THE CONSTRUCTION OF FIELDS WITH INFINITE GYCLIC AUTOMORPHISM GROUP

WILLEM KUYK*

1. Introduction. This paper deals with a problem raised in a paper by J. de Groot (1): Do there exist fields Ω whose full automorphism group is isomorphic to the additive group of integers Z ?

The answer to this question is yes. In this paper we construct, given any subfield k of the complex numbers, extension fields Ω of k such that the automorphism group $G(\Omega / k)$ of Ω with respect to k is infinite cyclic. Fields having the infinite cyclic group as a full group of automorphisms are obtained by choosing the base field k in such a way that it does not contain any subfield k_{0} so that k possesses non-trivial automorphisms leaving k_{0} pointwise fixed. This property is seen immediately. Examples of such special base fields are the field of rationals and the field of real numbers.

The fields Ω have transcendence degree 1 with respect to k, and can be obtained as follows. Let K be an algebraic closure of $k\left(t_{0}\right)$. For $i \leqslant 0$, define the elements $t_{i-1} \in k\left(t_{0}\right)$ by

$$
\begin{equation*}
t_{i}^{2}=t_{i-1}+1 \tag{1}
\end{equation*}
$$

For $i>0$ choose for each $i=1,2,3, \ldots$ an element $t_{i} \in K$ satisfying (1). Now let Ω be the union of the subfields $k\left(t_{i}\right)$ of $K . \Omega$ is a field, since for every $i, k\left(t_{i+1}\right)$ is an algebraic extension of $k\left(t_{i}\right)$ of degree 2 . The fact that $G(\Omega / k)$ contains a subgroup isomorphic to Z is seen by considering the substitution $\pi: t_{i} \rightarrow t_{i+1}(i \in Z)$. This substitution defines a mapping of Ω upon itself. It is an isomorphism because π preserves the relation $t_{i}{ }^{2}=t_{i-1}+1$ and because t_{i} is transcendental with respect to $k . \pi$ has infinite order and generates together with its inverse $\pi^{-1}: t_{i+1} \rightarrow t_{i}$ the infinite cyclic group $C[\pi] \cong Z$. We shall prove that, besides the automorphisms in $C[\pi]$, there are no other automorphisms of Ω leaving the elements of k fixed.

Theorem. The automorphism group $G(\Omega / k)$ of the field $\Omega=\cup_{i \in Z} k\left(t_{i}\right)$ is $C[\pi]$.

2. Proof of the Theorem.

Lemma 1. Every element of the set $k\left(t_{i}\right) \backslash k\left(t_{i-1}\right)(i \in Z, i \geqslant 1)$ has algebraic degree 2^{i} with respect to $k\left(t_{0}\right)$.

Proof (by induction). Every element of $k\left(t_{1}\right) \backslash k\left(t_{0}\right)$ has degree 2 with respect

[^0]to $k\left(t_{0}\right)$. We shall show that there are no other elements in Ω with degree 2 over $k\left(t_{0}\right)$. For let θ be such an element, $\theta \in k\left(t_{n}\right) \backslash k\left(t_{n-1}\right)$ for some $n \geqslant 2$. Then $\theta=a_{0}+a_{1} t_{n}$, with $a_{0}, a_{1} \in k\left(t_{n-1}\right)$ and $a_{1} \neq 0$. There exist isomorphisms of $k\left(t_{n-1}, \theta\right)$ into K which are the identity on $k\left(t_{n-1}\right)$ and take Ω into itself and θ into $a_{0}+a_{1}\left(-t_{n}\right)$. But also the isomorphism σ of $k\left(t_{n-1}\right)$ into K which is the identity on $k\left(t_{n-2}\right)$ and takes t_{n-1} into $-t_{n-1}$ can be extended in two ways to isomorphisms of $k\left(t_{n}\right)$ which take t_{n} into s_{n} and $-s_{n}$, where s_{n} is an element of K with $s_{n}{ }^{2}=-t_{n-1}+1$. These isomorphisms take θ into $a_{0}{ }^{\sigma} \pm a_{1}{ }^{\sigma} s_{n}$. One can easily verify that
$$
k\left(t_{n-1}, s_{n}\right) \cap k\left(t_{n}\right)=k\left(t_{n-1}\right),
$$
so these four images of θ are distinct. Thus θ has at least four conjugates over $k\left(t_{0}\right)$ and cannot be quadratic over $k\left(t_{0}\right)$.

Corollary. Ω has no non-trivial automorphisms with respect to $k\left(t_{0}\right)$.
Proof. Suppose σ is such an automorphism. Then let n be the smallest integer for which t_{n} is not invariant under σ. σ changes t_{n} into $-t_{n}$. But this isomorphism cannot be extended to $k\left(t_{n+1}\right)$, because the $k\left(t_{0}\right)$-conjugate s_{n+1}, which has degree 2 over $k\left(t_{n}\right)$, is not in $k\left(t_{n+1}\right)$, and hence not in Ω. The same argument shows that if a k-automorphism σ of Ω carries an element t_{m} into an element t_{n}, then σ has to be equal to π^{n-m}.

Lemma 2. Any automorphism σ of Ω which is the identity on k and takes $k\left(t_{0}\right)$ into itself is the identity.

