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BRAID REPRESENTATIONS OF PERIODIC LINKS

SANG YOUL LEE AND CHAN-YOUNG PARK

In this paper, we study periodic braid representations of periodic links. It is
shown that no 2-bridge non-fibred knot has a periodic braid representation and
conditions under which periodic links are fibred are given. We give a construction
of all periodic links over a fixed factor link.

1. INTRODUCTION

An oriented link L in S3 is called an n-periodic link (n > 1) if there is an orien-
tation preserving homeomorphism (j> : (S3,L) —» (S3,L) such that <f> is of order n and
the fixed point set F of <j> is a 1-sphere in S3 disjoint from L. The homeomorphism
4> is called an n-periodic homeomorphism for L. It is known that F is unknotted, the
quotient map p : S3 —> S3/(j) is an n-fold cyclic branched covering space branched over
p(F) — Ft, and p(L) = L* is also an oriented link in S3/<j> = S3, which is called the
factor link of L.

Let Bm be Artin's braid group on m strings. A link L in S3 is said to have an
n-periodic braid representation (n > 1) if it is ambient isotopic to the closure of a braid
a n for some braid a . For a braid a £ Bm, the closure of the braid a n for n > 1 is
an n-periodic link whose factor link is ambient isotopic to the closure of a . A periodic
link may or may not have a periodic braid representation. In this paper we give some
properties of periodic links in S3 which have periodic braid representations.

This paper is organised as follows. In section 2 we give some preliminary results.
In section 3 we show that if an n-periodic link L in S3 has an n-periodic braid
representation, then I is a fibred link or the factor link of L is not the trivial knot.
In particular, let K be an n-periodic knot of genus g with either g<noin = g = 2

or 3 and let <j> be the n-periodic homeomorphism for K. If M is a (^-invariant Seifert
surface for K with genus g such that the boundary of M is an n-periodic closed braid
with the fixed point set F of <j> as its braid axis, then if is a fibred knot. In section 4
we construct periodic links over a fixed factor link by slightly modifying Bae and Park's
construction [2]. This may give many examples of periodic links which have periodic
braid representations.
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2. PRELIMINARIES

Let Bm be Artin's braid group on m strings with the standard generators o-i,a2,

, (rm-i, that is,

Bm = (ai,a2, • • • ,<rm-i | ai<Ti+\(Ti — <T,-+I<TJ<7,-+I (1 ^ i ^ m — 2),

<n<Tj = ajffi (|i - j \ ^ 2 ) ) .

As usual, for a braid /? £ Bm, the closed braid or the closure of /?, denoted by /3 A ,

with an axis A is defined as in the following Figure 2.1.

Figure 2.1

We give an orientation on /?A by taking the orientation on each string of /3 from
the top to the bottom and then give the orientation on the axis A so that when a
point moves along the closed braid in the positive direction, it winds around the axis in
the right hand direction. In [1], Alexander showed that every oriented link is ambient
isotopic to the closure of some braid.

A Markov move of type I is changing /? £ Bm to afta'1 G Bm for any a £ Bm

and a Markov move of type II is changing {3 € Bm to /Jo-^1 G Bm+i, or the inverse

of this operation. Markov's theorem says that two braids /?i £ Bm and fa € Bn have

ambient isotopic closures if and only if /?i is Markov equivalent to /?2 , that is, there is

a finite sequence of Markov moves, which takes 0i to 02 [3]-

The braid index b(L) of an oriented link L is defined to be the minimum number

of strings needed to represent L as a closed braid. A braid representation /? of an

oriented link L is said to be minimal if the number of strings in /3 is equal to the braid

index b(L).

Given a link L in S 3 , a Seifert surface for £ is a compact connected orientable

surface embedded in S3 such that the boundary of the surface is the link L. The genus

of a link in S 3 is defined to be the least genus of all its Seifert surfaces.

