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0. Introduction

Let a meromorphic differential equation

x' = A(z)x, A(z) = z'-1 f Asz-° (0.1)
s = O

be given, where r is an integer, and the series converges for \z\ sufficiently large. Then it
is well known that (0.1) is formally satisfied by an expression

H(z) = F(z)zLexp{Q(z)}, (0.2)

where F(z) is a formal power series in z"1 times an integer power of z, and F(z) has an
inverse of the same kind, L is a constant matrix, and

e(z) = diag[g1(4.--^n(z)] (0.3)

is a diagonal matrix of polynomials <j,(z) in a root of z, l^j^n. If, for example, all the
polynomials in Q(z) are equal, then F(z) can be seen to be a convergent series (see
Section 1), whereas if not, then generally the coefficients in F(z) grow so rapidly that
F(z) diverges for every (finite) z. This roughly indicates that it should be essential to
study which of the polynomials are different, and at what "levels" they differ for the first
time:

For every pair j,k, let deg (qj(z) — qk(z)) denote the (rational) exponent of the leading
term of qj(z) — qk(z) as z->oo; if qj(z) — qk(z) is identically zero, let deg(q,(z) — qk(z)) = —oo.
Then let t denote the number of different values of deg(qt{z) — qk{z)) other than - o o
(lrgjgn) . Under various aspects, t indicates how complicated a singularity for the
differential equation the point z = oo is: For example, when calculating the formal
solution (or proving its existence), then the calculations are most effectively done in
several steps, each of which may be considered to correspond to one of the values of
deE (Qj(z) ~ <7*(z))> hence t indicates how many of these steps are needed. Another example
is the proof of the Uniqueness Theorem ([4], pp. 268-272, or [7], pp. 88-96), where t is
seen to be the number of different levels in the so-called "iterated block structure", and

183

https://doi.org/10.1017/S0013091500016667 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500016667


184 W. BALSER

the proof implicitly uses an induction type argument with respect to the levels of this
block structure (a different proof is given in [1], [2] where this becomes more explicit).

These two examples support the suggestion that the nature of the singularity of
solutions of (0.1) may most naturally be explained in several steps corresponding to the
different values of deg(qj(t)—qk(t)) ( l ^ j , k%n). This paper may be visualised as the first
step in this direction: We define formal solutions of first level (Section 2) which
generalise (0.2) in the sense that instead of zLe\p{Q(z)} we allow more general functions
G^z), which however have singularities (at oo) of somewhat simpler nature than those of
the solutions of (0.1). These functions G^z) are fundamental solutions of an "auxiliary"
differential equation which we prove to exist in Section 1. In Section 3 we then prove
existence and uniqueness of fundamental solutions having a given formal fundamental
solution of first level as their asymptotic in sectors of "large" opening and having a
Stokes' phenomenon that corresponds to a "block structure of first level". Whenever the
parameter t=l, our Theorem in Section 3 can be seen to coincide with the Uniqueness
Theorem in [4], [7], and for t > 1, the Uniqueness Theorem could be reproved, using our
Theorem, by induction with respect to t.

In a separate paper we will show that for formal solutions of first level the coefficients
of the formal series F(z) generally grow less rapidly than the coefficients of formal
solutions of the usual type. This will be of importance in representing solutions by
means of Laplace transformation.

The results of this paper are based upon part of the author's Habilitationsschrift [1].

1. An auxiliary differential equation

Throughout this paper, let a fixed, but arbitrary meromorphic differential equation

x' = A(z)x (1.1)

be given, where A(z) is an n x n matrix of functions that are meromorphic at oo; i.e. for
some integer r (the Poincare rank of (1.1)) and some real a^Owe have

A(z) = z'-1 £ Asz's, convergent for \z\>a, Ao^0. (1.2)
s = 0

Then (1.1) is known to have a formal fundamental solution H(z) of the form

tf(z) = V(z)exp{e(z)} (1.3)

with a diagonal matrix Q(z) of polynomials in a root of z without constant terms, and a
formal logarithmic matrix ^(z) having an inverse of the same type (see [6] for the
definition of formal logarithmic matrices and the existence of such formal solutions). In
[3], pp. 201-205, the detailed structure of such formal solutions has been investigated;
here we only need part of the information upon this structure, which we are going to
derive now for the convenience of the reader (for more detailed proofs, however,
compare the paper quoted above).
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Since H(ze2ni) is again a formal fundamental solution of (1.1) (and is even of the same
type) we conclude the existence of a constant, invertible matrix written in the form elniL

such that

H(ze2"i) = H(z)e2i"L; (1.4)

we refer to e2niL as the formal monodromy factor of H(z). Using (1.4), we obtain
exp{Q(z)}e2niLexp{-Q(ze2ili)} = y¥'1{z)y¥{ze2ni), and since the right-hand side is
formally logarithmic, this holds only if the left-hand side is constant; i.e.

Q(ze1") = R-1Q(z)R (1.5)

for some permutation matrix R, and e2itlLR~l commutes with exp{Q(z)}. Therefore,
x¥(ze2xi) = y¥{z)e2'iL, which implies

V(z) = F(z)zL (1.6)

with a formal meromorphic transformation F(z) (i.e. F(z) is a formal power series in z"1

times an integer power of z, and F(z) has an inverse of the same kind).
For any polynomial p(z) in a root of z, let deg p (the degree of p) denote the (rational)

exponent of the leading term of p(z) (as z->oo); if p(z) = 0, let degp = — oo. Then by dl

we denote the maximal degree of the differences of any two of the diagonal elements of

If dt = — oo, then all the polynomials are identical (hence according to (1.5) no roots
occur), and by a scalar exponential shift x = exp{q(z)}x with a polynomial q(z) we can
make the transformed equation x' = A(z)x have a regular singularity at oo, which implies
that F(z) is convergent. Hence in this case, H(z) = F(z)zL exp {q(z)l} is a proper solution
of (1.1) (we use the word proper to distinguish from corresponding formal objects). In
order to exclude these trivial cases, we assume:

(a) Let Q(z) contain at least two different polynomials.

Note that assumption (a) always implies r ^ l , since otherwise oo would be at most a
regular singularity of (1.1), hence Q(z) = O.