Proof. By a well-known theorem (2, Section 63), σ takes t_{0} into

$$
s_{0}=\frac{a t_{0}+b}{c t_{0}+d}, \quad a, b, c, d \in k ;\left|\begin{array}{l}
a b \\
c d
\end{array}\right| \neq 0
$$

Let $s_{1}=\sigma\left(t_{1}\right)$. By isomorphism, $s_{1}{ }^{2}=s_{0}+1$, and $k\left(s_{1}\right)$ is the unique quadratic extension of $k\left(s_{0}\right)=k\left(t_{0}\right)$ in Ω. Thus $k\left(s_{1}\right)=k\left(t_{1}\right)$ and

$$
s_{0}+1=\frac{p^{2}}{q^{2}}\left(t_{0}+1\right)
$$

with $p, q \in k\left[t_{0}\right]$. Suppose p / q is in lowest terms. Then

$$
\begin{equation*}
\frac{(a+c) t_{0}+b+d}{c t_{0}+d}=\frac{p^{2}\left(t_{0}+1\right)}{q^{2}} \tag{2}
\end{equation*}
$$

Case $1,\left(t_{0}+1\right) \nmid q$. Then the right side of (2) is still in lowest terms, so q^{2} is a constant and $c=0$. We may assume that $d=q=1$. Then (2) becomes $a t_{0}+b+1=p^{2} t_{0}+p^{2}$; by comparing coefficients we see that p is a constant and that $s_{0}=p^{2} t_{0}+p^{2}-1$. This yields $s_{1}{ }^{2}=p^{2}\left(t_{0}+1\right), s_{1}=p t_{1}$ (for p suitably chosen in k), and

$$
\left(\sigma t_{2}\right)^{2}=s_{2}^{2}=s_{1}+1=p t_{1}+1
$$

By the same argument, $\left(p t_{1}+1\right) /\left(t_{1}+1\right)$ must be the square of an element of $k\left(t_{1}\right)$, which cannot be true unless $p=1$.

Case 2, $q=q_{1}\left(t_{0}+1\right)^{i}$. Then

$$
\frac{(a+c) t_{0}+b+d}{c t_{0}+d}=\frac{p^{2}}{q_{1}^{2}\left(t_{0}+1\right)^{2 i-1}}
$$

with both sides in lowest terms; so $p=$ constant, $q_{1}=$ constant, and $i=1$. We can take $q_{1}=1$ and obtain

$$
s_{0}=\frac{-t_{0}+p^{2}-1}{t_{0}+1}=\frac{p^{2}}{t_{0}+1}-1 .
$$

This yields $s_{1}=p t_{1}{ }^{-1}$. As before,

$$
\frac{s_{1}+1}{t_{1}+1}=\frac{p+t_{1}}{t_{1}\left(t_{1}+1\right)}
$$

must be a square in $k\left(t_{1}\right)$, but there can be no such square. Therefore Lemma 2 follows.

Proof of the theorem. Let σ be any automorphism of Ω which is the identity on k. Then $\sigma t_{0}=s_{0} \in k\left(t_{n}\right)$ for some smallest integer n. Replacing σ by $\pi^{-n} \sigma$ if necessary, we may assume that

$$
\sigma t_{0}=s_{0} \in k\left(t_{0}\right) \backslash k\left(t_{-1}\right) .
$$

Let $s_{\nu}=\sigma t_{\nu}$ for each ν. Then there is a smallest m with $t_{0} \in k\left(s_{m}\right)$, since σ is a k-automorphism. Then $m \geqslant 0$, since otherwise $s_{0} \in k\left(t_{0}\right), s_{0} \notin k\left(s_{-1}\right)$ gives a contradiction. $k\left(s_{m}\right)$ contains $k\left(s_{0}\right)$ and is of degree 2^{m} over it. Applying Lemma 1, we see that $k\left(s_{0}, t_{0}\right)=k\left(t_{0}\right)$ is of degree 2^{m} over $k\left(s_{0}\right)$, and hence $k\left(t_{0}\right)=k\left(s_{m}\right)$. Now $s_{m}=\sigma \pi^{m} t_{0}$; hence $\sigma \pi^{m}$ takes $k\left(t_{0}\right)$ onto itself and is by Lemma 2 equal to the identity.

Remark 1. If we take the defining equation for t_{i} to be $t_{i}{ }^{2}=t_{i-1}+c$ with $0 \neq c \in k$, then the proof of the theorem remains valid. We obtain in this way a set of different field extensions of k having infinite cyclic automorphism group. If, however, the relation is chosen to be $t_{i}{ }^{2}=t_{i-1}$, then the theorem remains true only if k does not contain the imaginary unit i. It is easily seen that in that case the lemma remains valid because $i \notin k$ implies that

$$
k\left(\left(-t_{n-1}\right)^{\frac{1}{2}}\right) \cap k\left(t_{n}\right)=k\left(t_{n-1}\right) .
$$

Remark 2. We may try to take the defining relations between the t_{i} to be of higher degree. If, for example, $t_{i}{ }^{3}=t_{i-1}+c, 0 \neq c \in K$, then the theorem still holds true, but the computational work as carried out in the lemmas is considerably more complicated. If $t_{i}{ }^{3}=t_{i-1}$, where K does not contain a primitive third root of unity, then $G(\Omega / k)$ is isomorphic to the direct product of Z and a group of order 2 . The automorphism of the latter group stems from the fact that

$$
k\left(\left(-t_{n-1}\right)^{1 / 3}\right) \cap k\left(t_{n}\right)=k\left(t_{n}\right)
$$

Remark 3. The proof of the theorem can be seen to remain valid if we take for k a field of characteristic $p>0, p \neq 2$.

References

1. J. de Groot, Groups represented by homeomorphism groups I, Math. Ann., 138 (1959), 80-102.
2. B. L. Van der Waerden, Algebra, Vol. I (Berlin, 1955).

Mathematical Centre, Amsterdam, and
McGill University, Montreal

[^0]: *N.R.C. Postdoctorate Fellow 1963, University of Ottawa.
 Received May 5, 1964.

