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1. The main object of this note is to show that a proof given by A. J. Macintyre [2] of a
result on the overconvergence of partial sums of power series works more easily in the context
of Dirichlet series. Applying this observation to the particular Dirichlet series £ one~ns, we
can remove certain restrictions which Macintyre finds necessary in the direct treatment of
power series.

We consider a Dirichlet series

00

£ ane~x"s (s
n = l

where Xn = nn + ivn (jin and vn real), with //„ increasing and tending to infinity and vn = o(jin).
We assume that the series has a finite abscissa of absolute convergence, which we may take to
be a = 0. Our main result is then

THEOREM 1. Suppose (i) that f(s) = £ane~; l"s has abscissa of absolute convergence a — 0,
and is continuable in some neighbourhood of the origin throughout the angle (j)l < arg s < <j)2;
i.e. in the region 0 < | s | <5, 0j < arg s < <j>2 for some 5 > 0, with —%n < ^ ^ —in,
$n ?£ <j)2 <%n; (ii) Xn = fin + iva, where nn increases and tends to infinity and vn=o(fin);
(iii) there exists an increasing sequence of integers {nk}, where nk -> oo as k -* oo, such that

where h > 0. Then, if 4>[, 4>2 are angles satisfying

<t>i < <£i < <t>'2 <

there exists a neighbourhood of the origin in which

2 ape-x's-*f(s), as fc-»oo
P=I

throughout the angle <$>\ ^ arg s ^ <j>'r.

If 1/An = o(l/log«), then the abscissa of absolute convergence coincides with that of
convergence.

Cases of particular interest occur when there is an easily approachable, or a virtually
isolated, singularity at the origin.

M
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2. Proof of Theorem 1. Write

P=I
and

Rn(s)=f(s)-Sn(s).

We now obtain some estimates for | Rn(s) \.

LEMMA 1. If D is any compact subset of the domain of continuability off{s) = £ ape~XpS

and y > 0, then for every e > 0 there exists no(e, D), such that, ifn^. n0,

(i) {log | Rn(s) \}lnn £ -o + e, foro^0,sinD,

(ii) {log | Rn(s) \}l fin £ B, for a > 0, s in 5,

(iii) {log | Rn(s) \}lnn+1 ^ -a + e, for c ^ y > 0.

Proof. Case (i): < r | 0. Suppose that | t \ ^ Tin D and define

CO = S U D I V I.

Then con = o(nn),

\Sn(s)\ ^e°>» I'!-/<»« ^ 1 ^ ^

and since J] ape~XpS is absolutely convergent for every a > 0 we have, with e, =$8,

n n

p=l ~ p=l ~"

Therefore, for n ^ «i(£),

and

— log |

for n ^ «2 (e). Now write

Then
{log | Rn(s) IJ//I. ^ {log ( M + | 5 B (J) | )}K ^ - a + 4 £ l = - a + e,

for n ^ «3(e, ^ ) .
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Case (ii): 0 < a < y. Let e! =^e. We have

I
p=i

p = l

n

^ e L \aP

Therefore

V a e-x's
p = l

and, for /J ^ w4(e, £>),

{log | *„(*) U/ft, £ 3et = e:

Cflje(iii): ff^y>0. Choose e < |y, e2 = |e. Since

e'V j > s

g X(e)e-
Therefore, for « ^ «5(e),

{log | Rn{s) \}lfim+l ^ -a+2e2 = - a + e .

This completes the proof of the lemma.
We show that, if <t>'2 < </>2, then Snic(s) -*f(s) in some neighbourhood of the origin, through-

out the angle —\n < arg s ^ <f>'2- A similar argument shows that, if 4>'i > 4>u Snk(
s) -»/(*)

in some neighbourhood of the origin throughout the angle <f>\ ^ arg s < %n. If 0 2 ^ ^TI we
have nothing to prove, and hence we may assume that <j>2 > i t .

There exists a sequence {nk} such that nnk+ilnnk ^ l+h, where /i is a positive constant.
From Lemma 1 we have, for every y > 0,

for <r ^ 0, s in A

for a > 0, j in D,

for a £ y > 0,

where enk -»0 as k -* oo. Now/(j) is regular in some neighbourhood of the origin throughout
an angle -%n < arg s < (j>2, where -J-7T < (j)2 <-§-7i. Then we may choose 5 > 0 such that/(j)

(0 {'og I * - . » |}//ink ^ -*+£„„.

(ii) {log | Rnk(s) \}lnnk £ enk,

(iii) {log | Rnk(s) \}lnttk ^ -
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is regular in 0 < | s \ < 25, — \n < arg j < 4>2. Hence, for every r] in 0 < r\ < 5, f(s) is
regular in the region Dn, where Dn is the half disc

\s-irj\<5, ( /> 2 -7 r<a rg ( s -» / )<0 2 .