In case (a) holds, we may (after possibly rearranging the columns of H(z)) assume
without loss in generality that those diagonal elements of Q(z) having differences of
degree less than dx come consecutively, hence Q(z) may be assumed to have the
following structure:

with p(z) being a (possibly identically zero) polynomial in z, [dx] denotes the largest
integer not exceeding du 6(1)(z) is a diagonal matrix of polynomials in roots of z
(without constant terms) having degrees less than du and

, 1 , . . . ,A I /J (1.8)
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with integer 1^2, distinct complex numbers ll,...,Xl and natural numbers su...,s, (by Is

we throughout denote^the s-dimensional unit matrix for arbitrary natural s). Analysing
(1.5), we see that there exists a unique block permutation matrix Rt (in the block
structure of A; by block permutation matrix we mean a permutation matrix which,
when blocked in a given block structure, has blocks that are either zero or identity-
matrices) such that

Ae2*Ul = R;1ARl, (1.9)

and the permutation matrix RR^1 is diagonally blocked (in the same block structure).
Since e2niLR~l commutes with Q(z), the matrix e2niLRll necessarily commutes with A
(note that RR^1 commutes with A anyway), hence

e2niL = DR1, (1.10)

where D is a constant, invertible, diagonally blocked matrix.

Remark 1.1. Note that the block structure of the matrix A is the block structure of
first level in the iterated block structure which was considered in [1]; [2], pp. 64, 65; [7],
pp. 90-92. If one chooses a convenient a priori ordering of the values ku...,k, (for
example lexicographical ordering; [2], p. 63), then the matrix A and in particular its
block structure can be seen to be formally meromorphically invariant. If not otherwise
specified, we will throughout this paper take ku...,kl to be ordered with respect to an
arbitrary, but fixed a priori given ordering (so that A corresponds uniquely to (1.1)), and
let all the matrices occurring be blocked in the block structure of first level, i.e. in the
block structure of A. If C = [_Cjk] is any constant matrix blocked in the block structure
of first level, then by diagx C we denote the diagonally blocked matrix having the form

For any fixed A as in (1.8) and a fixed rational dlt we define the dominance relation of
first level:

Given a sector S = S(a, /?) = {z;|z|> R, a<argz</?}, we write

j<1k in S iff exp{(A,-kk)z
di}->0 as z->oo in S. (1.11)

(Note that we consider the independent variable z on the Riemann surface of the
Logarithm so that non-integral powers are always uniquely defined by means of zdl

= exp{dt logz}). The set a = a(S) of pairs (j,k) with (1.11) is then transitive (i.e. (hj)ea
and (j,k)e<r implies (h, k)ea) and antisymmetric (i.e., (j,k)ea contradicts with (k,j)ea).

The set of constant matrices C for which

exp{Az'l l}Cexp{-Az''1} = / i n S (1.12)

shall be denoted by ^ ( S ) . It is immediately clear that ^ ( S ) is a group with respect to
matrix multiplication, and if C = [CJk] (l^Lj,k^l) is blocked (with respect to the block
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structure of first level) then C e ^ f S ) iff

(1.13)

For an arbitrary transitive and antisymmetric set a of pairs (j, k) we define "Ufa) to be
the set of constant matrices C satisfying (1.13), and it is easy to see that ^(cr) always is
a group. Finally, by $tf(S) (resp. tftf((x) for general antisymmetric and transitive a) we
denote the set of invertible constant matrices C = [Cjk] (1 ^j,k^I) for which

Cj* = 0 if (/ ,*)#*(/#*, l^ ' . fc^O (1-14)

(with no restriction upon the diagonal blocks). Since every such transitive and
antisymmetric a corresponds to a partial ordering of {1,...,/} and can be extended to
become a complete ordering, then by a renumeration of the numbers A,,..., A, we may
arrange that

(j, k)ea implies j < k,

and in this case we see that matrices C satisfying (1.14) are upper triangularly blocked
(with possibly additional zero blocks above the diagonal). Hence such a C is invertible
iff

diag1C = diag[C11,...,C,J (1.15)

is invertible, and ^ ( C T ) is again a group with respect to matrix multiplication having
the property

diag1(C1C2) = diag1C1diag1C2 for C ^ e * ^ ) . (116)

Since a renumeration of the numbers Au...,l.t is reflected in a block-permutation-
similarity of the matrices in ̂ UXip), we see that (1.15) and (1.16) generalise to arbitrary
numerations of A1;..., Xt.

Given any equation (1.1) satisfying (a), we are now going to show the existence of an
auxiliary equation

x' = A(z)x, A{z) = /-1 £ Asz-\ Ao^0 (1.17)
s = 0

(convergent for |z |>a with suitable a^O), which is formally meromorphically equivalent
to (1.1), i.e. for some formal meromorphic transformation T(z) we have

A(z)=T-\z)A{z)nz)-T-\z)T\z), (1.18)

and in a sense (1.17) has the same Stokes' phenomenon as (1.1), as far as the diagonal
blocks of the Stokes' multipliers are concerned, whereas the off-diagonal blocks of the
Stokes' multipliers of (1.17) are zero.
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188 W. BALSER

To do so, suppose that for some natural N, reals ao, . . . , !*^! are given with

(1.19)

and define

a_1=aA r_i-27r , aiV=a0 + 27i, <xN+1=oi1+2n. (1.20)

Then, if we take N and ct0,..., <xN -1 in a way that

(1.21)

is sufficiently small and use a well known Theorem ([10], p. I l l ) , there exist fundamental
solutions Yv(z) of (1.1) such that for v = 0,...,N-l (with G(z) = zLexp{Q(z)})

Yv(z) = H(z) = F(z)G(z) in S(«v_x,av + , ) (1.22)

in the sense that the function Y,(z)G~1(z) has the formal series F(z) as its expansion
uniformly in every closed subsector of S(av_1; av+1). Defining

YN(z)=Y0(ze-2*i)e2«iL

we conclude, using (1.4), that (1.22) holds also for v = N.

Proposition 1. Let any equation (1.1) satisfying (a) be given. Then there exists an
equation (1.17), which is formally meromorphically equivalent to (1.1) by means of a
suitably fixed transformation

x=T(z)x,

such that the following holds:

For any fixed formal fundamental solution H(z) o/(l . l) which is of the form (1.3), with
Q(z) as in (1.7), define a formal fundamental solution H(z) of (1.17) by

H(z)=T(z)H(z).

Then for every selection of reals <x0,...,aw_1 as in (1.19) with d (as in (1.21)) sufficiently
small, and every choice of fundamental solutions Y0(z),..., l^-i," YN(z)= Y0(ze~2™)elniL of
(1.1) which satisfy (1.22) for v = 0,...,N, there exist fundamental solutions
yo(z),..., ?w_1(z); YN(z)= Y0(ze-2ni)e2"iL o/(1.17) satisfying

Yv(z)^H{z) in S(av_l5av+1) (O^vrgJV), (1.23)

such that the matrices Wv= Y'1^)?,.^) and Wv=Y~1(z)Yv-1(z) are related by

^ i (1.24)
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Corresponding to a fixed equation (1.1), the auxiliary equation (1.17) is defined up to
meromorphic equivalence.