A link L in S 3 is fibred if the complement S3 — L is the total space of a fibre

bundle over S1 whose fibre is the interior of a Seifert surface for L.
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An alternating knot K in S 3 is fibred if and only if the Alexander polynomial
AJC(t) of K is monic, that is, the first (and last) nonzero coefficients of A/f(i) are ±1
[10, 11].

3. P E R I O D I C BRAID REPRESENTATIONS OF PERIODIC LINKS

In this section, all knots or links are oriented unless stated otherwise.

DEFINITION 3 .1 : A link L in S3 is said to have an n-periodic braid representation

( n > 1) if it is ambient isotopic to the closure of a braid of the form an for some braid
a .

It is obvious that non-periodic links can not have any periodic braid representation.
Let /? be a braid representation of an n-periodic link L. Then L has an n-periodic
braid representation if and only if /? is Markov equivalent to some braid of the form

In [9], Murasugi verified that any period of the torus knot Km,n of type (m,n)

is a divisor of m or n . Note that Km,n is ambient isotopic to the closure of
[(<ri<r2 • • • <Tn-i)

m' ]d or [(<TI£T2 • • • c m - i ) ] ' , where d is a divisor of TO or n respec-
tively. Hence the torus knot Km>n has a <f-periodic braid representation. Further-
more, the torus knot Km<n is a fibred knot. In fact, there are many non-periodic
fibred knots. For example, the knot 810 is the first such knot in Rolfsen's table
[11]. For, 810 has no period [7] and the Alexander polynomial of the knot 810 is
A 8 1 0 M = - 1 + 3t - 6t2 + It3 - 6*4 + 3<5 - t6. Since it is an alternating knot with
monic Alexander polynomial, it is a fibred knot [10]. On the other hand the knot 52
is a non-fibred knot with period 2. For, it is an alternating knot of period 2 and the
Alexander polynomial of 52 is As2(f) = —2 + 3f — 2t2 which is not monic.

LEMMA 3 . 2 . Let /? be a braid representing the trivial knot. Then the closure of
the braid f3n (n > 1 ) is an n-periodic fibred Hnk in S3 .

PROOF: Let /) bea braid representing the trivial knot and let K = /JA. Take the
.z-axis in R3 as a braid axis of the closed braid K. We consider S3 as R3U{oo} and let
J = the z-axis U{oo}, the trivial knot in S3. Let p : S3 —> S3 be the standard n-fold
cyclic branched covering space branched along J. Then p~1(K) is an n-periodic link in
S3, which is ambient isotopic to the closed braid K' = [/?n]A. Now since K is the trivial
knot and hence fibred, the complement S3 — K fibres over S1 with fibre D°, t e S1,

the interior of the 2-disc D2 in S3 such that the boundary of D2 is the trivial knot
K. Note that J intersects each fibre D\ (t £ 51) transversally in m points, where m

is the absolute value of the linking number between J and K. Let M% = p~x {pt) for
each t e S1, where Dt denotes the closure of the fibre D° . Then the boundary of Mt

is the link K' and S3 — K' is a locally trivial bundle over S1 by virtue of the homotopy
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lifting property of the covering space p : S3 - {K' Up~1(J)} -> S3 - {K U J } . Hence

S 3 - # ' fibres over 5 1 with fibre M," = p~l{Dl) ( l € 5 1 ) , the interior of a Seifert

surface for K'. D

THEOREM 3 . 3 . Let L be an n-periodic Hnk in S3. If L has an n-periodic braid
representation, then L is a fibred Hnk or the factor tink of L is not the trivial knot.

PROOF: Let /?n be an n-periodic braid representation of L and suppose that the
factor link of L is the trivial knot. Since the closure /3A of the braid /? is the factor
link of L, it is the trivial knot. Thus by Lemma 3.2, L is a fibred link in S3. U

COROLLARY 3 . 4 . No non-fibred 2-bridge knot has a periodic braid representa-
tion.

