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In this article, we present a model of the electricity sector where generation
technologies are intermittent. The economic value of an electricity generation
technology is given by integrating its production profile with the market price of
electricity. We use estimates of the consumer’s intertemporal elasticity of
substitution for electricity consumption while parameterizing the model
empirically to numerically calculate the elasticity between renewables and fossil
energy. We find that there is a non-constant elasticity of substitution between
renewable and fossil energy that depends on prices and intermittency. This
suggests that the efficacy and welfare effects of carbon taxes and renewable
subsidies vary geographically. Subsidizing research into battery technology and
tailoring policy for local energy markets can mitigate these distributional side
effects while complementing traditional policies used to promote renewable
energy.
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Introduction

Renewable energy technologies have seen considerable adoption over the last
few decades (EIA, 2019c). Certain renewables, such as wind and solar power,
are particularly unique technologies in that the amount of energy they supply
is intermittent. Specifically, by intermittent, we mean that their output
changes in predictable ways related to physical constraints. For example,
wind turbine output varies with wind speed and direction, which can be
predicted ahead of time. On the other hand, traditional fossil fuel energy
sources offer a constant amount of energy. Intermittency presents a challenge
when evaluating the economic value of renewable energy. Traditional
approaches such as the levelized cost of electricity (LCOE) fail to capture the
true economic value of intermittent technologies, because they neglect to
account for variation in output and prices over time (Joskow 2011).
Additionally, the intermittency of renewables complicates their ability to
substitute for fossil energy, because consumers prefer to have more
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electricity at certain times than others, while the output of intermittent
renewables varies exogenously with the weather. Consequently, modeling and
better understanding the effects of intermittency would help us design more
effective policies to promote the adoption of renewable energy.
In this article, we develop a partial equilibrium model of the electricity sector

that takes into account intermittent generation. Specifically, the electricity
sector consists of a representative firm that chooses and builds capacity from
a set of electricity-generating technologies to maximize profit; some of these
technologies are intermittent, while others are consistent. Then, we consider
a representative consumer who purchases varying quantities of electricity in
each period in order to maximize utility. People prefer to smooth their
electricity consumption over time, so we model our consumer’s preferences
using a CES function of electricity consumption and assume preferences are
time dependent.1 These two sides of the market reach an equilibrium
through the prices of electricity in each period.
Our model has two important features that distinguish it from present

approaches in the literature. Firstly, it accommodates the critique made by
Joskow (2011). In our model, when firms maximize profit, they implicitly
measure the economic value of each energy technology by integrating its
production profile with electricity prices. That is, firms take into account how
much a technology produces in each period and the price of electricity in
those periods, as opposed to simply taking the product of the average
electricity output of a technology with the average price of electricity.
Secondly, our model captures the imperfect substitutability of intermittent and
reliable energy technologies by modeling consumers with a preference for
smooth electricity consumption, which they signal through prices. When firms
respond to this signal and maximize profit, the equilibrium result is that the
intermittency of certain renewables interferes with their ability to perfectly
substitute for reliable energy technologies; that is, the substitutability of
energy technologies is directly linked with their intermittency. This contrasts
with alternative approaches that model electricity as a homogenous good
produced according to a CES function of electricity-generating technologies;
such approaches model imperfect substitutability on the supply side to
implicitly capture the effects of intermittency. However, these approaches
abstract from key features of intermittency and thus may reach incorrect
conclusions.
Next, we parametrize our model empirically by fitting the parameters of the

consumer’s utility function using electricity consumption and price data for
each U.S. state. Since the consumer’s CES utility function is composed of

1 The use of a CES function in this way has been explored earlier by Schwarz et al. (2002),
Herriges et al. (1993), and King and Shatrawka (1994), Aubin et al. (1995), and Mohajeryami
et al. (2016). Their articles empirically estimate the parameters for this function; we provide a
more detailed discussion of the empirical literature in our Methodology.
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electricity consumption differentiated by time, the elasticity parameter
represents the intertemporal elasticity of substitution for electricity
consumption; this parameter plays a particularly important role in our
model, since it captures the effects of intermittency on demand. We also
consider parametrizations of our model using previous estimates of this
elasticity from the literature. Next, to model the supply side, we narrow our
framework to a two-period, two-technology setting to focus on the
substitutability between renewable and fossil energy. We proxy for
renewable and fossil energy using solar and coal, respectively, while
parametrizing each accordingly. Finally, we implement our model numerically
and provide suggestions for policy and future models.
Our results quantify the relationship between the intertemporal elasticity of