Proof. Suppose that a , , . . . . .^ - ! and Y0,...,YN_l as described above are arbitrarily
given (with <x_1; aN, aN+l, and YN correspondingly defined), and let (1.24) be regarded as
the definition of Wv (1 ^ v^N) . From (1.22) we conclude

G(z)WvG'l(z) = I in S(av_l5av) (l^v^N), (1.25)

and since z±L can be estimated by a power of z, we find that (1.25) is equivalent to

exp{e(z)}(WW)exp{-e(z)}^0 in S(av_l5av) (1.26)

for v=l , . . . ,N. Since Q(z) is diagonal, (1.26) remains true when replacing Wv by Wv,
hence

G(z)WvG~l(z)^I in S(av_!,av) ( lgvgJV). (1.27)

Property (1.27) enables us to apply a Theorem due to Y. Sibuya [8], [9] (see also [4],
pp. 280-282) showing the existence of an equation (1.17) having fundamental solutions
%[z),..., ?Af_1(z); YN(z)=Y0(ze-2ni)e2niL satisfying (1.23) (for some formal fundamental
solution H(z) of (1.17) of the form H(z) = F(z)G(z) with a formal meromorphic
transformation F(z)) and Yv-l(z)=Yv(z)Wv (l^v5£N), and it is immediate to check that
(1.17) is defined up to meromorphic equivalence and is formally meromorphically
equivalent to (1.1) by means of T(z)=F{z)F~1(z).

The constructed equation does not depend upon the choice of H(z), since every other
formal fundamental solution of the required form may be written as H(z)C with a
constant, invertible C that commutes with Q(z), i.e. is necessarily diagonally blocked. If
we correspondingly replace H(z), Yy{z), %{z) by H(z)C, Yv(z)C, %(z)C, resp., then (1.24)
remains true (for the matrices C~lWvC, C~lWvC in place of Wv, Wv).

To complete the proof, it remains to assure that for different choices of a.0,...,aN..l,
Yo,..., yN_j we may take the same auxiliary equation (1.17). To do so, assume first that
we keep a o , . . . , ^ . . ! fixed but replace Yo,..., YN_t by Y0C0,...,YN_lCN-l. Then, in order
to make the relation YN(z)= Y0(ze~2*')e2itiL hold for the new matrices as well, we replace
YN(z) by YN(z)CN, CN = e-2niLC0e

2"iL. From (1.22) we conclude that yv(z)Cv = //(z) in
S(av_j,av+1)iff

- Q ( z ) } ^ / i n S(av_,,av+1) (1.28)

for v = 0,..., N — 1 (note that then it automatically follows for v = N according to the
definition of CN). With Cv = diag1 Cv (O^v^Af) we conclude as above that (1.28) remains
true for Cv instead of Cv, hence Yv(z)Cv = H(z) in S(av_,,av + 1) (O^v^N; note that due
to (1.10) we have CN = e-2niLCoe

2"iL, hence YN(z)CN= ?0{ze~2lti)C0e
2*iL). Using (1.7), we

find that Cv, Wy, C v _ , e<af*(S(av_1,av)) for every fixed v=l,...,N, hence using (1.16) we
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obtain C~lWvCv-1=diagl(C~iWvCv..l). This shows that, corresponding to
Y0C0,..., Yfi-iCn-i, the solutions %C0,..., YN_lCN_l have all the properties required
in Proposition 1.

To show the independence of the auxiliary equation of the choice of ao,...,aw_1, we
may restrict to the two cases of either deleting one of these numbers or introducing an
additional one; any two choices <x0,...,aN_! and <x0,...,<*#•_! may be related by finitely
many steps of this "basic" kind. Furthermore, in both cases we may choose particularly
convenient solutions Y0,...,YN_l (since we already know the independence of (1.17) of
the choice of solutions). In the first case, assume that we wish to drop the number a^
with 1^/z^/V —2 (similar arguments hold for the remaining cases as well). To do so,
there have to exist fundamental solutions of (1.1) having H(z) as their asymptotic in the
larger sectors S(a^_2,a^+i), resp. S(aM_1,a/1 + 2), and if so, we may take these solutions to
be Yfl_l = Y/l, resp. Y)1 + l in the original situation. Then in the new situation, a choice of
solutions may be Y0(z),...,Y)l^l(z), Yll+l(z),...,YN{z), and it is immediate that
?0(z),..., 1^_1(z), %+l(z),..., %{z) have all the properties desired in the Proposition. In
the second case, it is even easier to see how to proceed (in a sense, invert the steps of the
first case).

Remark 1.2. If, for example, an equation (1.1) is given with r ^ l and Ao having all
distinct eigenvalues, then

where Ao is diagonal and contains the distinct eigenvalues of Ao, and 2{1)(z) is a
diagonal of polynomials in z without constant terms and degrees less than r. Hence (1.7)
holds with p(z) = 0, dx = r, A = A0/r. Consequently, the block structure of first level has all
one-dimensional blocks. Since it follows from (1.25) that Wv always has ones on the
diagonal, we see that in this case WV = I (v = l,...,N) follows. A formal solution in this
case may be of the form

//(z) = F(z)zA'exp{Q(z)}

where A' is diagonal and F(z) is a power series in z'1 with leading term /. Hence we
may take

as an auxiliary equation, and the solution 7v(z) = zA' exp {Q(z}} (O^v^JV), whatever
choices for a.0,...,a.N_l we make.

Another case, in which the auxiliary equation can be taken to be the logarithmic
derivative of G(z) — zL exp {Q(z)} is whenever there is only one level in the iterated block
structure. In every other case, Proposition 1 proves the existence of an auxiliary
equation without saying how to calculate it. Nevertheless, the solutions of the auxiliary
equation are simpler than those of the original equation in the sense that they show a
Stokes' phenomenon that is diagonally blocked. Using the results of [5], one can show
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that an auxiliary equation is root-meromorphically reducible to a diagonally blocked
equation (see also Section 4).

2. Formal solutions of first level

For a given equation (1.1) satisfying (a) and a corresponding auxiliary equation (1.17),
a formal fundamental solution of first level will be defined to have the form H^z)
= T(z)G1(z), where T(z) is as in Proposition 1 and Gj(z) is a fundamental solution of
(1.17) having a particularly convenient form. The following Lemma 1 assures the
existence of such G^z):

Lemma 1. Let an equation (1.1) satisfying (a) be given, and consider any auxiliary
equation (1.17) corresponding to (1.1). Then there exists a fundamental solution Gx(z) of
(1.17) of the form

G1(2) = G'1»(z)exp{p(z)/nz['"]+1+Az'"}, (2.1)

where p(z), du and A are as in (1.7), and Gn\z) is an invertible matrix such that both
G(l)(z) and its inverse are of order smaller than du i.e. for every sufficiently small e > 0

exp{-|z|<J l-£}[G(1)(z)]±1->Oasz->oo inS(-oo,oo) (2.2)

(uniformly in every closed sector of finite opening).

IfGi(z) = Gl(z) C for constant, invertible C, then Gx(z) has the same form as Gt(z) iff C
is diagonally blocked.

