TRANSFORMATION OF LIFE-TEST DATA
Norman R. Draper and Irwin Guttman

(received February 29, 1968)

In a recent paper Box and Cox (1964) considered the problem of
transforming dependent variables in regression and analysis of variance
problems, in order to achieve the usual assumptions of Normality,
constant variance and additivity of effects. Here we adopt the same
approach to investigate transformations of data which allow the
transformed observations to follow a Gamma distribution. A special
case of this is the exponential distribution, valuable in life-testing,
for which examples are given.

1. The Problem. We shall investigate the following problem.
Suppose we have a sample YyrYpreen ¥, of observations which it would

be convenient to treat as belonging to a Gamma distribution (of order m,
known) with unknown parameter 6 to be estimated, but we fear that

such an assumption may not be valid. Can we find a transformation which
can be applied to the Y, which will allow the assumption of a Gamma

distribution to be validly applied to the transformed observations?
(We shall see that this problem has specific applications, e.g. in the
life-testing field.) We shall consider transformations of the type

\

(1.1) zi = yi , i=1,2,...,n, X\ >0,

(We shall not consider negative values of \ for the following reason.
A negative power transformation implies a positive power transformation
of the reciprocals of the observations. However taking reciprocals
has the effect of merely re-ordering positive observations so that the
largest original observation becomes the smallest reciprocal observation
and so on,thus reducing to the same formulation as we adopt. Thus any
transformation problem involving life-test data can be handled by
using positive values of \ only.) We shall estimate an appropriate
value for \ in the following way. If the transformed data
zi = Yi)\' i=1,2,...,n follow the Gamma distribution (of order m,
known) parameter €, then the probability distribution function for

z, is
i
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(1.2) 1lz) = £y = {zzn*e'zi/e} /07D (m)}, 2,0, 60, m> 0.

This implies that the likelihood function for the original v, is
given by

n n
O I B A I A I I VL

i=1 i=1

\
R
one necessary to transform from one set of variables to the other.
When the family (1,41) is considered this Jacobian has value
n -1
(1.4) Vomoy
i=1

X\ N
ere the bi = . s Vos oe s i
where the Jacobian |J| |8(y1 Y ,yn)/a(y1 v, yn)l is the

i

as is easily verified. From this point we shall follow the twin paths
of likelikood and Bayeg, to obtain an estimate for )\, as did Box and
Cox (1964).

2. Likelihood approach. Taking the logarithm to the base e of
both sides of equation (1.3) with the quantity (1.4) inserted gives the
log likelihood

n
(2.1) L(\,6) = nin X +(A\-1) T 4n vy, - mniné
i=1 !
n no
-nfin I'(m) + \(m-1) Z 4n ;- = yi/G
i=1 i=1
. n
= nfn X +(m-1) = In Y- mn fn 6
i=1
2o
-nin I'(m) - = v, /6.
i=1

The maxirmum likelihood estimate 6 of 0 for a given \ 1is given by
setting 9L/96 = 0, whence

n
(2.2) = = yix/mn.
i=1

Thus we can write
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(2.3) L(x,@) = nmfn mn-m)+n fnx

n n
+(\m-1) 2 f(n yi—mnan yi)\-nﬂnr(m),
i=1 i=1

The function (2.3) can now be plotted against \ and the maximizing
value \ estimated from the plot (see Figure 1). This value would be
used in subsequent analyses to transform the data.

A
Figure 1. Plot of L()\,96)
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A confidence interval for X\ can be obtained from the equation

(2.4) LiX,B) - L) < xf (1 -a)

N

exaa:\tly as in Box and Cox (1964). Note that (2.4) is conditional on
0 =0.