substitution for electricity consumption (IES) and the elasticity of substitution
between renewable and fossil energy. The intuition behind the relationship is
based on how the IES affects the desire for smoother consumption. When the
IES is low, consumers want their electricity consumption to be smooth, so
they prefer not to consume intermittent sources of energy such as solar. This
means that the substitutability between renewables and fossils will be small.
On the other hand, when the IES is high, consumers care less about
smoothing their electricity consumption, so they are more willing to
substitute between renewable and fossil energy. In short, the elasticity of
substitution between renewable and fossil energy increases with the IES.
Furthermore, our numerical results show that the elasticity of substitution

between renewable and fossil energy is non-constant and rises with the
intermittency of present electricity generation. This occurs because
consumers prefer to smooth their electricity consumption, so when electricity
output varies more over time, it becomes harder to replace consistent
technologies with intermittent technologies. The result that the elasticity of
substitution between technologies is non-constant is important because a
significant amount of literature has assumed a CES structure between
renewable and fossil energy (see Papageorgiou, Saarn, and Schulte (2017));
this assumption has been motivated, in part, by the need to capture imperfect
substitutability between these two generation technologies as a result of
intermittency. However, our model finds that intermittency itself causes a
non-constant elasticity between technologies. This elasticity appears to vary
with the unit cost of each energy technology. Thus, we argue against
assuming a CES structure. Alternatively, we argue that a variable elasticity of
substitution (VES) production function should be used to approximate the
relationship between the elasticity of substitution and the unit cost of each
technology.2 The numerical results suggest this relationship is roughly linear,
which is exactly what a VES function assumes. Moreover, a VES function is

2 The VES production function was created by Revankar (1971); we describe it in further detail
in the discussion.
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analytically tractable, so it can be implemented in other frameworks without
making them overly complicated.
These results have multiple important implications for environmental/energy

policy. Firstly, the welfare burden of both a carbon tax and renewable subsidies
varies geographically. This variation is a consequence of differences in the
intermittency and availability of renewable energy by location. Moreover, this
variability can create a trade-off between equity and efficiency when
introducing policy to mitigate climate change. Secondly, we find strong
motivation for research and development subsidies aimed at improving
battery technology. Better energy storage can greatly increase the
substitutability of renewable and fossil energy. Also, batteries can lessen the
distributional side effects of carbon taxes and renewable subsidies by
reducing intermittency. Thus, research into improving batteries can
complement other policies by making them more equitable and by increasing
their impact on the adoption of renewables. Finally, we revisit the results of
Acemoglu et al. (2012) and qualitatively discuss the implications of our
model in their setting.
Some of the literature has approached the question of intermittency by

constructing numerical models that find the cheapest renewable technology
set while accounting for intermittent supply. For instance, Musgens and
Neuhoff (2006) model uncertain renewable output with intertemporal
generation constraints, while Neuhoff, Cust, and Keats (2007) model the
temporal and spatial characteristics of wind output to optimize its
deployment in the UK. Other articles study how intermittent technologies
affect the market itself; Ambec and Crampes (2012) study the interaction
between intermittent renewables and traditional reliable sources of energy in
decentralized markets, and Chao (2011) models alternative pricing
mechanisms for intermittent renewable energy sources. Additionally,
Borenstein (2012) reviews the effects of present public policies used to
promote renewables and the challenges posed by intermittency. Our model
comes closest to that of Helm and Mier (2019), who build a peak-load pricing
model where the availability of renewable capacity varies stochastically. Like
Helm and Mier, we model the equilibrium of a market with dynamic prices3

and access to both renewable and fossil energy. However, Helm and Mier’s
approach is closer to one of reliability rather than intermittency. In
accordance with the U.S. Department of Energy’s ORNL (2004), reliability
captures stochastic variability of electricity supply, while intermittency

3 Helm and Mier motivate models incorporating the dynamic pricing of electricity. They argue
that such approaches to pricing will become the norm with further technological advances and
coming regulatory changes.
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captures deterministic differences over time.4 Consequently, since we model a
different characteristic of renewable output, our model and results differ in a
key way.
The remainder of the article proceeds as follows. The “Electricity Market

Equilibrium” section states the consumer and firm problems and the
resulting equilibrium. We also provide a discussion of the (consumer side)
IES parameter and how it affects the optimal choice of electricity-generating
inputs. Then, using estimable equitions based on the analytic results from the
market equilibrium, we estimate the IES parameter. Next, in the Elasticity of
Substitution section, we empirically parametrize and numerically implement
our model. We also elaborate on the link between the IES parameter,
intermittency, and the substitutability of renewable and fossil energy. In the
Environmental and Energy Policy Implications section, we detail our model’s
policy implications. Finally, the Conclusion summarizes our article and offers
suggestions for future models of intermittent renewables.