Proof. Using the same notations as in Proposition 1, define Gx(z)=Y0{z)C0 for
constant, invertible, diagonally blocked Co. Then

Gv{z) = %(z)Cv, Cv =WV... WlC0(l g v ^ J V - 1 ) ,

and all the Cv are diagonally blocked (since the Wv are).

Using (1.23), we find

| |[G1(z)exp{-Q(z)}]±1| | = O(|zni|exp{e(z)}Cv
±1exp{-e(z)}| |

in S(av,av+1) ( O g v ^ N - 1 ) for some real c > 0 . Defining Gil){z) by (2.1) and using (1.7)
together with the fact that A and Cv commute, we have for every sufficiently small e>0

r - « } ) a s z->oo in S(a.uaN) (2.3)

uniformly in every closed subsector. From
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we obtain (replacing z by ze2r" and using the definition of G^z))

G1(ze2«i) = G1(z)C;le2«iL WN... ^ C o .

From (1.10) and the fact that RtW/,... W^CQR^1 is again diagonally blocked we
conclude

G^ze^^G^D.R, (2.4)

with a constant, invertible, diagonally blocked matrix D1. Therefore, using (2.1) and
(1.9), we find Gw{ze2'i) = Ga\z)D1R1, and from (2.3) and the fact that every closed
sector of finite opening can be covered by finitely many closed subsectors of the sectors
S(a_! +2kn,ocN + 2kn) (with arbitrary integer k), we obtain (2.2).

Now suppose Gl(z) = G1(z)C with constant, invertible C. Then defining G{1\z)
analogously to (2.1), we see that [G ' 1 '^ ) ] 1 1 is of order less than d^ iff for every
sufficiently small E > 0

||exp{Azdl}C±1exp{-Azdl}|| = o(exp{|z|d'-£})

as z-*oo in S( — oo, oo), i.e. iff C is diagonally blocked.

Remark 2.1. In the distinct eigenvalue case, i.e. if (1.1) is given with r ^ l and Ao

having all distinct eigenvalues, then one may take Gl(z) = G(z) = zA exp{Q(z)} (compare
Remark 1.2), and every other choice, corresponding to the same auxiliary equation, is
Gi(z)D with a constant, invertible, diagonal D. This freedom corresponds precisely to
allowing polynomials in Q(z) having non-zero constant terms. We therefore realise that
in this simple case there is a natural choice for G^z) (by taking polynomials without
constant terms). In general, it may not be clear how to make a natural choice, however,
it will be not essential for our purposes to make any particular choice.

Remark 2.2. Note that it follows from the proof of Lemma 1 that every fundamental
solution G^z) of an auxiliary equation satisfying (2.1), (2.2) has the following property:

For every sector S of sufficiently small opening there exists a diagonally blocked,
constant, invertible matrix C = C(S) such that G1(z)Cexp{ — Q(z)} and the inverse
exp{g(z)}C~1G;~1(z) can be estimated by a power of \z\ as |z|->oo in S (uniformly in
every closed subsector).

Given an equation (1.1) satisfying (a), we now define a formal fundamental solution of
first level to be of the form

Hi(z)=T1(z)G1(z) (2.5)

where G±{z) may be any fundamental solution (of any auxiliary equation x' = A(z)x
corresponding to (1.1)) which satisfies (2.1), (2.2), and T^z) is any formal meromorphic
transformation which may be taken as T(z) in Proposition 1.
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Note that H((z) does not determine the factors Tt(z), G^{z), since if T(z) is any proper
meromorphic transformation, then H(z) = Tl(z)Gl{z) with Ti(z) = Tl(z)T~l(z), Gx(z)
= T(z)G1(z) again satisfies all the conditions (for a generally different auxiliary equation).
On the other hand, it appears reasonable to say that whenever in some sense Ti^G^z)
= Ti(z)G!(z), then Gl(z)Gll(z)=f'[i{z)Tl{z) (in the sense that til(z)Tl(z) converges for
sufficiently large |z| and is the Laurent series representation of Gi{z)Gil(z)). To make
these arguments precise, we think of a formal fundamental solution of first level to
correspond to a pair T^{z), G^z), and two such pairs Tt(z), G^(z) and Ti(z), G^z) are
defined to be "equal" (in the sense of giving the same Hy{z)) iff T1(z)=T1(z)T'l(z), G^z)
= T(z)Gl(z) for some proper meromorphic transformation T(z). We will refer to the pair
Tx{z), Gx{z) as a factorisation of H(z). Choosing a different factorisation can also be
visualised as choosing a different auxiliary equation.

Remark 2.3. Let H1(z)=T1(z)Gl(z) be a formal fundamental solution of first level of
any differential equation (1.1) satisfying (a), and let e2mLl be its formal monodromy
factor, i.e. the unique constant, invertible matrix satisfying

Hl{ze1*i) = Hl{z)e2niLi. (2.6)

Then, since T^z) is "single valued", i.e. T^ze^^T^z), we have G1(ze2n) = G1(z)e2"iLl,
and from the proof of Lemma 1, especially from (2.4), we conclude

e2'iLi=D1Rl, (2.7)

with R1 as in (1.9) and Dt diagonally blocked, constant, invertible.

Given any formal fundamental solution of first level Hl(z)=Tl(z)Gl(z) of (1.1) and any
sector S, then a (proper) fundamental solution X(z) of (1.1) is said to have H^z) as its
asymptotic in S (to be asymptotic to Hx{z) in S) iff

X{z)Gll{z)=T1{z) as z-*oo in S

(uniformly in every closed subsector of S of finite opening), and in this case we write

X(z) = //!(z)inS. (2.8)

Note that this definition does not depend upon the particular factorisation of Hx(z) into

Using Proposition 1, we now show that to a given formal fundamental solution of
first level, we may always find fundamental solutions having the formal one as their
asymptotic in certain sectors and showing a particularly convenient Stokes'
phenomenon:

Proposition 2. Let an equation (1.1) satisfying (a) be given, and let Hl(z) = Tl(z)Gl(z)
be a fixed, but arbitrary formal fundamental solution of first level of equation (1.1).
EMS—F
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Furthermore, let reals ao,...,aw_1 as in (1.19) be given and define <X-l,aN,aN+l as
in (1.20). Then if S (as in (1.21)) is sufficiently small, there exist fundamental solutions
Y0(z),..., YN^v(z); YN(z)= Y0(ze-2ni)e27:iLl (with e2niLi as in (2.6)) such that

(2.9)

and

diag, WV = I, with Wv= Y;1(z)Yv_1(z) (l^v^N). (2.10)

Remark 2.4. In the distinct eigenvalue case (see Remarks 1.2 and 2.1) we may take
Hl(z) = F(z)zA exp{Q(z)} as a formal fundamental solution (of first level as well as in the
usual sense), and Proposition 2 is seen to hold trivially since Wv automatically has ones
on the diagonal. More generally, if in the iterated block structure there is only one level
occurring, then again Proposition 2 can be seen to hold trivially. Hence the main case is
that two or more levels occur in the iterated block structure.

