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Abstract. LetX be aG-connected nilpotent simplicial set, whereG is a ¢niteHamiltoniangroup.
We construct a co¢brant equivariant minimal model of X with the strong homotopy type of the
injective minimal model of X de¢ned by Trianta¢llou.
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Rational homotopy theory provides a ¢rst approximation to integral homotopy
theory that has attracted much research interest. Sullivan [11] introduced the
rational de Rham theory for connected simplicial complexes and applied it to prove
that the de Rham algebra A�X ofQ-differential forms on a simply connected complex
X of ¢nite type determines its rational homotopy type, where Q is the ¢eld of
rationals.

Trianta¢llou [13^15] has generalized the central results of Sullivan theory to an
equivariant context but under the assumption that aG-simplicial set X of ¢nite type
(with a ¢nite group G action) is G-connected and nilpotent, i.e. the ¢xed point
simplicial subsets XH are nonempty, connected and nilpotent for all subgroups
H � G. In this case not only A�X with the induced G-action is considered, but also
the de Rham algebras A�XH of XH for all subgroups H � G. Thus, a functor A�X
on the categoryO�G� of canonical orbits is studied and its componentwise injectivity
is the key property for the existence of an injective minimal modelMinj

X . This is an
equivariant analog of the Sullivan minimal model, for a G-connected simplicial
set X . On the other hand, in [6, 7], Lambre showed that Minj

X could be replaced
by a co¢brant minimal modelMX provided G is the cyclic group Zpk with p a prime
number and examples of co¢brant equivariant minimal models were presented
as well.
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This paper grew out of our attempt to study the results presented in [14] and gen-
eralize the construction of the co¢brant equivariant minimal model for G a ¢nite
Hamiltonian group.

Let DGAk be the category of (homologically) connected (i.e. H0�A� � k for
A 2 DGAk) commutative differential graded k-algebras. It has been proved [1,
10] that this category forms a closed model category in the sense of Quillen [10]
and the most important co¢brant algebras are the minimal ones. From [2], it follows
that this category structure can be extended to the category O�G�-DGAk of
O�G�-algebras provided that G is a ¢nite Hamiltonian group.

We explain how to construct co¢brant minimal models of O�G�-algebras and list
their basic properties. An idea of this construction (for a special case) has been pre-
sented in [6] and based on the notion of a Koszul^Sullivan extension considered
in [5]. Then, some geometric applications are presented. For any G-connected
nilpotent simplicial set X (of ¢nite type) we can consider polynomial forms A�XH

for all subgroups H � G to obtain the O�G�-algebra A��X � over the ¢eld Q of
rationals. We show that the co¢brant minimal modelMX of A��X � has the (strong)
homotopy type of its injective minimal model Minj

X considered in [14, 15].

1. Preliminaries

Let k be a zero characteristic ¢eld and DGAk the category of homologically con-
nected commutative differential graded k-algebras. For a map g:B! E in
DGAk, where B is augmented, Halperin [5] considers its `minimal factorization'.
Namely, he de¢nes a minimal KS-extension as a sequence of augmented DGAk's
E : B ÿ!i C ÿ!p A such that

(i) A is a free graded algebra generated by a graded vector subspace X � A;
(ii) there is a commutative diagram of algebra homomorphisms

where e:A! k is the augmentation map;
(iii) there is a homogeneous basis fxaga2I of X indexed by an ordered set I with

d�xa� 2 B 
 A<a and deg xb < deg xa implies b < a, where A<a is the subalgebra
of A generated by the xb with b < a.

In [5] the following result is proved.
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THEOREM 1.1. For any map g:B! E of connected DGAk's, where B is augmented,
there is a unique (up to isomorphism) minimal KS-extension

E:B ÿ!i C ÿ!p A

and a homology isomorphism r : C ! E such that r � i � g:

The extension E together with the map r:C ! E is called a KS-minimal model of
the map g. In particular, a minimal algebra MA together with a homology
isomorphism rA:MA ! A is isomorphic to the minimal model for A.

Let now G be a ¢nite group and G-DGAk the category of differential graded
algebras with an action of G. Then a notion of a minimal KS-extension may be
considered in G-DGAk as well and in [3] (see also [9, 13]) it has been shown that
an equivariant version of Theorem 1.1 yields a G-KS-minimal model of a map
g : B! E in G-DGAk.