Electricity Market Equilibrium

Model

Consumers: Consumers purchase a quantity of electricity Zt in each period t.
Furthermore, they demand a greater quantity of electricity in certain periods;
for instance, consumers need more electricity during the middle of the day
more than at night. At the same time, consumers are willing to shift their
consumption from one period to another in response to a shift in prices.
Overall, these characteristics can be captured using a standard CES utility
function. Hence, we consider a representative consumer with the utility
function

U ¼
X
t

αtZ
f
t

 !1=f

f< 1(1)

where σ¼ 1/(1� ϕ) is the intertemporal elasticity of substitution for electricity
consumption. The restriction on ϕ implies we have σ> 0; additionally, since
electricity consumption increases utility, we must have αt> 0 for all t. For

4 The ORNL states, “Power reliability can be defined as the degree to which the performance of
the elements in a bulk system results in electricity being delivered to customers within accepted
standards and in the amount desired.” Consequently, stochastic variance in output is better
captured by the term reliability. Unlike intermittency, this cannot be planned around with 100
percent certainty. A practical example may be a wind turbine’s systems failing. While we may
know the chances of this occurring, it’s not always possible to know when it will occur ahead
of time; consequently, this may result in a temporary reduction in the quantity and quality of
the electricity delivered.
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simplicity, we also define
P

t αt ¼ 1, so that a 1 percent increase in electricity
consumption in all periods increases utility by 1 percent; consequently, we
then have αt∈ (0, 1). The budget constraint is given by

I ¼
X
t

ptZt(2)

where pt is the price of electricity in period t and I is the income. Our
representative consumer maximizes utility against this budget constraint; the
first order conditions of this problem imply:

Zt ¼ αt

pt

� �σ I
P

(3)

P ¼
X
t

ασ
t p

1�σ
t(4)

where P is the price index. Note that this model naturally does not allow for
blackouts in equilibrium, since the price of electricity in any period gets
arbitrarily large as the quantity of energy consumed in that period
approaches 0. Furthermore, note that prices must be positive; although this is
sometimes violated in reality, we do not believe that this assumption
significantly affects our analysis.
Firms: Secondly, we have firms maximizing profit by picking an optimal set of

energy inputs. In reality, electricity markets are fairly competitive, so we can
model the set of firms by using a single representative firm that sets
marginal revenue equal to marginal cost.
We let Xi represent the quantity of energy technology i, and we define its

output per unit in period t as ξ1,t. So, for example, if i is solar power, Xi would
be the number of solar panels and ξi,t may be kWh generated per solar panel
in period t. Consequently, the energy generated in period t, Zt, is given byP

i ξ i,tXi. To simplify notation, we have

X ≡

X1

..

.

Xn

0
B@

1
CA, Z ≡

Z1

..

.

Zm

0
B@

1
CA, p ≡

p1

..

.

pm

0
B@

1
CA, ξ ≡

ξ1,1 . . . ξ1,m

..

. . .
.

ξn,1 ξn,m

0
B@

1
CA(5)

where we have n technologies, m periods, and Z≡ ξT X.
A key assumption of our model is that the time scale is short enough such that

the input vector X does not vary with time and the output per unit matrix ξ is
exogenous. This is important because the time scale of our model must be fairly
granular to study the effects of intermittency. So, for instance, a reasonably
short two-period setting would be t∈ {peak, off-peak}. Since the overall time
frame is a single day, producers cannot modify the quantity of the
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technologies they deploy, so X must be fixed. Furthermore, this time frame is
short enough to assume that ξ is exogenous; that is, technologies like coal
power cannot significantly modify their output within a day, so ξ can be
treated as a given set of constants. These two implications, that X cannot
change over time and that ξ is exogenous, are important for parsimony,
because they prevent more complicated dynamics from entering our model.
And, they also make intermittency economically relevant, because having X
fixed and ξ exogenous means that producers have no way of compensating
for intermittent output; therefore, they must view the intermittency of
technologies like solar and wind as a trade-off.
Furthermore, assuming a short time scale makes it simple to differentiate