Proof of Proposition 2. Let H(z) be a formal fundamental solution of (1.1) (in the
usual sense) that satisfies (1.3), (1.7), and define a formal fundamental solution H(z) of
the auxiliary equation x' = A(z)x, A(z) = G'1(z)Gi1(z), by H(z) = T1(z)H(z). Furthermore,
let %(z),...,YN_1(z); %(z)=%(ze-2ni)e2niL (with e2niL being the formal monodromy
factor of H(z)) be fundamental solutions of (l.l) with

t(z) = H(z) in

(which exist if 3 is sufficiently small). Then according to Proposition 1 there exist
fundamental solutions %(z),..., YN^l(z); YN(z)=Y0(ze~lni)e2*iL of x' = A(z)x such that

Yv(z) = H(z) in

and

According to Lemma 1 resp. its proof, we see that Gl(z)=Y0(z)C0,C0 diagonally
blocked, invertible, and therefore

If we define

Yv(z)=Yv(z)Cv (O

then Yy(z) are fundamental solutions of (1.1) with
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hence (2.9) follows. Since

YN(z)= %{ze-™)e2*iLCN= Y0(ze-2«)C; * e2«iLCN,

and

G,{ze2") = YN(ze2«)CN = Y0(z)e2*iLCN

we conclude e2niLi = Q ' e2niLCN, hence

Finally, Wv=Y~l(z)Yv_l(z) = C~lWvCv.u and since both Cv and Cv_! are diagonally
blocked and Wv = diagi Wv, we conclude

Remark 2J5. One can show that the existence of solutions Y0(z),..., YN(z) as in
Proposition 2 is characteristic for formal fundamental solutions of first order:

Let G, (z )beannxn matrix analytic for \z\ sufficiently large, satisfying (2.1), (2.2) and

then it is easy to check that (2.7) holds. If for any choice of reals cio,...,ctN_l as in (1.19)
with a_j, otjy, aN+1 as in (1.20), with 5 (as in (1.21)) sufficiently small there exist
fundamental solutions Y0(zl...,YN.l(z); YN(z)=Y0(ze-2Ki)e2niLl such that

diagl Wv = I,WV= Y;l(z)Yy^(z) (1 g vgN)

and for some formal fundamental transformation T^

then the function A{z) = G\(z)Gil(z)^Tl\{z)A{z)TUv{z)-Tl\{z)T'lv(z) is single-valued
and has Tf I(z)/l(z)T1(z) —Tf 1(z)T'1(z) as its asymptotic expansion in a full
neighbourhood of oo, hence x' = A(z)x is a meromorphic differential equation and
formally meromorphically equivalent to (1.1) by means of x = T1(z)x. To show that it is
an auxiliary equation corresponding to (1.1), let a formal fundamental solution H(z) (in
the usual sense) of (1.1) satisfying (1.3), (1.7) be given, and define H(z) by H{z)
= Tl(z)H(z). Then consider fundamental solutions Y0(z),...,%_ ^z); YN(z)
= Y0{ze-2%i)e2'il of (1.1) (with H(ze2") = H(z)e2'iL) satisfying

https://doi.org/10.1017/S0013091500016667 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500016667


196 W. BALSER

(which exist if d is sufficiently small), and define

Using (2.1), (2.2), and (1.7) we conclude for sufficiently small e>0

exp {Azdl}Cv exp { - Azdl} = o(exp {\z\dl ~e})

as z->oo in S(av_1,av+1) which implies Cve<&1
+(S(av_1,av+1)) (O^v^N). Therefore Cv

= Cv(diagi Cv)~
ie%i(S(ixv_1, av+1)) which implies

exp{Q(z)}Cvexp{-e(z)} = / in % , . „ « , + , ) (O^v^JV)

and we may therefore assume that CV = I (otherwise, replace %(z) by %(z)Cv which also
have H(z) as their asymptotic in S(av_1,av+1) (O^v^N). Hence Cv is diagonally
blocked, and the solutions %(z) = Gl(z)C~1 have the properties (1.23) and (1.24) which
shows that x' = A (z)x is an auxiliary equation (recall from the proof of Proposition 1
that it suffices to consider one choice of <x0,...,«#_! and Yo,..., YN^t), and therefore
Ht(z) is a formal fundamental solution of first level.

3. Normal solutions of first level

In the situation of Proposition 2, we call the solutions Y0(z),..., YN^x{z); YN(z)
= Y0(ze~2n')e2*iLi a system of solutions of first level corresponding to H^z) and
<x0,..., ajv-jj the matrices Wl,...,WN are named a connection system of first level. Using
these notations, Proposition 2 can be thought of as showing the existence of systems of
solutions of first level, and we are going to determine the freedom in selecting such a
system:

Lemma 2. Let any equation (1.1) satisfying (a) be given, and let Hl{z)=Tl(z)Gl{z) be
any formal fundamental solution of first level of equation (1.1).

(a) For any sector S we have Ce^l^S) ij^diag, C = I and

G 1 ( z ) C G 1 " " 1 ( z ) = 7 inS (3.1)

(uniformly in every closed subsector of S of finite opening).

(b) Corresponding to Hr(z) and reals ao,...,aN-l, assume the existence of a system of
solutions of first level

(with H1(ze2*i) = Hl(z)e2niLi). Then for Wv= Y;1(z)Yv^1(z) we have

(3.2)
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and ?0(z),...,?w_1(z); YN{z) = %(ze-2tti)e2*iLi is a system of solutions of first level
corresponding to Hx(z) and ao,...,aN_l iff the matrices Cv=Y~1(z)Yv(z) (O^v^JV) satisfy

1) (3.3)

and

CN = e-2«iL>C0e
2«iL> (3.4)

(in which case (3.3) follows for v = N as well).

Proof, (a) Using (2.1), (2.2), we obtain for every C with (3.1) (for sufficiently small
£>0)

£}) in S,

hence if d i a g j C ^ , we obtain Cefy^S) (compare (1.13)). To prove the converse, we
may without loss in generality assume that the opening of S is sufficiently small to apply
Remark 2.2 (since otherwise every closed subsector of S with finite opening may be
covered by finitely many sectors of arbitrarily small opening). Then according to
Remark 2.2 there exists a constant, invertible, diagonally blocked matrix Cs such that
G1(z) = Fs(z)exp{g(z)}Cs 1 with an invertible, analytic Fs(z) (for zeS) such that F$l(z)
can be estimated by a power of z (as z->oo, uniformly in every closed subsector of S).
Hence (3.1) is equivalent to

exp{Q(z)}Cs\C-I)Cs exp{-g(z)}sO in S. (3.5)

Since Cs is diagonally blocked, we see (using (1.13))

hence tiCeW^S), then

exp{\zdl}CslCCsexp{-Azdl} = I in S.