Let O�G� be the category of canonical orbits; its objects are the left cosets G=H as
H ranges over all subgroups of G and morphisms are the equivariant maps
G=Hÿ!G=K with respect to left translation. Following [8], we de¢ne a partial order
(which is crucial for the sequel) on the set Is�O�G�� of isomorphism classes G=H of
objects G=H in O�G� by

G=HWG=K if O�G��G=H;G=K� 6� ;:

This induces a partial ordering on the set Is�O�G��. We say that G=H < G=K if
G=HWG=K and G=H 6� G=K . The group G is ¢nite, so O�G� is a co¢nite category
(i.e. eachG=H isomorphism class of an elementG=H has ¢nitely many predecessors).
Thus, for any G=H 2 ObO�G� we can de¢ne its height as the maximum length of a
chain G=H0 < � � � < G=Hn � G=H.

Denote by O�G�-DGAk the category of covariant functors from the category O�G�
to the category DGAk. Objects of O�G�-DGAk are called O�G�-algebras.

Throughout the rest of this section, G will be a ¢nite Hamiltonian group (i.e. each
subgroup of G is normal). In light of [4, Corollary 10.3.4] any ¢nite Hamiltonian
group is nilpotent and the key example of a non-abelian ¢nite Hamiltonian group
is the quaternion group. A full description of these groups has been presented
by Hall in [4, Theorem 12.5.4]. Observe that for such a group G the automorphism
group Aut�G=H� of any objectG=H inO�G� can be identi¢ed with the quotient group
G=H. Moreover, any map f : G=H ! G=K in O�G� determines an element g 2 G
with gÿ1Hg � K and an epimorphism f̂ : G=H ! G=K given by f̂�xH� �
gÿ1xgK for any xH in G=H. Consequently, we may state that the category O�G�
has the additional property (useful in the construction below).

For any map f : G=H ! G=K in O�G�, there is an epimorphism f̂ : G=H ! G=K
with f � g � f̂�g� � f for all g in Aut�G=H� � G=H and ccf � ĉf̂ for a map
c : G=K ! G=L in O�G�.
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For a given A in O�G�-DGAk and a map f : G=H ! G=K there is an action of the
quotient group G=H on A�G=K� and A�f� : A�G=H� ! A�G=K� is an G=H-map.
Denote by If�G=H��A� the ideal in A�G=H� generated by elements aÿ ga, for
a 2 A�G=H� and g 2 ker f̂. Then Af�G=H� � A�G=H�=If�G=H��A� is an object in
G=K-DGAk and the induced map Af�G=H� ! A�G=K� preserves the G=K-action.

For a ¢xed G=K in Ob �O�G��; let O�G�G=K be the category, where objects are pairs
�G=H;f�, where f : G=H ! G=K is a non-isomorphism and maps from �G=H1;f1�
to �G=H2;f2� are determined by maps c : G=H1! G=H2 such that f2c � f1.

We also have a functor AG=K : O�G�G=K ! DGAk such that AG=K �G=H;f� �
Af�G=H�. Hence A�G=K� � lim! O�G�G=K

AG=K is an object in G=K-DGAk and there

is the induced G=K-map r�G=K� : A�G=K� ! A�G=K�. The algebra A�G=K� is
augmented and we may take the G=K-KS-minimal model

of the map r�G=K�.
We say that an objectM inO�G�-DGAk isKS-minimal ifM�G=H� � fM�G=H� for

any object G=H 2 Ob �O�G��. We recall from [2] that the category O�G�-DGAk is a
closed model category in the sense of Quillen [10] with respect to the following three
classes of maps. A map f : A! B in O�G�-DGAk is called a weak equivalence (resp.
¢bration) if for all G=H 2 Ob �O�G�� the maps f �G=H� : A�G=H� ! B�G=H� are
homology isomorphisms (resp. surjections) in the category DGAk. A map
f : A! B is a co¢bration if it has the left-lifting property with respect to all maps
which are both ¢brations and weak equivalences, i.e. trivial ¢brations.

PROPOSITION 1.2. If G is a ¢nite Hamiltonian group, then any KS-minimal object
M in O�G�-DGAk is co¢brant.