intermittent technologies. In this setting, we define an intermittent technology
as a technology where output per unit varies with t. Specifically, this
variation is exogenous and captured through ξ. We further narrow our article
to deterministic variation as opposed to stochastic variation; hence, elements
of the matrix ξ are constants. In total, we only need to consider ξ to
determine whether a technology is intermittent. Additionally, in this context,
we define intermittency as variation in electricity output over time. Since the
set of inputs X are fixed over time, we can know whether the overall supply
of electricity is intermittent based on total output Z¼ ξT X.
Now, we consider the firm’s problem. Our representative firm chooses X to

maximize total profit; it does so by setting marginal profit equal to marginal
cost. Helm and Mier (2019) note that past literature has argued for concave
cost functions in the energy market due to effects such as economies of scale
and learning-by-doing; on the other hand, standard cost functions are
generally convex. So, like Helm and Meir, we take an intermediate approach
by using a linear cost function. Specifically, the total cost of the input bundle
X is given by

P
i ciXi ≡ cTX where ci is the cost per unit of Xi. Then, total

profit is given by

Π ¼ pTZ � cTX(6)

To simplify the algebra, we set the number of technologies equal to the number
of periods (n¼m). Additionally, we further require that the output per unit of
each technology is unique and nonnegative in each period; in other words, the
output per unit of one technology is not a linear combination of those of the
other technologies in our set. This then implies that ξ is of full rank and
therefore invertible. Now, maximizing profit, we find the first order condition:

∂Π
∂X

¼ 0 ) p ¼ ξ�1c(7)

Combining this FOC with the demand equation (equation 3) allows us to find
the equilibrium. Generally, the equilibrium results for any number of
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technologies (n) are analytic, but they are difficult to interpret algebraically due
to the number of parameters involved.

Equilibrium

For more tractable results, we consider a simpler scenario where n¼m¼ 2 and
σ¼ 1 (Cobb-Douglas); this particular case is described in greater detail in
Appendix A.A. These assumptions simplify the discussion of intermittency. In
a two-period, two-technology model, we can intuit that the magnitude of
intermittency is given by how much ξi,t/ci (output per dollar) varies with t;
this is useful for understanding the link between intermittency and other
parameters like σ. Furthermore, as we will discuss in our results, assuming
σ¼ 1 is not far from its empirical estimate.
We define two recurring terms in our analysis: cost-efficiency and output

efficiency in period t. For period t and technology i, we use cost-efficiency to
refer to ξi,t/ci and output efficiency to refer to ξi,t. So, for example, with two
technologies i and j at period t, technology i is more cost-efficient than
technology j when ξi,t/ci> ξj,t/cj. Additionally, we say a technology is
economical if its equilibrium quantity is above 0.
In Lemma 1 we use these two terms to define conditions that avoid an edge-

case solution.

Lemma 1 Assume that, for all technologies i and periods t, we have ξi,t> 0,
αt> 0, and ci> 0. Then, for technology j to be economical, there need to
exist a period s where the following three conditions are met:

ξj,s/cj> ξi,s/ci for all i
ξj,s/ξj,t> ξi,s/ξi,t where i≠ j and t≠ s

Period s demand needs to be sufficiently large, i.e., αs is large enough

The first condition is on cost-efficiency and is intuitive. Consider its
contrapositive: if a technology does not have an advantage in cost-efficiency in
any period, it will not be used. Alternatively, if a technology is the most cost-
efficient in every single period, it will be the only technology used. The second
condition regarding output stems from the invertibility of ξ. If we did not have
ξ invertible, we either have at least one technology that does not produce in
any period or we have at least one technology being a linear combination of
the other technologies in terms of output and ξ is of row rank n<m, implying
that at most, n technologies are used in equilibrium. Finally, the intuition
behind the demand condition is straightforward; even if a technology is
optimal in a certain period, if consumers do not sufficiently demand electricity
during that period, then there is little reason to use that technology.
We may also derive the comparative statics for this simplified scenario.
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Proposition 1 Suppose that the conditions of Lemma 1 hold for each
technology, so we are not in an edge case. Then, the following hold:
The equilibrium quantity of a technology is increasing with its output

and decreasing with its cost; at the same time, it is decreasing with the
output of other technologies and increasing with the cost of other
technologies.
Suppose that some technology i is the most cost-efficient in period t.

Then, its equilibrium quantity is increasing with respect to the demand
parameter αt and decreasing with respect to the demand parameters in
other periods.
Furthermore, again assuming technology i is the most cost-efficient in

period t, the comparative statics of Zt and Xi are equivalent.