PROOF: First we note that the 2-bridge knots which are not torus knots have only
period 2 [6], and their factor knots are the trivial knot. Thus it is easy to deduce the
assertion from Theorem 3.3. D

It should be noted that Corollary 3.4 is not true for a 2-bridge fibred knot. For

example, the figure eight knot 4i is a 2-bridge fibred knot of only period 2 and 4i has

a 2-periodic minimal braid representation: 4j = [ ( o ^ f 1 ) ]A-

In [4], Edmonds proved that a periodic knot of genus g has a Seifert surface with
genus g which is invariant under the periodic homeomorphism. Notice that the torus
knot Km,n has a d-periodic braid representation such that the Seifert surface obtained
from the closed d-periodic braid by applying Seifert's algorithm is of minimal genus
and is invariant under the periodic homeomorphism.

The following Lemma 3.5 is an immediate consequence of the Riemann-Hurwitz
Formula, in the proof of Corollary 5 in [4], which asserts that if K is an n-periodic
knot of genus g, then n ^ 2g + 1.

LEMMA 3 . 5 . Let K be an n-periodic knot of genus g. Let M be a Seifert

surface for K with genus g which is invariant under the n-periodic homeomorphism <j>

for K and let g* be the genus of the quotient M/<f>. Then

wiere m is the number of intersection points of M with the fixed point set F of (f>

transversally.

Using Lemma 3.5, we now obtain the following:

THEOREM 3 . 6 . Let K be an n-periodic knot of genus g and let <j> be the n-

periodic homeomorphism for K. Let M be a ^-invariant Seifert surface for K with

genus g. Assume that either g<norn=g = 2or3. If the boundary of M is an
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n-periodic closed braid with the fixed point set F of <j> as its braid axis, then K is a
fibred knot.

PROOF: Suppose that M is a ^-invariant Seifert surface for K with genus g such
that the boundary of M is an n-periodic closed braid [ a n ] A , for some braid a , with
F as its braid axis representing the knot K. We may assume that M intersects with
F transversally. Then the quotient map p : M —> M/<f> is the n-fold cyclic branched
covering branched over m points, where m is the number of intersection points of M
with F. We may assume that the boundary of M/<j> is the closure aA (= p([an]A))
of the braid a . By Lemma 3.5 we obtain the equation g = ng* + ((n — l ) (m — l ) ) /2 ,
where g* denotes the genus of M/<j>. If either n > j or n = j = 2 or 3, then exactly
one of the following possibilities holds:

(i) n = g — 2, g* = 0, and m = 5.

(ii) n = g = 3,g+ = 0, and m = 4,
(iii) n = g + l,gt = 0, and m = 3 ,
(iv) n = 2g + 1, g* = 0, and m = 2.

Since gt = 0, aA is the trivial knot. By Lemma 3.2, [an]A ( = K) is a fibred knot. D

THEOREM 3 . 7 . Let L be an n-periodic tink in S3 of braid index 3 or 4. If

L has an n-periodic minimal braid representation, then e(/?) = 0 (mod n) for any

minimal braid representation [5 of L, where e(/3) denotes the exponent sum of the

braid f3 as a word on the <T{ 'S.

PROOF: If L has an n-periodic minimal braid representation, then there is a mini-
mal braid representation a n such that L is ambient isotopic to the closure of a™. Since
the exponent sum in a minimal braid representation of a link of braid index 3 or 4 is
a link invariant [5], e (a n ) = e(/3) for any minimal braid representation /? of L. But
e(a n ) = ne(ci.) = 0 (mod n). This completes the proof. U

THEOREM 3 . 8 . Let L be an n-periodic alternating fibred iinJc in S3. If L has

an n-periodic minimal braid representation, then W{DL) = 0 (mod n) , where Di is a

reduced alternating diagram of L and w(Di) is the writhe of DL .

PROOF: Let L be an n-periodic alternating fibred link in S3 and let L have an
n-periodic minimal braid representation of the form a n . In [8], it is shown that the
exponent sum in a minimal braid representation of an alternating fibred link L, denoted
by e(jL), is a link invariant and e(L) = w(Dr,), where DL is a reduced alternating
diagram of L. Thus w(DL) = e(X) = e(a n ) = ne(a) = 0 (mod n ) . D

EXAMPLE 3.9.