Let F7 be the boundary of Dr Now {log | Rnk(s) \}lfink is a subharmonic function; hence
if unk(s) is function harmonic in Dn and taking on Tn boundary values — <7+ent for a ^ 0, enit

for 0 < a < y , and - ( 1 + h)a+enk for a ^ y, then {log | Rnk(s) |}//ink S unj(s) in Dn. As
k -* oo, enk -* 0 and wnt(^) -+ M(J), where u(s) is harmonic in Dn and takes on F,, the boundary
values —a for a ^ 0, 0 for 0 < a < y, and - ( 1 + h)a for a ^ y. Also in D,

lim sup — log | Rnk(s) | ^ u(s).

If u(s) < 0, then Rnk(s) -> 0 and so Snk(s) ->/(».
We can take y as small as we please, and therefore u(s) may be taken to differ by as little

as we please from v(s), where v(s) is harmonic in Dn and takes on F, the boundary values -a
for a <S 0 and — (1 +li)o for a > 0.

We now take a new variable z = reiB = (s — iri)eK*2~n). Consider Im {z log z}, which is
harmonic for Im z > 0 and takes on y — Im z = 0 the boundary values nx for x = Re z < 0
and 0 for x ^ 0.

Let v*(z) = v(s). Consider

g(z) = v*(z) — (hln) cos (</>2 —7r)Im {z logz} + (l+/i);ccos ($2 — n),

which is harmonic for j in Dn and zero on _y = 0. Hence for s in Dn,

1 f" / 5 ,-fls 4((52 — r2) 5r sin 0 sin d> ,,
" ) — = ^ ^ 1- «<P,

[52-25rcos(0-^)) + r2][52-25rcos(0 + (/)) + r2]
and therefore

| r g r s i n 0 . 1 ^ ^ sup | g(de») \

g,K(ro)r sin 6

for r ^ r0 < 5. Therefore

v*(rew) = H(r, B)r sin 6 + (hln) cos (4>2-n) Im {rei9 log (reie)}-(\ +h)r cos 0 cos (<f>2-n),

= /-{//(r, 0) sin 9 + (hln) cos (<£2 - n) sin 0 log r + (Qhjn) cos 0 cos (</>2 - 7i)

- (1 +/j) cos 6 cos (<£2 - 7t)},
where H(r, 0) is bounded.

Now log r -* — oo as r - » 0 + . Hence for every 0 in 0 < 0 < n there exists ro(0) such that,
if r ^ /-o(0), v*(reie) < 0. Thus t> is negative in a region R^, fixed with respect to Dn, the
boundary of which touches F , at z = 0, and Rnk(s) -» 0 as fc -* oo at any point of /?,,.

Let r; -»0; then Rn -»i?, where R is a region whose boundary touches the line arg s = (j>2

at J = 0. This is sufficient to establish Theorem 1.
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3. As an almost immediate consequence of Theorem 1 we have

THEOREM 2. (Bourion [1]) If^a^ =f(z) is a power series with radius of convergence
unity such that

an = 0 for nk< n ^ Nk,

where {nk} and {Nk} are two sequences of integers such that

l

and iff(z) is regular near z = 1 for —txl< arg (1 — z) < a2, then the sequence {Snk(z)} of partial
sums converges to f(z) in some neighbourhood of z = 1 in the angle — Pl ^ arg (1 — z) ?g /?2,
provided that —a1<—pi<^n and \n < P2 < OL2.

As mentioned in the introduction, this follows from consideration of the Dirichlet series
£ ane~ns and the conformal map z = e~s.

Macintyre's work concerned only the case at > n, <x2 > n, and he showed that there exist
angles yx and y2, each depending on the value of h, satisfying

such that Snt(z) -*f{z) in some neighbourhood of z = 1 throughout the angle

-Ji < a r g ( l - z ) < } > 2 .

4. We note that Theorems A and B of [2] can be established under slightly weaker
conditions by using Bourion's result. Instead of requiring/(z) to be continuable across the
real axis z > 1, from the upper half-plane into a definite angle 0 > arg(z—1) > —(a,— n)
of the lower half-plane, and similarly from the lower half-plane into an equal angle of the upper
half-plane, all that is needed is that the regions of continuability overlap in a neighbourhood
of z — 1 throughout some definite angle outside \z\ ^ 1.

Finally we wish to express our gratitude to M. E. Noble for his help and guidance, to the
referee and editor of these Proceedings for their help in the presentation of this note, and to
D.S.I.R. for financial support during the period involved.
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