Proof. Consider a commutative diagram

in O�G�-DGAk, where k is the constant O�G�-algebra determined by the ¢eld k and
p is a trivial ¢bration. We proceed inductively with respect to height of objects
in O�G�. For an object G=H 2 Ob �O�G�� of height 0, there is a map
b�G=H�:M�G=H� ! D�G=H� such that p�G=H� � b�G=H� � a�G=H�, since
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M�G=H� is G=H-KS-minimal. Suppose now that for all G=K 2 Ob �O�G�� of height
smaller than height of G=H there are maps b�G=K�:M�G=K� ! A�G=K� such that
p�G=K� � b�G=K� � a�G=K�. Hence, we get a map b�G=H�:M�G=H� �
lim! O�G�G=H

MG=Hÿ!D�G=H�. Then, in the commutative diagram

there is a ¢ller b�G=H� since the mapM�G=H� !M�G=H� is a co¢bration in the
category G=H-DGAk. &

2. The Main Result

Let A be in O�G�-DGAk and let r :M!A be a weak equivalence, where M is
KS-minimal. Then M is called the KS- (or co¢brant) minimal model of A. Pro-
position 2.2 below (cf. [1, 6]) implies that this de¢nition is meaningful. First,
however, we establish a lemma that plays an important role in the proof of this
proposition.

LEMMA 2.1. If G is a ¢nite Hamiltonian group, then for a diagram in O�G�-DGAk

commutative up to homotopy

where q is a co¢bration and f a weak equivalence, there exists an arrow gmaking this
diagram commutative up to homotopy.

Proof.Using [2, Theorem 1.3], we may factor the map f as C ÿ!
q0

C0 ÿ!
p

Dwith q0 a
trivial co¢bration and p a trivial ¢bration. Every object in O�G�-DGAk is ¢brant,
hence by [10] the map q0 : C ! C0 has a homotopy inverse q00 : C0 ! C. But the
map q : A! B is a co¢bration, so there are maps b0 : B ! D and g0 : B ! C0 such
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that b ' b0 and the diagram

strictly commutes. Then g � q00 � g0 is the required map. &

PROPOSITION 2.2. Let G be a ¢nite Hamiltonian group and let M and M0 be
KS-minimal O�G�-algebras, and r :M!A, r0 :M0 ! A be weak equivalences.
Then:

(1) there is an isomorphism y :M!M0 in O�G�-DGAk such that
r0�G=H� � y�G=H� ' r�G=H� in the category G=H-DGAk for all
G=H 2 Ob�O�G��;

(2) if ŷ :M!M0 is a map in O�G�-DGAk such that r0�G=H� � ŷ�G=H� ' r�G=H�
in the category G=H-DGAk then ŷ is an isomorphism and
ŷ�G=H� ' y�G=H� in the category G=H-DGAk; for all G=H 2 Ob�O�G��.

Proof. (1) We again proceed inductively with respect to height of objects in
Ob �O�G��. If G=H 2 Ob �O�G�� has height 0, then M�G=H� and M0�G=H� are
G=H-minimal and by [5, Proposition 4.3] there is an G=H-isomorphism
y�G=H� :M�G=H� !M0�G=H� such that r0�G=H� � y�G=H� ' r�G=H� in the cat-
egory G=H-DGAk.

Suppose that for all G=K 2 Ob �O�G�� of height smaller than that of G=H, there
exists y�G=K� :M�G=K� !M0�G=K� such that r0�G=K� � y�G=K� ' r�G=K� in
the category G=K-DGAk and the diagrams commute

for G=L < G=K . Then, we obtain the induced isomorphism y�G=H� :
M�G=H� !M0�G=H�. But the map a�G=H� :M�G=H� !M�G=H� is a co¢bration
in the category G=H-DGAk and r�G=H� :M�G=H� ! A�G=H� is a weak
equivalence, hence by Lemma 2.1 there is an G=H-map
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y0�G=H� :M�G=H� !M0�G=H� such that the diagram

commutes up to homotopy. In particular, y0�G=H� � a�G=H� ' a0�G=H� � y�G=H�.
But the map a�G=H� is a co¢bration, hence there is a map y�G=H� such that
y0�G=H� ' y�G=H� and y�G=H� � a�G=H� � a0�G=H� � y�G=H�. The maps a�G=H�
and a0�G=H� are G=H-KS-minimal extensions and y�G=H� :M�G=H� !
M0�G=H� is an isomorphism, hence by [5, Proposition 4.6] the map y�G=H� is
an isomorphism.

(2) If G=H 2 Ob �O�G�� has height 0, then M�G=H� and M0�G=H� are
G=H-minimal and by [5, Proposition 4.3] the map ŷ�G=H� is an G=H-isomorphism
and y�G=H� ' ŷ�G=H� in the category G=H-DGAk.