Using (1.7) and diag^Cj iCCs) = I, we obtain (3.5), which proves (3.1).

(b) From (2.9) we obtain

'iz^I in S(o,_1,av) ( lgv^AO

which together with (2.10) implies (3.2) by means of Part (a).
Next, assume Cv satisfying (3.3), (3.4) be given, and define ?v(z)= 7v(z)Cv (O^v^JV),

then %(z)= Y0(ze-2ni)e2"iLl. Using (a) we obtain

Gx{z)CyG:l{z) = I in S(av_1 ;av + 1) (3.6)

for v = 0 , . . . , N - l , and from (3.4) and Gl(ze2*i) = G1(z)e2niLl we see that (3.6) holds for v
= JV as well. Furthermore, using (2.7) and the fact that R{ is a block permutation
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matrix, we see that diagj CN = e~2*iLl(diagl C0)e
2%iLl = I, hence CNeW1{S(aN_1,cxN+l)).

From (3.6) we conclude Yy{z) = Hi(z) in S(av_1,av+1) (O^v^N), and since
^f1(S(av_l,av+1)) and ^j(S(av_2,av)) are subgroups of the group ^ ( S f o . !,<*„)), it
follows that

hence diagt WV = I (l^v^N).
Conversely, assume that Y0(z),..., YN - ^z); YN(z)=Y0(ze~2vi)e2lziLt is a system of

solutions of first level corresponding to f/1(z) and a.0,...,aN_i. Then the matrices Cv

= yv-
1(z)?v(z) satisfy (3.4) and (3.6) for v = 0,...,N. Using (2.1), (2.2) we find for

sufficiently small £>0 exp{Az<'1}Cvexp{-Azdl} = o(exp{|z|''1"£}) in S(av_,,av+I) which
implies Cve^i1"(S(av_1,as+1)) (use (1.14)) (O^v^N). Furthermore, since CvWv=WvCv.i
(1 ^v^N) , we conclude

(note that Cv, Wv, Wv, Cv_! are all in <8fJ"(S(av_|,a,)) and use (1.16) together with
diag, Wv = diag! WV = I). Using (2.7) we see

e-
2niLlCoe

2niL') = e-2niLi diagt Coe
2'iLl,

hence defining C = diagj Co ( = diagx Cv for v=l,...,iV) we obtain from (3.4)

Since Cv"'Ce*1(S(av-1>av+1))) which according to (a) implies G^C^CGi^z)^! in
S(av_!,av+1), we conclude from (3.6) that

01
v = 0

Furthermore, (3.7) implies that Gl{z)CG'[i{z) is single-valued hence G^CG^iz)^!, i.e.
C = I. According to the definition of C this implies (3.3), using (3.6) and (a).

So far, we have considered systems of solutions of first level corresponding to W,(z)
and arbitrary reals ao,...,aN_l provided that (5 = max{av+1 — av_i; Ogv^Af} was
sufficiently small (to ensure the existence of a system of solutions of first level). We are
now going to make a natural selection for these reals.

Let any matrix A as in (1.8) (with /^2) satisfying (1.9) with some fixed rational dt be
given. A real number T is said to be a first level Stokes' direction if for at least one pair
(j,k), \^j,k^l, and sufficiently small e>0 we have

j<xk in S(T-£,T) , but k<J in S(T,T + E) (3.8)
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(i.e. according to (1.11) the real part of (Aj — AJz1*1 changes from negative to positive as z
crosses the ray argz = r in the positive sense). It is clear from the definition that the set
of first level Stokes' directions is discrete, hence may be uniquely indexed, using integer
indices, such that

T _ 1 < 0 ^ T O ) T V < T V + I for every integer v.

The set of pairs (/, k) for which (3.8) holds with x = TV may be denoted by pv; it is easy to
verify that then pv is transitive and antisymmetric (for every integer v).

Let n be the number of Stokes' directions in the interval [0, rc/d,). It is obvious that
for a pair (j,k) the real part of (A, — Â z**1 changes from negative to positive at argz = x
iff it changes from positive to negative at argz = T + 7t/dj; and

Re (A, - AJz*1 > 0 for T < arg z < T + n/d^

Therefore the number of Stokes' directions in any half-open interval of length n/dl is
equal to \i (hence n ̂  1), and we have for every integer v

l , (3.9)

and

p v ,p v + 1 , . . . ,p v + 2 / ,_ , are pairwise disjoint. (3.10)

Remark 3.1. If we define for every v

S, = S(T._,,T,+1),ff, = a(S,X (3.11)

(compare Section 1 for the definition of <r(S)), then

ff'v = p v u - - u p v + / i _ 1 , o - v = (T'vnff'v+1 for every v.

This shows that Lemma 1', (2), p. 68 implies that given matrices Wve<2f1(<r'v) (for every v),
there exist unique matrices

C , 6 « i ( 4 Ke#,(*>,) for every v

such that

CVKV= WVCV_, for every v.

This will be of importance later.

From (1.9) we conclude the existence of a unique permutation *P such that
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which shows that if (3.8) holds for a pair (j,k) a n d a direction x, then it holds for
QV(j), *P(fe)) and T — 1% as well (and vice versa). Hence if T is a Stokes' direction, then
T±2TI is, too, and the number of Stokes' directions in any half-open interval of length
2n is the same, say m. Therefore

for every v. (3.12)

Furthermore, we have for every v (compare (1.13))

C€*(p v + J i f f /? r 1 C« l 6 ^ (p v ) , (3.13)

or equivalently (since e2niLl=D1Rl with diagonally blocked Du and since Ce%{pv) iff

iff e-
2"iLlCe2KiLl e<%(pv). (3.13')

We are now ready to prove that corresponding to H^z) and xo,...,xm-1 there exists a
system of solutions of first level:

Lemma 3. Let an equation (1.1) satisfying (a) be given, and let H1(z)=T1(z)Gi(z) be
any fixed, but arbitrary formal fundamental solution of first level of equation (1.1). Then
there exist fundamental solutions Y0(z),...,Ym_l(z); Ym(z)=Y0(ze~2ni)e2niLl o/(l.l) with

Proof. Suppose that two sectors S, S with S n S ̂  0 and two fundamental solutions
X(z), X(z) of (1.1) are given with X(z)sH1(z) in S, X^H^z) in 5, and diagt W = I,
W=X'1(z)X(z). Then using Lemma 2 (a) we find WeW^SnS). If S does not contain
any Stokes' rays, we have

j-<ik in S nSimplies j<tk in S,

hence using (1.13) we conclude

WeW^SnS) implies S

This proves X(z) = X(z)W = Hl(z) in §, hence

Let now (for some natural N) reals ao , . . .^^-! be given, corresponding to which there
exists a system

YO(Z), ..., YN-M YN(Z)= ro(z<r2* V*"-1
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of solutions of first level. According to Proposition 2, the only condition on a0,...,<Xjv_i
to ensure the existence of a system of solutions of first level is that 5 as in (1.21) is
sufficiently small, hence we may assume that the Stokes' directions in the interval [0,2n)
are a subset of {<x0,..., <xN-1}.