The comparative statics with respect to Xi and output efficiency and cost of
technology i are straightforward. On the other hand, the statics for Zt follow
from the fact that we have Z≡ ξT X. That is, suppose technology i is the most
cost-efficient source of electricity in period t. If consumers demanded that
100 percent of their energy arrive in period t, then relying solely on
technology i for energy would be the most economical solution. Consequently,
the comparative statics of Xi follow through to Zt. This intuition can then be
generalized to when multiple technologies are employed and there is demand
for electricity in multiple periods. Similarly, the comparative statics for the
share parameters of the utility function, α ≡ (αtαs)

T , travel in the opposite
direction. A rise in αt would directly raise the optimal quantity of Zt; hence,
whichever technology is most cost-efficient at producing in period t would be
used more. We provide a more detailed and formal discussion of the
comparative statics and edge cases in Appendix A.
These theoretical results assumed σ¼ 1. This simplification implies that the

utility function is Cobb-Douglas, which then results in the first-order
condition Zt¼ αt/pt. This condition facilitates the analysis of X . In the
following section, we empirically estimate σ to parametrize the model. Since
the empirical estimate is not exactly 1, this complicates the solution for Z;
consequently, the solution for X loses tractability. However, we can study the
model analytically when σ is asymptotically large and small to see how it
affects the equilibrium.

Proposition 2 Suppose that we have σ→∞. Then,
Electricity consumption in each period t is a perfect substitute for

electricity consumption in period s for all periods t, s;
The utility function takes on the linear form U ¼Pt αtZt ; and
The set of optimal bundles of inputs X is given by

W ¼ {X :cTX ¼ I, XInLnBrk; non-negative, and (xi > 0 ) i ∈ S)∀i}
where S ¼ arg max

i

P
t
αtξ i,t=ci
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S represents the set of indices for technologies that have maximal cost-
adjusted marginal utility. In other words, any vector of inputs X consisting of
a feasible (non-negative X) and affordable (cTX¼ I) combination of
technologies in S represents a valid equilibrium solution. Furthermore, the
set Y ¼ {Z : Z ¼ ξTX∀X ∈ W} contains all possible equilibrium values of
electricity output.
A detailed proof of Proposition 2 is given in Appendix A.A.
If σ→∞, then electricity consumption in each period becomes a perfect

substitute for electricity consumption in other periods. In this case, the
marginal utility of each input is

P
t αtξ i,t; hence, the input that offers highest

cost-adjusted marginal utility (1=ci)
P

t αtξ i,t will maximize utility. The perfect
substitutability of Zt implies that consumers do not care about smoothing
their electricity consumption over time. But they still value consumption in
particular periods more than others through the α parameter. Consequently,
they simply use whatever technology gives them the most total electricity
(weighted by α). And there may be multiple technologies that maximize
consumer utility in this way, so any combination of these technologies,
indexed by S in Proposition 2, will be optimal.
Furthermore, since only total electricity output weighted by α matters when

choosing the optimal set of inputs, there is no preference for smoothing
electricity consumption over time; again, this is because σ→∞ corresponds
to the case of perfect substitutes. Consequently, the intermittency of an input
has no effect on its adoption. This makes different inputs stronger substitutes
for one another. To better understand why, suppose we have two
technologies that cost the same per unit and produce the same total amount
of electricity; one technology only produces during peak hours and the other
producers only during the off-peak. If we have αpeak¼ αoff�peak, both
technologies are perfect substitutes for one another when σ→∞. This is
because any feasible combination of the technologies would give the same
utility to the representative consumer. For instance, using the first technology
and only getting electricity during peak hours would offer the same amount
of utility as using a mix of both technologies and getting electricity during
both periods. On the other hand, if we had finite σ, consumers would care
about having electricity during both periods. This would cause the
equilibrium solution to involve using both inputs. So, in general, when σ→∞,
intermittency does not matter and inputs are more substitutable.
On the other hand, suppose that σ→ 0; here, electricity consumption in each

period is perfectly complementary with that in other periods. Furthermore, the
utility function becomes U ¼ min