3. Bayesian approach. We shall assume that the prior
distribution for 6 is unaffected by the value of \; in other words,
prior feelings about probable values of 6 are insensitive to possible
transformations which might be indicated. (Situations might occur in
which this would not hold, however.) The parameter © has a range
0 to o and the character of a variance. Thus it seems reasonable to
assume that log 6 1is locally uniform. If we write po()\) for the

prior distribution of \, then the joint prior of A and © is

(3.1) 9_1p0()\) 46dr

Multiplying this by the likelihood (1.3) provides the posterior
distribution of X\ and © as
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(3.2)
n o mi-1 -mn-1 -n n \
pOLO [y, m) (X" Ty "7} 0 {Clm)} “exp {-Z y /6}p (\).
i=1 i=1

Integrating out for € gives the marginal posterior for \

n n mi-1
NI Yi
(3.3) p(x[ym) e _d=t = .p (),
n )\ mn
{Z v.}
. 1
i=1

Whatever prior ideas about \ are available can be inserted in (3. 3).
Thedistribution function (3.3) can then be plotted and )\ can be selected
as the mode (which we prefer), or the mean of the distribution (preferred
by others). This value of X\ can then be used to transform the data

for subsequent analysis.

The Bayesian approach is identical to the likelihood approach
when po()\) = constant, and the mode estimate is used. When pO()\)

is not constant, however, a different estimate of \ is obtained.

Since A> 0, a constant prior does not appear to be reasonable, but in
any case it is clear that the Bayesian approach provides a much more
flexible solution into which whatever prior ideas are available can be
incorporated.

What sort of form should po()\) take? The most sensible prior
appears to be

(3.4) p () = 1/n.

This prior is reasonable in situations where \ =1 is regarded as
a central value and where values \ = )\0 and \ = 1/)\0 appear equally

possible a priori. This implies for example that

P(1/x <Ax<1) = PI<XA<)\).
o — - - - O

To construct the posterior distribution in normalised form, the
constant of proportionality in (3.3) is needed. In some practical cases,
for example when n and/or the y, are large, computing difficulties

i

arise from (3.3) because numbers too small, or too large, for the
computer are obtained. To help avoid this, we can rewrite {3.3) in
alternative forms. One example of this is
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(3.5) POy, m) o i

n
{z w }
i=1

where w, = nyi/(y1+y2 +... +yn) = yi/;' . Other transformations might

be more useful on occasion, depending on the data.

4. Special case: variance estimates. Suppose we have n
independent, equal-sized samples each of (2m + 1) observations from
what are thought to be Normal populations with common variance

2
¢ = 0 and we wish to make inferences about 6. On the assumption

. . 2 .
of Normality, the n variance estimates vy, = si ,1=1,2,...,n each
i

2 2
follow a (o sz)/Zrn distribution. This means that the variables

rny,/e each follow a Gamma distribution of order m.
i

Thus, if the original assumption that the n samples (each of
2m +1 observations) are normal is not satisfied, we can attempt to

adjust for this by working with transformed variables y;\ = s,Z)\ which
1

do satisfy the assumptions, where )\ is selected by the procedure of
sections 2 and 3. Note that in this case the transformation is made on
the variance estimates. An alternative procedure, which involves more
computation, is to transform the individual sample observations using
the methods and transformation given by Box and Cox (1964).

5. Special case: exponential life testing. Suppose m = 1. Then
the density (1.2) reduces to the exponential density

(5.1) f(z) = 07 exp (-2./6), 2, >0.
1 1 1

The assumption that a variable follows the density (5.1) is frequently
made in life data work. For example, Maguire, Pearson, and Wynn
(1952) examined mine accidents and concluded that the time intervals
between accidents appeared to follow an exponential distribution.
(Comprehensive bibliographies of life testing and related topics are
given by Mendenhall (1958) and Govindarajulu (1964), incidentally.)

One way in which the exponential distribution arises in general
is when an event is rare, and the occurrence of events follows a Poisson
distribution. Then the distribution of intervals between events is
exponential exactly. If the mean number of events, the parameter in
the underlying Poisson distribution, is not constant in time however,
the distribution of intervals will not have an exact exponential form and
the usual estimation of the parameter 6 of an assumed exponential
distribution, and associated calculations, will be disturbed perhaps
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seriously. To check on such possibilities, an approach through tests
of goodness of fit has been suggested by several authors including
Bortkiewicz {1915), Morant (1920), Neyman and Pearson (1928) and
Sukhat me (1936). An assumption of exponentiality can also be
misplaced when the distribution under study arises from a source not
exponentially based.

