M}_X^{inj} \to \mathcal{A}^*(X)$.

The cofibrant minimal model \mathcal{M}_X of the $\mathcal{O}(G)$ -algebra $\mathcal{A}^*(X)$ is called the *cofibrant minimal model* of a G-simplicial set X. A slight variation of the construction in [7, 4.9. Exemples] (cf. also [6, IV.3 - Exemples]) allows to present

EXAMPLE 2.4. (1) Let $X = \mathbb{S}^3 \times \cdots \times \mathbb{S}^3$ be the product of six copies of the three-dimensional sphere \mathbb{S}^3 with an action of the cyclic group \mathbb{Z}_6 like in the case 4 of [7, Exemples 4.9]. Then the injective and cofibrant minimal models of X coincide.

(2) Let $X = \mathbb{S}_a^4 \vee \mathbb{S}_b^4 \vee \mathbb{S}_c^4 \vee \mathbb{S}_d^4 \vee \mathbb{S}_e^7 \cup_{\omega_1} e_1^8 \cup_{\omega_2} e_2^8$ be a space constructed like in case 6 of [7, Exemples 4.9] and with a similar action of the cyclic group \mathbb{Z}_2 . Then the injective and cofibrant minimal models of X do not coincide.

From Proposition 2.2 one sees that the cofibrant minimal models of \mathcal{M}_X^{inj} and $\mathcal{A}^*(X)$ are isomorphic. Hence there is a weak equivalence $\rho: \mathcal{M}_X \to \mathcal{M}_X^{inj}$. By [14, Proposition 5.5] there is a map $\rho': \mathcal{M}_X^{inj} \to \mathcal{M}_X$ such that $\rho \circ \rho' \simeq \operatorname{id}_{\mathcal{M}_X^i}$. Thus the map ρ' is a weak equivalence and by [2, Corollary 1.5] and Proposition 2.2 there is a map $\rho'': \mathcal{M}_X \to \mathcal{M}_X^{inj}$ such that $\rho' \circ \rho'' \simeq \operatorname{id}_{\mathcal{M}_X}$. In the light of [14, 15], for

nilpotent G-connected pointed simplicial sets X, Y of finite type, there is a bijection $[X,Y]_G \approx [\mathcal{M}_Y^{inj},\mathcal{M}_X^{inj}]$ provided Y is rational, where $[X,Y]_G$ is the set of pointed G-homotopy classes of G-maps from X to Y. We have thus proved the following proposition.

PROPOSITION 2.5. Let G be a finite Hamiltonian group. If X and Y are nilpotent G-connected pointed simplicial sets of finite type, then there is a bijection $[X, Y]_G \approx [\mathcal{M}_Y, \mathcal{M}_X]$, provided Y is rational.

A construction of the cofibrant equivariant minimal model of any nilpotent *G*-disconnected simplicial set requires more subtle methods and will be published elsewhere.

Acknowledgement

The author is extremely grateful to the referees for carefully reading the original manuscript and their invaluable suggestions.

References

- 1. Bousfield, A. K. and Guggenheim, V. K. A. M.: On PL de Rham theory and rational homotopy type, *Mem. Amer. Math. Soc.* **179** (1976).
- 2. Golasiński, M.: Equivariant rational homotopy theory as a closed model category, *J. Pure Appl. Algebra* **133** (1998), 271–287.
- 3. Grove, K., Halperin, S. and Viguè-Poirrier, M.: The rational homotopy theory of certain path-spaces with applications to geodesics, *Acta Math.* **140** (1978), 277–303.
- 4. Hall, M.: The Theory of Groups, Macmillan, New York, 1962.
- 5. Halperin, S.: Lectures on minimal models, Mèm. Soc. Math. France (N.S.) 9-10 (1983).
- 6. Lambre, T.: Modèle pour les \mathbb{Z}_p -espace, Thèse, Lille (1987).
- 7 Lambre, T.: Modèle minimal équivariant et formalité, *Trans. Amer. Math. Soc.* **327** (1991), 621–639.
- 8. Lück, W.: *Transformation Groups and Algebraic K-theory*, Lecture Notes in Math. 1408, Springer-Verlag, New York, 1989.
- 9. Oprea, J. F.: Lifting homotopy actions in rational homotopy theory, *J. Pure Appl. Algebra* **32** (1984), 177–190.
- Quillen, D. G.: Homotopical Algebra, Lecture Notes in Math. 43, Springer-Verlag, New York, 1967.
- 11. Sullivan, D.: Infinitesimal computations in topology, *Publ. Inst. Haute Etudes Sci.* **47** (1977).
- 12. Tanré, D.: Homotopie rationnelle modèles de Chen, Quillen, Sullivan, Lecture Notes in Math. 1025, Springer-Verlag, New York, 1983.
- 13. Triantafillou, G. V.: Äquivariante rationale Homotopietheorie, Bonner Math. Schriften 110, Univ. Bonn, Bonn, 1978.
- Triantafillou, G. V.: Equivariant minimal models, Trans. Amer. Math. Soc. 274 (1982), 509–532.
- 15. Triantafillou, G. V.: An algebraic model for G-homotopy types, Astèrisque 113–114 (1984), 312–337.