For some fixed v, O^v^JV—1, assume that <xv is not a Stokes' direction (if no such v
exists, then N = m and av = Tv, O g v ^ m follows in which case there is nothing to prove).
Then the (open) sector S(av_1,av+1) cannot contain any Stokes' ray, and according to
the discussion above we have

Y^^z^H^z) in S(av_2,ocv + 1) (in case v>0),

Y*+i(z)-Hi(z) in S(av_1,av+2),

and therefore

Hence if we replace Yv{z) by Yv+l(z) in the system of solutions of first level (in case v = 0,
corresponding replace YN(z) by Yx(ze~2j")e27"L), then either by direct verification or using
Lemma 2 we see that the new system is again a system of first level corresponding to
a0,...,aw_!. Therefore we may assume that Yv(z)= Yv+l(z), and it is immediately checked
that removing av from the collection a 0 , . . . , a N _! and correspondingly removing Yv(z)
from the system of solutions leads to a system of solutions of first level corresponding to
a choice of reals <x0,...,<xv_u a.v+l,...,<xN^l (which still contain the Stokes' directions in
[0,27!)).

Repeating the above discussion finitely many times finally leads to reals <x0, ...,aN_l

where all <xv are Stokes' directions, hence N = m, av = Tv (O^vgJV — 1) follows, which
proves Lemma 3.

Using Lemma 3 we now prove the existence of a unique system of solutions of first
level corresponding to Hx(z) and x0,...,xm-x for which the asymptotic holds in sectors
of opening larger than njdx.

Theorem. Let an equation (1.1) satisfying (a) be given, and let Hl(z)=T1(z)Gl(z) be
any fixed, but arbitrary formal fundamental solution of first level of equation (1.1).
Then there is a unique system X0(z),...,Xm.i(z); Xm(z) = X0(ze~2ni)e2'liLl of solutions of
first level corresponding to Hr(z) and xo,...,xm_l characterised by either one of the
following two conditions:

Xv(z) = //1(z)i«S(Tv-7i/d1,Tv+1) (O^v^m), (3.14)

or

(3.15)

Proof. Let Y0(z),...,Ym_l(z); Ym{z)=Y0(ze-2"i)e2'ziLl be a system of solutions of first
level corresponding to H,(z) and xo,...,rm-l (which exists according to Lemma 3), and
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let Wu..., Wm with Wv= Y~l(z)Y,-x(z) be the corresponding connection system. By

Wv+km = e-2k*iLl Wve
2k'iLl for v= 1,...,m and integer k

we define matrices Wv which are seen to be in <^1(CT'V) for every v (use (1.9), (2.7)).
According to Remark 3.1, there exist unique matrices C,e*,((r,) , Kve<^,(pv) (for every
v) such that

C,VV= WvCv-i for every v.

The matrices Vy = e-2siLiVv.me2"iLl, resp. Cv = e-2*iLlCv_me2niL> are also in W^p,), resp.
^i(av), and since by definition of Wv we have Wv=e~2niLl Wv_me2*"", we find

1 for every v.

Hence from the uniqueness part of Remark 3.1 we conclude

CV = CV, Vv= Vv for every v.

Defining

Xv(z)=Yv(z)Cv (O^v^m)

we obtain a system of fundamental solutions which satisfies Xm(z)=Ym(z)Cm

= Y0(ze-2*i)e2«iLl(e-2'iLlCoe
2"iLl) = X0(ze-2'i)e2"iLi. According to Lemma 2,

X0{z),...,Xm_1(z); Ar
m(z) = X0(ze"2"'')e2giitl is a system of solutions of first level

corresponding to Hx(z) and T0,...,rm_1, and obviously (3.15) holds. To prove that (3.14)
holds as well, note that for (J, k) e pv we have

j<xk in S(T»-ji/d1,x,X i-e. K , , ( ( v / , , v ) )

(for every v). Defining for every integer k

X,+km(z) = Xv(ze-2M)e2k"^ ( O ^ v ^ m - 1 ) ,

we obtain fundamental solutions Xy(z) (for every v) satisfying

Xv(z) = //!(z) in Sv for every v.

Suppose that we had shown for some j , l^j^fi— 1,

Xv(z) = i?!(z) in S(T,_pT,+ 1) for every v

(which is true i fy=l) , then since Vve
<^1(S(tv — n/di,z,)), we conclude (note that rv — n/dl

= Tv-/i = Tv-J-l)

Xv(z) = Xv_l{z)V;1 =fl,(z) in S (T»_ ,_ , ,T , ) for every v
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which together with XJfy^H^z) in S ( T V _ 1 , T V + 1 ) implies

^v(z) = H1(z) in S(T ¥ _ , -_ 1 ,T V + 1 ) for every v.

Hence (3.14) follows by induction.
To prove uniqueness, let X0(z),...,Xm^l(z); Xm{z)=X0(ze~2Ki)e2"'Ll be another system

of solutions of first level corresponding to Ht(z) and xo,..^xm-1 for which

J?v(z) = H^z) in S(xv-n/d,, zv+1) ( 0 ^ v gm).

Then for Cv = X~i(z)Xv(z) we obtain

C,e*1(S(T.-ir/d1,T.

But for every sector S of opening larger than n/dt we have o\S) = 0, hence Cv = / follows,
i.e. X,{z) = Xv(z) (Ogvgm). Finally, to prove equivalence of (3.14) and (3.15) we are left
to show that (3.14) implies (3.15) (the converse has been shown before). This follows
since if X,{z) satisfies (3.14) for v = 0,...,m, then Fv = Xv"1(z)Ar

v_1(z)e^(S(Tv-7t/d1,Tv))
for v = 1,..., m, and j«< l k in S(xy — n/du TV) iff (j, k)epv.

Remark 3.2. We call the unique system of solutions of first level satisfying (3.14),
(3.15) the system of normal solutions of first level corresponding to H^z). The
corresponding connection system Vu...,Vm is called the normalised connection system.
Note that the system of normal solutions of first level depends upon the selection of an
a priori fixed ordering of the values Xu..., A, in the matrix A, and one can easily see how
a change in the ordering of Xu...,?n influences the normal solutions of first level, but we
do not want to do this here.