In such cases we might be interested in finding a transformation
of form (1.1) which can be applied to the life-test observations and which
will allow the transformed data to be validly treated as exponential
observations. The availability of such a procedure would also provide
an additional safeguard for the analysis of data usually assumed to be
exponential.

If, in a given problem, the transformation z = yx is used to
transform observations on y to a form in which they can be treated as
exponential observations, and so analysed, it will be necessary to
translate conclusions in terms of the original distribution, whatever
it may be. Suppose we wish to make an inference about v = E(y).

This parameter can be related to the parameter 0 of (5.1) as follows.

- A e . . ; A-1

Since z =y has the distribution (5.1) and since dz/dy =Xy , then
o -1 -1 A

(5.2) y~gly) = 26 "y exp(-y /8).

It can he shown that

(5.3) v = Ey) = [yewdy=ePranh.

Thus estimates and confidence limits for 6 can be converted into
estimates and confidence limits for vy through the formula (5.3).

6. Examples using half-normal data. To show how the mnethod
can be applied to life test data we shall subject, to our analysis, two

samples [rom the haif-normal distribution which has a bulk shape
something like the exponential distribution. By using data from a
specified distribution, we can check the results of our transformed
analysis against those obtained from an appropriate analysis of the
original data. (In general we would rot, of course, knowthe parent
distributicn; if we did, (ransformation would not be necessary.)

The half-normal distribution is obtained by folding over an

2
N(0, 0 ) distribution and has probability density function

1
. 2% Y2
(6.1) i(y, o) ‘—f""Texp{——?} , 0<y <o,
‘5 20
o
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It can easily be verified that

1
2 2
(6.2) E(y) = o(2/m)" = vy, say; V{y) = ¢ (v-2)/7 .
If LIER PYRRRER N is a sample from the half-normal distribution, vy

- 2 2
estimates y and V(y) = o (m-2)/mn = y (v-2)/2n. For reasonable
n(>10 say) we can assume that, approximately,

(6.3) ¥ ~N(y, y2(r-2)/2n)

and so obtain an approximate 100 (1-o) % confidence intervalfor v of

(6.4) v, = y/(1+T) < y<y/(1-T) = v,
1
L2 . 1 .
where T =z 1 {(w-2)/2n} and =z ( is the 1~Tz-a point of the
1—'2'oz 1—’2‘0

N(0, 1) distribution.

For a suitable value of )\, selected as described in Sections
2 or 3, the transformed observations Zi = y: ,i=1,2,...,n, follow
the exponential distribution (5.1), whose mean € is estimated by z.
Since z ~ exsn /(2n), we can obtain a (1-@) confidence interval for

6 from

2
=0
2n, o 2

- 2 -
: e = :
(6.5) 1 ZnZ/XZn,i—ia <6< 2nz/fy

N |

2 2
1 i - int of t igtri i .
where in’ g 18 the (i1-«) point of the Xon distribution. We now

have to find a basis for comparing the results of (6.4) and (6.5). To
do this we can apply the formula (5.3) to 91 z, and 92 of (6.5) and

compare these to Yy y, and v, of (6.4) where the agreement,

hopefully, will be good. (In a problem where the parent distribution
is not known, (6.4) would not, of course, be known and the results of
(6.5) converted by (5.3) would be used in its stead.) Since the parent
distribution is known in the present case, and is (6.1), we can obtain

(6.6) 6 = E(z) = E(y) = [y'i(y.o)dy
%k A '% 1
=2 o7 I‘{‘z‘()\+1)}
200-1) ko 4y
= yM 2 r{Z 0 +1)}
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so that

1
L 201
(6.7) v = oMt rgee )
i 1
- e-1/>\/[“2{Tr 21“(%()&“)}1/)\]

=06 "xa “[x I‘(%()\+1))]~1/>\}.

For our method to be sensible, the conversions (5.3) and (6.7) should
be effectively the same when the untransformed data comes from a
half-normal parent.