t
Zt=αt . While the analytic solution is not as

clear here, some of the intuition from before carries through. As a result of
perfect complementarity, consumers care strongly about smoothing their
consumption. For instance, consider again a two-period, two-technology case
with solar (intermittent) and coal (constant-output). Also, suppose that αt is
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constant. The utility function here implies that consumers only care about
periods when they are getting the least electricity. Since solar performs
worse during the off-peak, the implicit demand for solar would solely be
based on its off-peak performance. Interestingly, no matter how high solar’s
output efficiency is during peak hours, the consumer’s decisions and utility
would be unaffected. On the other hand, when we had σ→∞, the reduced
performance of solar in the off-peak could always be compensated for by
increasing performance during peak hours. In other words, intermittency
plays a much larger role when σ→ 0, since, in this case, a technology that
with low output efficiency in certain periods cannot compensate by having
higher output efficiency in other periods. This makes intermittent and
consistent technologies weaker substitutes.
To summarize, the channel by which σ affects the inputs X is through the

demand for electricity. Specifically, σ is inversely related to how much
consumers value smoother electricity consumption Z. When σ is low,
consumers care more about consumption smoothing. They are willing to
reduce their total consumption of electricity if it means having more
consistent electricity over time. In this case, intermittent energy technologies
are less appealing because, by definition, they do not generate a consistent
electricity output over time. On the other hand, when σ is high, consumers
care less about consumption smoothing and are focused more on total
consumption. In the extreme case above, when σ→∞, they only care about
total consumption and not about when they get their electricity.
Intermittency becomes less of a concern, while other factors like cost-
efficiency and output play a larger role. In short, σ is inversely related to how
much the intermittency of an input matters.

Empirical Methodology

In order to better understand the practical implications of our model, we
empirically estimate its parameters and study its implications numerically.
We are particularly interested in estimating σ, since it determines the
importance of intermittency. As shown earlier, when σ is large, consumers
care less about when they get their electricity and are thus more likely to
adopt intermittent technologies. On the other hand, when σ is small,
consumers prefer to smooth their electricity consumption and therefore
prefer less intermittent sources. Hence, ensuring that we have accurate
estimates of σ is important for understanding how consumers decide between
fossil and renewable energy. The other parameters in our model, c, ξ, and α
are of secondary interest, since they are easier to obtain directly.
Recall the demand equation from earlier

Zt ¼ αt

pt

� �σ I
P

(8)
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where P is the price index and I is income. Retail customers pay fixed rates each
month for electricity, hence pt is constant within each month, and we expect that
income I does not vary significantly on a daily basis. Consequently, all variation
in intramonthly demand is due to the share parameter α and the elasticity σ. But
this creates a problem; since retail consumers do not face prices that vary each
hour, we cannot estimate σ on an hourly basis.
A number of other articles have approached this problem using data from

real-time pricing experiments.5 In such experiments, consumers of electricity
face prices that vary on an hourly basis; this makes it possible to estimateσ.
Articles that use these experiments include Schwarz et al. (2002), Herriges
et al. (1993), and King and Shatrawka (1994). The latter two articles estimate
σ to be around 0.15 while the article by Schwarz et al. obtains estimates
around 0.03. All three articles study real-time electricity pricing programs for
industrial consumers using similar methodologies. Additionally, Aubin et al.
(1995) also provide estimates of the σ but using a different methodology;
their results find an elasticity of substitution below 0. Under a CES structure,
this is problematic, because it would imply upward-sloping demand curves.
Finally, Mohajeryami et al. (2016) also empirically estimate the share
parameters for a CES function of this form, but they do not estimate the
elasticity of substitution.
Overall, the past literature has estimated σ by running regressions on the CES

demand equation, but we are concerned that this approach suffers from
endogeneity. That is, producers may intertemporally substitute electricity
output, which essentially means that there is a supply equation affecting
prices. For instance, during the oil crisis of 1973, refineries increased
gasoline stocks, expecting future prices to be higher (Adelman 1995). The
existence of such behavior implies that estimates of σ would be biased
downward unless we properly control for endogeneity. This is particularly
important because whether σ is closer to 0.1 or 1 significantly changes the
practical implications of our model.
So we take a different approach by using a supply instrument to identify the

CES demand parameters. Specifically, we use coal prices, which affect the supply
of electricity but not the demand. Furthermore, we estimate σ on a monthly
basis. This decision is primarily due to data limitations, since we do not have
access to the proprietary data on real-time pricing experiments, which the
past literature has used. Although we are interested in understanding
intertemporal substitution over a shorter time scale (since intermittency