(1) The torus knot Kiiq (g > 2) is an alternating fibred knot and the exponent sum

e(K2tq) of Ki<q is equal to q. By Theorem 3.8, K2,q has no 2-periodic minimal braid
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representation. Note that ^2,9 (9 ^ 2) has a d-periodic minimal braid representation
for any divisor d of q. The knot 819 has periods 2,3 and 4 and 819 = [(ffio^) ] A .
Hence it has 2- and 4-periodic minimal braid representation. Also the knot IO124
has periods 3 and 5 and IO124 = [ ( ^ I ^ ) ]A- Hence it has 5-periodic minimal braid
representation. But e(8ig) = 8, e(10i24) = 10. Since 3 is relative prime to 8 and
10, by Theorem 3.7, 819 and IO124 of braid index 3 have no 3-periodic minimal braid
representations.

(2) 57 out of 117 prime knots of braid index 4 up to 10-crossings in Rolfsen's
table [11] are periodic knots with only period 2 except 940 which has another period 3
[5, 7] and has a 3-periodic minimal braid representation (see Example 4.5). Since their
exponent sums in minimal braid representations [5] are all odd numbers, by Theorem
3.7, those 57 knots have no periodic minimal braid representations.

4. PERIODIC LINKS OVER THE SAME FACTOR LINK

Let L be an oriented link in S3 and let /? be a braid representation of L. Then
the closed braid [/?n]A is clearly an n-periodic link in S3 whose factor link is ambient
isotopic to L. Hence we can obtain many periodic links over the same factor link.
But, as discussed in section 3, there are periodic links without any periodic braid
representation. In this section we give a construction of periodic links with the same
factor link (see [2]). Throughout this section we always assume that links and their
diagrams under considerations are polygonal.

DEFINITION 4 .1 : Let a,b be positive real numbers and let R — [0,a] x [0,6].
Let a-i, bi (1 < i < n) be the n points on boundaries {0} X [0,6] and {a} x [0,6]
of R, respectively, where the y- coordinate of â  is equal to that of 6< for each i —

1,2,- •• , n , and 71, • • • ,"fn curves in R. T = (R, {j1, • • • ,fn,Ci, • • • ,cm}) is called
an (unoriented) tangle diagram of degree n if it satisfies the following conditions;

(1) Each of the points a^, • • • , an, 61, • • • , bn is one of the end points of one

of the curves 71, • • • , *yn •
(2) c\,- • • , c m are closed curves contained in the interior of R

(3) There is no triple crossing point of the curves.
(4) Every curve has a marking at each crossing point indicating whether the

curve under consideration is the over path or the under path at the cross-

ing.

(5) The intersection of the curves 71, • •• , 7 n and the boundary of R is equal

to {ai, • • • , an, 61, • • • , bn}.

If orientations are given to all the curves in R, then T is called an oriented tangle

diagram of degree n . Two tangle diagrams T and V of degree n are said to be
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equivalent if T is ambient isotopic to T" keeping the boundary fixed. The closure of a
tangle diagram T, denoted by T A , means the link obtained by identifying a< with 6^,
for each i = 1,2,••• ,n. For two tangle diagrams T and T" of degree n , the product

TV is denned by identifying bt of T with a[ of 2" for each i = 1,2, • • • , n .

Let £ be an oriented link in S3 = R3U{oo} and let D be an oriented link diagram
of L in the interior of the rectangle R = [0, a] x [0, b]: (a, b > 0) in K2. Let GD be the
directed planar graph in the rectangle R with either 2-valent or + or - signed 4-valent
vertices obtained from D by assigning to each crossing of D the + or — sign as shown
in Figure 4.1.