We shall now perform the calculations described above on two
sets of half-normal data given (with original sources) in a paper by
Daniel (1959) and reproduced in Table 1. In using the half-normal
samples we remove those contrast observations, originally recorded,
which fall off the half-normal plot and thus do not appear to belong to the
underlying half-normal distribution.

Table I: Half- Normal Samples

Sample - Source (in
Ob i
izference servations y n Daniel, 1959)

2, 9, 14, 14, 32
1 43, 66, 66, 66, 82 62 14
100, 105, 123, 146

Table 4, page 328

Column a times 100

) 9, 17, 19, 23, 38 57.3 10 Table 4, page 328

53, 55, 116, 116, 127 Column f times 100

For comparison we shall treat these data by both the likelihood
method and the Bayesian method with the prior (3.4).

Figure 2 shows four posterior distributions. Two of these (one
for eachof samples 1 and 2) arise from the use of a constant prior. This
is equivalent to using the likelihood method which we do not use because
the posterior distribution provides a better appreciation than does the
likelihood function, of other values of )\, apartfrom the maximising
value, which the data regard as plausible. The remaining
two posterior distributions of Figure 2 are those which arise from
samples 1 and 2 when the prior distribution for X\ is proportional to

1/,
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1.5
T Example 1 p (Meac Example 1 P ()\)tz1
o o h
Sample 1
PO\ y) et
1.0 1.0~
0.5 0.5
¥ 1 T T T T T T
0.5 1.0 T1.5 2.0 0.5 .00 1.5 2.0
1.24 1.18
1
Example 2 po()\)qgc Example 2 po ()\)q;x
Sample 2
1.0 1.0 n=10
0.5 0.5}~
1 1 T T T T T T
0.5 1.01T1.5 2.0 0.5 1.0T1.5 2.0
1.35 1.24
N—

Figure 2. Posterior Distributions, Examples 1 and 2.
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Results using the Bayesian method with constant prior. The

miodal values of the posterior distributions occur at \ = 1.24 (sample
e 1) and o= 1.33 lsarnple No. 2). (Note however that because of the
small size of the samples, the value X =4 is not an "unreasonable"
value when considered in relation to the posterior distribution, though
1t dJoes rot provide the maxirmum posterior value.) We can immediately
compare the two conversion factors which appear in (5.3) and (6.7) as

follows

e+ ) owm T {w r('%()\+1))}"1/)‘

Sample Ne. 1. 0.932 0.938
Samnple No. 2. 0.920 0.912

We see that tnere i8 excellent agreement and will use the figures 0.933
and 0.920 from (5.3) for conversion in Samples 1 and 2 respectively
on the basis that the factors in (6.7) would not normally be available to
us when the parent is unknown.

We now transform the original observations by z = yA and
pericrm the calculations of equations (6.4) and (6.5) converted by (5.3).

The results appear in Table 2.

Table 2: Comparison of transformed and untransformed analyses.

Sample Transformed Estimates Estimates from
No. A obsgervations from (6.4) (6.5) converted
V)\ by (5. 3)
1 1.24 2.36, 15.3, 26.4, 44.4, 62.0, 102.6 42.3, 61.5, 100.2
26.4, 73.5, 106.0,
180.4, 180.4, 180.4,
236.1, 302.0, 320.8,
390.4, 482.9
2 1.33 18.6, 43.3, 50.2, 39.0, 57.3, 107.8 38.4, 57.4, 99.9
64.7, 126.2, 196.4,
206.4, 556.9. 556.9,
Hh2R.2

Results using the Bayesian method with po()\) = 41/\. The maximum

velues of the posterior distributions occur at X\ = 1.18 (Sample No. 1)
and %= 1.24 (Sample No. 2) as shown in Figure 2. (Note however that
because of the small size of the samples the value N = 1 is not an
"anreasonable' value when considered in relation to the pcsterior
distribution though it does not provide the maximum posterior value.)
Comparison of the two conversion factors from (5.3) and (6.7) gives
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-1 2 1 RS VAN
ra+x ) n {m 00+ 0)
Sample No. 1 0.945 0.953
Sample No. 2 0.933 0.938

Again the agreement is excellent and we use the figures 0.945 and
0.933 from (5.3) for conversion in Samples 1 and 2 respectively. We

now transform the original observations by z = y>\ and perform the
calculations of equations (6.4) and (6.5) converted by (5.3). The
results appear in Table 3.