5 There has also been a large literature that directly estimates the price elasticity of electricity
demand without imposing a CES functional form. These papers include Wolak and Patrick (2001),
Zarnikau (1990), Woo, Chow, and Horowitz (1996), Zhou and Teng (2013), Reiss and White
(2005), Fan and Hyndman (2011), and Deryugina Mackay, and Reif (2017). These articles
estimate own-price elasticities, while some also estimate cross-price elasticities for electricity
consumption at different times. Because they do not impose a CES structure, we cannot obtain
estimates of σ from this literature.
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plays a larger role in shorter periods), estimates of σ on a monthly basis may
still be applicable on a smaller time frame. For instance, Schwarz et al.
(2002) estimate σ on a daily and hourly basis and find fairly close results;
similarly, Herriges et al. (1993) also find no significant difference in their
estimates of σ for these two intervals. That is, while a daily basis is 24 times
larger than an hourly basis, the estimates for σ, surprisingly, do not appear to
change. Hence, we expect our estimates of σ on a monthly basis to not be far
from estimates on shorter time scales. At the same time, our estimates of σ
will likely be larger than that of the literature, because we are controlling for
endogeneity. We now define our econometric methodology in detail.
Theory: We begin with the demand equation from our general model:

Zt ¼ αt

pt

� �σ I
P

(9)

P ¼
X
t

ασ
t p

1�σ
t(10)

For any pair of electricity outputs Zt and Zs, we have:

Zt
Zs

¼ αt ps
αs pt

� �σ

Taking logs on both sides and letting i represent different observations, we may
rewrite this in a form more suitable for estimation.

ln (Zt,i=Zs,i) ¼ �σ ln (Pt,i=Ps,i)þ σ ln (αt,i=αs,i)(11)

Our data differentiates consumption for each state in the United States, so we let
i refer to a particular state. Additionally, most consumers pay monthly fixed
rates for electricity, so we can, at most, estimate this equation on a monthly
basis; hence, t and s refer to different months. Also, note that each
observation only corresponds to a single state i; this is because consumers
within each state can substitute consumption across time, but consumers in
different states do not substitute consumption with one another.
In order to estimate this σ, we further modify this equation. Firstly, note that

we cannot observe the demand shifter αt,i directly, so we must replace the α
terms with a set of controls that may be responsible for shifts in demand. So,
still in general terms, our regression equation is now

ln (Zt,i=Zs,i) ¼ �σ ln (Pt,i=Ps,i)þ γt,iAt,i þ γs,iAs,i þ ui(12)

where A represents set of controls for changes in demand while ui is a normal
error term. Note that the control At,i replaces σln(αt,i) and likewise for the
period s term; this substitution is valid because the ln(αt,i)∈ℝ and the σ
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term is simply absorbed into the estimated coefficient γt,i. For the demand
controls themselves, we consider degree days and the difference in months
between periods t and s. Firstly, we use degree days rather than temperature
due to the aggregation of the data. A degree day is defined as the difference
between the average temperature for a day and a base temperature—our
data uses 65°F (18°C). Cooling degree days (CDDs) and heating degree days
(HDDs) further split this measure into deviations above and below the base
temperature. That is, if the average temperature of a day is x°F, its CDD is
max{0, x� 65} and its HDD is max{0, 65� x}. Since these measures are
linear, CDDs and HDDs can be aggregated without losing information. This
does not hold true for temperature; averaging temperature over a month
causes daily variation to be lost. Secondly, the demand for electricity may rise
over time. Hence, we include, as a control, the difference in months between
time t and s; this is represented by Δt,s. Finally, this panel requires us to
consider fixed effects for each state, so we use a fixed effects panel
regression. In total, the demand equation is:

ln (Zt,i=Zs,i) ¼� σ ln (Pt,i=Ps,i)þ γt,iAt,i þ γs,iAs,i þ ηΔt,s þ ui
¼� σ ln (Pt,i=Ps,i)þ γt,i(CDDt,i þ HDDt,i)

þ γs,i(CDDs,i þ HDDs,i)þ ηΔt,s þ ui

(13)

Still, this equation may suffer from bias, since producers can also substitute
production over time. To address endogeneity concerns, we define the
following supply equation

ln (Zt,i=Zs,i) ¼ β ln (Pt,i=Ps,i)þ ζ ln (Ct,i=Cs,i)þ vi(14)

where Ct,i is the average cost of coal used for electricity generation in state i at
time t and vi is a normal error term. Coal prices are independent of the
electricity demand error term ui, since residential consumers generally do
not use coal for electricity generation; on the other hand, shocks in the price
of coal are linked with the supply of electricity. Hence, coal price is a
theoretically valid instrument. In total, the reduced form equation is given by:

ln (Pt,i=Ps,i) ¼ (β þ σ)�1(γt,iAt,i þ γs,iAs,i þ ηΔt,s � ζ ln (Ct,i=Cs,i)þ ui � vi)(15)