Suppose that, for all G=K 2 Ob �O�G�� of a height smaller than that of G=H, the
maps ŷ�G=K� are G=K-isomorphisms and there exists an G=K-homotopy
y�G=K� ' ŷ�G=K�. Then the diagram

satis¢es the hypothesis of Theorem 10.4 in [5]; hence y�G=H� ' ŷ�G=H� in the cat-
egory G=H-DGAk and the map ŷ�G=H� is an isomorphism. &

We now show that the co¢brant minimal models exist.

THEOREM 2.3. Let G be a ¢nite Hamiltonian group. Then for anyA inO�G�-DGAk

there exist a co¢brant equivariant minimal model MA and a weak equivalence
r :MA ! A.

Proof. For any A in O�G�-DGAk, we construct its co¢brant equivariant minimal
model MA as follows.

(1) If G=H 2 Ob �O�G�� has height 0, then forMA�G=H� take the G=H-minimal
model of A�G=H�. Let r�G=H� :MA�G=H� ! A�G=H� be a ¢xed G=H-weak
equivalence.

(2) Suppose that for all G=K 2 Ob �O�G�� of a height smaller than the height of
G=H there are G=K-weak equivalences r�G=K� :MA�G=K� ! A�G=K� such that
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for G=K1;G=K2 < G=K with G=K1 < G=K2 all diagrams

commute. To get MA�G=K� and a G=H-weak equivalence r�G=H� :
MA�G=H� ! A�G=H�, consider the induced G=H-map r�G=H� :MA�G=H� !
A�G=H� and its G=H-KS-minimal model

&

At the end we present brie£y some geometric applications of co¢brant minimal
models. The de Rham functor A� of polynomial forms determines the O�G�-algebra
Q-algebra A�X such thatA��X ��G=H� � A��XH � for a G-simplicial set X andH � G.

We say that a G-simplicial set X is G-connected and nilpotent (resp. pointed) if all
¢xed point simplicial subsets XH are connected and nilpotent, for all subgroups
H � G (resp. XG 6� ;). By [14, 15], for any G-connected pointed simplicial set X
of ¢nite type there is the (componentwise) injective minimal modelMinj

X and a weak
equivalence Minj

X !A��X �.
The co¢brant minimal model MX of the O�G�-algebra A��X � is called the

co¢brant minimal model of a G-simplicial set X . A slight variation of the con-
struction in [7, 4.9. Exemples] (cf. also [6, IV.3 - Exemples]) allows to present

EXAMPLE 2.4. (1) Let X � S3 � � � � � S3 be the product of six copies of the
three-dimensional sphere S3 with an action of the cyclic group Z6 like in the case
4 of [7, Exemples 4.9]. Then the injective and co¢brant minimal models of X
coincide.

(2) Let X � S4
a _ S4

b _ S4
c _ S4

d _ S7
e [o1 e

8
1 [o2 e

8
2 be a space constructed like in

case 6 of [7, Exemples 4.9] and with a similar action of the cyclic group Z2. Then
the injective and co¢brant minimal models of X do not coincide.

From Proposition 2.2 one sees that the co¢brant minimal models of Minj
X and

A��X � are isomorphic. Hence there is a weak equivalence r :MX !Minj
X . By [14,

Proposition 5.5] there is a map r0 :Minj
X !MX such that r � r0 ' idMi

X
: Thus

the map r0 is a weak equivalence and by [2, Corollary 1.5] and Proposition 2.2 there
is a map r00 :MX !Minj

X such that r0 � r00 ' idMX . In the light of [14, 15], for
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nilpotent G-connected pointed simplicial sets X , Y of ¢nite type, there is a bijection
�X ;Y �G � �Minj

Y ;Minj
X � provided Y is rational, where �X ;Y �G is the set of pointed

G-homotopy classes of G-maps from X to Y . We have thus proved the following
proposition.

PROPOSITION 2.5. Let G be a ¢nite Hamiltonian group. If X and Y are nilpotent
G-connected pointed simplicial sets of ¢nite type, then there is a bijection
�X ;Y �G � �MY ;MX �; provided Y is rational.

A construction of the co¢brant equivariant minimal model of any nilpotent
G-disconnected simplicial set requires more subtle methods and will be published
elsewhere.
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