Figure 4.1

We may assume that all the y coordinates of vertices in Go a r e distinct real
numbers. Throughout this paper the set of directed edges of GD is denoted by E(GD) •

The voltage assignment on GD into a group F is a map T : E(GD) —* F such that
r ( e - 1 ) = -r(e) , where e"1 means a directed edge from the vertex v to the vertex u

for a directed edge e from ti to o.

For a vertex v in GD , the star of v, denoted by star(v), is the subgraph consisting

of the vertex v and all the vertices adjacent to it and of all the edges joining those other

vertices to v.

Figure 4.2 star(v)

DEFINITION 4.2: A voltage assignment T : E(GD) —» Z is said to be proper if
r(e) > 0 for all e 6 E(GD) and for each 4-valent vertex v of GD whose star star(v)
is one of the two types in Figure 4.2, at least one of the upper edges {ei ,62} in star(v)
has zero voltage and at least one of the lower edges {e3, e4} in star(v) has zero voltage.

For a proper voltage assignment r : E(GD) —> Z , we construct the oriented tangle

T(GD,T) as follows.

First we choose an ordering ei, e-i, • • • ,em of all the edges with non-zero voltages

and then for the first directed edge ei = ui^i with r{e{) — k, let ui = (xi,j / i) , v\ —

https://doi.org/10.1017/S0004972700030495 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700030495


14 S.Y. Lee and C-Y. Park [8]
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Figure 4.3 T(GD,T)

(XI ' ,2/I ' ) in rectangular coordinates. If yi < y / , let Ri = {(s,y) £ R \ yi + £\ ^ y ^
2/i +£i'» 0 ^ x ^ a} be the subrectangle in R for sufficiently small 0 < e\ < e\ so that
Ri is so close to the vertex Ui that it can contain no other vertices of Go • Note that
ei fl JRI is a small line segment e\ — u\v\ C -Ri. Let a\,a\, • • • ,a\ be the k points on
the line segment {0} x [0, b}(~)Ri and let b{, b\, • • • , b\ be the A; points on the line segment
{a} x [0, b] fl Ri such that the ^-coordinate of each b\ is equal to that of a\ . Deleting
the line segment e\ , we connect u\ to b\, af to v\ , and a\ to i j + 1 , i = 1,2, • • • ,k — 1,
by the directed straight lines in Ri whose directions are compatible with the direction
of ei so that the crossings with other edges of Go a r e ^ overcrossings (see Figure
4.3). If yi > 1//, then by letting Rx = {(x,y) e R \ yi - e / < y < j/i - £i, 0 ^ x ^ a}
for sufficiently small 0 < t\ < S\ so that Ri is so close to the vertex ui that it can
contain no other vertices of Go, we can follow the above procedure.

By applying this process to ei, e$, • • • , em repeatedly, we obtain the m-tangle
diagram T(GD,T) 6 Tm by deciding the over or under crossing at each + or —
signed 4-valent vertex in T(GO,T) according to its sign (see Figure 4.1), where
m = 53 T(e)- Since the voltage assignment is proper, the resulting tangle T(GD,T)

does not depend on the choice of the ordering of the edges with non zero voltages. It
depends on the voltage assignment r on Go- Obviously the closure of T(GD,T) is
ambient isotopic to L.
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THEOREM 4 . 3 . Let L bean oriented link in S3 = R3U{oo} with an oriented link

diagram D in the interior of the rectangle R — [0, a] x [0, b] (a, b > 0) in R2. Let GD

be the graph of D in R and let r : E(GD) —» Z be a proper voltage assignment on GD •

Then the closure of the self-product T(Go,T)n (n > 1) of the m-tangle T(GD,T) is an
n-periodic oriented h'nk in S3 whose factor link is ambient isotopic to L. Conversely

every periodic link in S3 can be constructed in this way.

PROOF: The first part of the theorem is obvious (see Figure 4.4).