Table 3: Comparison of transformed and untransformed analyses

Sample Transformed Estimates Estimates from
No. N observations from (6.4) (6.5) converted
Ry by (5.3)
y
1 1.18 2.27, 13.4, 22.5, 44.4, 62.0, 102.6 41.5, 61.5, 102.

22.5, 59.7, 84.6,
140.3, 140.3, 140.3,
181.2, 229.1, 242.7,
292.5, 358.1

2 1.24 15.3, 33.6, 38.5, 39.0, 57.3, 107.8 37.0, 57.0, 103.
48.8, 91.0, 137.4,
143.9, 363.1, 363.1,
406.14

Examination of Tables 2 and 3 shows that, as far as these examples
are concerned, the likelihood (or Bayesian constant prior) approach
provides closer agreement at the lower end of the confidence range and
the Bayesian approach with po()\) = 1/\ provides closer agreement at

the upper end of the confidence range. In either case agreement is
excellent.

7. A further example. We now subject to the same analysis a set
of data taken from a paper by Mendenhall and Hader (1958). Page 509 of
that paper shows, in Table 3, 107 observations from an unknown
distribution about whose mean we wish to make inferences. The data

are reproduced in Table 4.

Because the sample is so large the posterior distribution (see
Figure 3) is almost completely insensitive to whether the prior
distribution for © is taken to be proportional to a constant (which is
equivalent to using the likelihood method) or to 1/6. In both cases the
maximum of the posterior is at A = 1.35. Note (Figure 3) that in this
example the value » = 1 lies well in the lower tail of the posterior
distribution and is thus regarded by the data as highly implausible.
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2.0 n = 107

»

Figure 3. Posterior Distribution, Example 3.
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Table 4. Unconfirmed failures.

Hours to failure for ARC-1 VHF radio transmitter receiver

368 136 512 136 472 96 144 112 104 104
344 246 72 80 312 24 128 304 16 320
560 168 120 616 24 176 16 24 32 232
32 112 56 184 40 256 160 456 48 24
200 72 168 288 112 80 584 368 272 208
144 208 114 480 114 392 120 48 104 272
64 142 96 64 360 136 168 176 256 142
104 272 320 8 440 224 280 8 56 216
120 256 104 104 8 304 240 88 248 472
304 88 200 392 168 72 40 88 176 216
152 184 400 424 88 152 184 - - -

o,

* Data supplied to the original authors through the courtesy of
Dr. G.R. Herd, Aeronautical Radio, Incorporated.

1.3

The transformed observations Zi =y, 5 are shown in Table 5. The
i

mean and 95 %, confidence limits from these transformed observations

are (1135.07, 1350.14, 1665.77) using (6.5). After conversion by

(5.3) we obtain an estimate of the mecan of 191 with 95 °/D confidence

limits of (168, 223).

Table 5: 407 Observations after transformation by yi'35

16.57 16.57 16.57 42.22 42.22 73.00 73.00

73.00 73.00 107.6 107.6 145.5 145.5 186.1
186.1 229.2 229.2 274.5 274.5 321.7 321.7
321.7 370.9 370.9 421.8 421.8 421.8 421.8
474.3 474.3 528.4 528.4 528.4 528.4 528.4
528.4 583.9 583.9 583.9 583.9 583.9 598.1
598.1 641.0 641.0 641.0 699.3 759.0 759.0
759.0 820.0 820.0 881.8 881.8 945.2 1009
1009 1009 1009 1075 1075 1075 1141
1141 1141 1277 1277 1347 1347 1448
1418 1489 1561 1634 1708 1708 1782
1782 1782 1935 1935 1935 2012 2090
2249 2249 2249 2329 2409 2409 2657
2825 2916 2916 31%0 3170 3257 3524
3704 3888 4071 4071 4165 4535 5130
5428 5834 - - - - -
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