4. Applications and examples

(a) Two examples:

We have seen in Section 3 that the system of normal solutions of first level is
uniquely characterised among all systems of solutions of first level by the fact that the
asymptotic holds in sectors of the form S(TV — n/dl,xv+l). In general, this does not imply
that (for some fixed v, 0 ^ v^m) Xv(z) is the only fundamental solution having H^z) as its
asymptotic in S(xv — n/dl,Tv+l). To see this, consider an equation (1.1) with

e(z) = d i a g [ - z , z + z I / 4 , z - z 1 / 4 , z + iz1 / 4 ,z- iz1 / 4 ] (4.1)

(compare [4], pp. 280-282 or [7], pp. 102-108 for the existence of an equation having
prescribed invariants). We find
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and

xv = n/2 + vn (for every integer v)

are the Stokes' directions of first level. Then if Hl(z) = T1(z)Gl(z) is a formal fundamental
solution of first level, and X0(z), Xt(z), X2(z) = X0{ze~2ni)e2"iLl are the corresponding
normal solutions of first level, we have

iff

It is easy to see that (4.2) implies

(z)in S(-n/2,3n/2)

in S(-n/2,3n/2). (4.2)

= diag[/1,C],

where C is a 4x4, invertible matrix, but not necessarily C = I as we will show now:
Using the characterisation of asymptotic sectors ((7), p. Ill) we find that every

solution of the auxiliary equation, hence in particular G^z), has a single asymptotic (in
the usual sense) in S(—n/2,3n/2). From the proof of Lemma 1 (also compare Remark
2.2), we see that for some diagonally blocked D = diag[Z)1,Z)2] (D2 of size 4x4) the
matrix G1(z)Dexp{ — Q(z)} and its inverse may be estimated by a power of z as z->oo in
S(—n/2,3n/2) (uniformly in every closed subsector). Hence (4.2) is equivalent to

exp{e(z)}Z)-1CDexp{-e(z)} = / in S(-n/2,3n/2)

which may be seen to hold for every C = diag[/1,C] with

D2
1CD2 =

1 0 0 0
* 1 0 *
* 0 1 0
0 0 0 1

(where * denotes an arbitrary entry).

This shows that for every such C, Yo(z),Xl{z),Y2(z)=Yo{ze~2*i)ellziLl is a system of
solutions of (1.1) satisfying (3.14). This does, however, not contradict the uniqueness part
of our Theorem, since for C^I, this is not a system of first level, since

Characteristic for the above example is the fact that the Stokes' directions of second
level in the iterated block structure ([1]; [2], pp. 64, 65; [7], pp. 90-93) come with a
"frequency" d2 = 1/4 (i.e. two Stokes' directions to a pair (j, k) come with a minimal
distance of 2n/d2 = Sn) which is much slower than the "frequency" dl = \ of the Stokes'
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directions of first level. On the other hand, if the two frequencies are closer together,
then one can see that a sector S(TV—n/du-cv+i) generally is too large for a solution of
(1.1) to have a single asymptotic (in the usual sense) in such a sector: If we take the
same example as above, but with d2 = 3/4, i.e.

Q(z) = diag l-z,z + z3/4, z - z3/4, z + iz3/4, z - iz3'4], (4.3)

then dt, A, and TV are as above. A Stokes' direction in the usual sense ([4], p. 262)
corresponding to the pair q2{z) = z + zilA and <j4(z) = z + iz3'4 is at z=—n/3, and a
Stokes' direction to the "opposite" pair <j4(z) and q2(z) is at x = 4n/3 — n/3 = n. Since both
rays are included in S(—n/2,3n/2), we have that (in general) no solution of (1.1) may
have a single asymptotic (in the usual sense) in the sector S( — n/2, 3n/2) (compare [7], p.
112).

(b) Special factorisations of formal solutions of first level:

For a fixed formal fundamental solution of first level H^^T^G^z) the factor
Gx{z) is defined up to meromorphic equivalence only (see Section 2), and we are going
to show that this freedom may be used to arrange for Gt(z) to have a particular
structure:

In the situation of Proposition 1 we may without loss in generality assume that the
auxiliary equation (1.17) is chosen (modulo meromorphic equivalence) such that the
formal solution H(z) is of the form

H(z) = Fb(z)zLexp{Q{z)}, (4.4)

where L has eigenvalues with real parts in [0,1) (note that L is arbitrary provided e2mL is
the formal monodromy factor hence especially the eigenvalues of L may be changed
arbitrarily modulo one) and Fb(z) is a formal power series starting with / (note that,
using [3], Lemma 2, every formal meromorphic transformation F(z) may be factored as
T(z)Fb{z) with a very simple proper transformation T(z) and Fb(z) as above). Defining
for v = 0,..., m

e(z)} (4.5)

we have

zL<¥,(z)z-L = Fb(z) in S(av_1,av+1), O^v^m, (4.6)

*v_1(z) = ':Pv(z)exp{e(z)}Kvexp{-e(z)}, l rgv^m, (4.7)

*m(z) = e-2ltiz-"?'0(ze-2'tI)e2'"x (4.8)

(for (4.8) use Ym(z)= Yo(ze~2*V"x and exp{Q(z)}=e-2"iLexp{Q(ze-2ni)}e2niL).
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Using our assumption on the eigenvalues of L and computing the explicit form of zJ,
where J is the Jordan canonical form of L, one can show that for some real c, 0 < c < 1,
we have

as z-»oo in S(av_1,av + 1) (for every v, O^v^m). Since (see (4.6))

\\-1) as z->oo in S(av_1>

we have, using these estimates on z±L

^ (z ) -* / as z-»oo in S(av_!,av + 1)

Hence the diagonal blocks of <?'v(z) are invertible for \z\ sufficiently large. Defining

we therefore have that Tv(z) is analytic for \z\ large, zeS(av_1,av+1), and using (4.7) and
the fact that Vv is diagonally blocked, we obtain

Tv_1(z)=Tv(z)=r(z) ( l ^ v ^

Furthermore, (4.8) and (1.10) imply

= T0(z)=T(z).

Hence T(z) is single-valued and does not increase faster than some power of z as z->oo
in S(a_1,am), and so does its inverse. Therefore T(z) is a meromorphic transformation.
Applying T(z) to (1.17), we may switch to a (different) auxiliary equation, hence we
assume without loss in generality T(z) = I. If this is the case, then ?v(z) is a product of zL

times a diagonally blocked matrix (v=0,...,m). Since G^z) differs from Fv(z) by a
constant, diagonally blocked matrix (see the proof of Lemma 1), we see that the same
holds for GY{z). This proves, using (2.1), (2.2):

Every formal fundamental solution of first level Ht(z) can be written as follows:

H1(z)= T, (z)zL diag [G'1
1>(z),..., G\l\z)l (4.9)
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where T^z) is a formal meromorphic transformation and

and its inverse is of order smaller than dx (1 ^j^l).
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