Figure 4.4

Conversely, let L be an oriented n-periodic polygonal link in S3 whose factor
link is L* and let 4> : (S3,L) —> (S3,Z) be the periodic homeomorphism. By the
positive solution of Smith Conjecture, the set F of fixed points of <j> is unknotted.
If we consider S3 as R3 U {oo}, then we may assume that F is the 2-axis with oo
and cf> is the standard (27r)/n-rotation of R3 about the 2-axis and < (̂oo) = oo. By
taking the regular projection of L into R2, L is represented by a polygonal diagram
D in an annulus in R2, which is divided into n-pieces Do,Di,--- ,2?n-i such that
<p(Di) — Di+i, i — 0 ,1 , • • • ,n — 2, y>(Dn_i) = Do, where (p is the restriction of <j> on
R2. Let Oi,o2,--- , c m denote the intersection points of Do with the z-axis and let
<p{ai) = bi, i = 1,2, ••• ,7n. By connecting aj to 6j by polygonal path CJ with the
orientation induced from Do , i = 1,2, • • • ,m (see Figure 4.5), we obtain a polygonal
link diagram £>* of L*. Let GD. be the graph of D , . Without loss of generality we
may assume that GD. is contained in the rectangle R. Now define a voltage assignment
r : E{GD. ) —> Z by assigning voltage 1 to the unique directed edge of c< connected
to aj for each i = 1,2, ••• ,m and voltage 0 to all other directed edges of GD, (see
Figure 4.5). Notice that the voltage assignment T is obviously proper.

By applying the construction to the graph GD. , we obtain the m-tangle T(GD. >T) •
The closure of the product T(GD.,T)n is an oriented n-periodic link which is ambient
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Figure 4.5

isotopic to L since T(GD,,T) is ambient isotopic to Do keeping the boundary fixed.
This completes the proof. •

The following Corollary 4.4 is an immediate consequence of Theorem 4.3 and
Lemma 3.2.

COROLLARY 4 . 4 . Let D be an oriented diagram of the trivial knot and let
T : E{GD) -> Z be a proper voltage assignment. Assume that the tangle T(GD,T) is
equivalent to a braid. Then the hnk LT

D = [T(GD,r)n]A is an n-periodic fibred Hnk in
S3 which has an n-periodic braid representation.

We conclude by giving an apphcation of the construction.

EXAMPLE 4.5. Let L be the trivial knot and let D be its diagram as shown in Figure
4.6. Let Go be the graph of a diagram D with edges ei = vxv2, e2 = v2v3, e3 =
v3v4, e4 = u4vs, es = vsv3, and e6 = v3v!. Let T{ (i = 1,2,-•• ,8) be the proper
voltage assignments from E(GD) to Z defined as shown in the table of Figure 4.6.

j

1
2
3
4
5
6
7
8

e i
0
0
0
0
1
0
0
0

e2
1
1
2
2
1
0
1
0

e3
0
2
1
0
2
0
0
0

64
2
2
2
2
0
1
1
1

e5
0
0
0
0
0
1
1
2

e6

0
0
0
0
0
2
0
0

Then we have

Figure 4.6

7e = [T(GD,r3)
2r = [(<1 -IN*!

62 =

\ 818 =
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94o =
-1\5,

935 - [T(GD )r6 ) 3 ]A , 941 =

6* = [T(GD,n)Y =
, 949 = [T(GD,TS)

3]**,

where L* means the mirror image of the link L. Hence we conclude that 4i, 62, 7a,
8i8i 940,947, IO123,51,63 , and 6| are fibred links which have periodic braid represen-
tations. Note that 4i, 76,818,940,947, and IO123 have periodic minimal braid repre-
sentations. Also [T(GD,T-6)3]A, [T(GD,TT)3]A, and [T(GD,Ta)

3]* are hnk diagrams of
the 3-periodic knots 935,941 and 949, respectively, invariant under the corresponding
periodic homeomorphism (see Figure 4.7).

[1]

[2]
(3]

[4]

[5]

[6]

[7]

[8]

[9]
[10]

fill

y-

T(G[>is) T(G[>i8)T(G[>T7)

Figure 4.7
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