where At,i consists of CDDs and HDDs at time t.
Finally, we also consider a semiparametric specification. That is, we allow the

error terms ui and vi to be non-normal and place the demand controls and
instruments in unknown functions. So, overall, we have:

ln (Zt,i=Zs,i) ¼ �σ ln (Pt,i=Ps,i)þ f (At,i, As,i, Δt,s)þ ui(16)

ln (Zt,i=Zs,i) ¼ β ln (Pt,i=Ps,i)þ g(ln (Ct,i=Cs,i))þ vi(17)
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where f and g are unknown, bounded functions. We restrict cov(ui, vi)¼ 0 but
allow for the controls and instruments to be correlated. The advantage of this
specification is that we can account for the controls or instrument having any
nonlinear effects on the regressands. In order to estimate these equations, we
use a procedure based on Newey (1990) that we describe in further detail in
Appendix C.
Data: We collect monthly data from the EIA (2019a) on retail electricity prices

and consumption for the 48 contiguous U.S. states from 2010 to 2018. Also from
the EIA, we obtain data on the average cost of coal for electricity generation for
each state and month.6 We deflated both electricity and coal prices over time
using the PCEP Index provided by the US BEA (2019). Finally, we collect data
on HDDs and CDDs from the NOAA Climate Divisional Database (2019) for
the same panel. Then, we merge these three data sets and trim 1 percent of
outliers for a total of 818 observations for each month and state. We provide
descriptive statistics for this data in Table 1. We use this preliminary data set
to construct the data required for our regressions. That is, each observation
in our estimation equation belongs to a set (t, s, i) consisting of two time
periods and a state. Hence, we construct each row in our regression data set
using unique combinations of t, s where t≠ s for each state i. This gives us a
total of 6817 observations. All in all, each observation in our regression data
set consists the following variables: state (i), date 1 (t), date 2 (s), the log
difference in electricity consumption between month 1 and month 2, the log
difference in the price of electricity, the log difference in the price of coal, the
number of CDDs for each date, the number of HDDs for each date, and the
difference in months between dates 1 and 2.

Results

In Table 2 we report the results for our three approaches. The most robust
result is our partially linear specification, which controls for nonlinear effects.
Here, we find much smaller estimates than 2SLS and OLS when using time
and degree day controls. Specifically, in fit (3), we have σ̂ ¼ 0:8847(jtj> 20).
The estimates of σ with fewer controls are much larger. However, both the
time and degree day controls were highly significant in the OLS and IV
results; thus, it seems appropriate to include both controls in the partially
linear IV regression.
Additionally, all of the partially linear IV estimates are significantly different

from the 2SLS results, which suggests that the 2SLS results are inconsistent.
This may be because our controls and instrument have nonlinear effects on
price and quantity, which cannot be captured by linear models. Specifically,
we are likely to see temperature, which is proxied by CDDs and HDDs, to

6 The coal price data set contains a large number of missing values due to privacy concerns;
however, we do not expect that these missing values are correlated with the data itself.
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Table 1. Descriptive Statistics

Mean StDev Min 25% 50% 75% Max

Electricity Price ($/kWh) 0.1184 0.0279 0.0766 0.0987 0.1110 0.1287 0.2090

Electricity Load (gWh) 2454.97 2380.24 144.00 790.50 1869.50 3315.00 18621.00

Coal Price ($/ton) 46.00 17.68 24.04 33.43 41.40 51.83 107.49

Cooling Degree Days 64.66 134.97 0.00 0.00 0.00 47.25 761.00

Heating Degree Days 443.20 412.27 0.00 48.00 367.00 754.50 1794.00
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have nonlinear effects on electricity demand. The intuition here is that the
amount of electricity needed to maintain room temperature varies
nonlinearly with the outside temperature. So, using a linear functional form
in the OLS and 2SLS regressions would produce inconsistent estimates.
Alternatively, it may also be possible that the instrument, coal prices, affects
electricity prices nonlinearly; this would also result in the 2SLS regression
being inconsistent. On the other hand, the partially linear regression allows
the control and instrumental variables to have nonlinear effects in both the
supply and demand equation; this is shown equations 16 and 17. If the true
functional form was linear for both the controls and instruments, we would
expect the partially linear results to be closer to the 2SLS results. However,
because the two types of regressions give significantly different results, the
partially linear regression is more reliable since it is robust to nonlinearities
that 2SLS cannot capture. So we believe that our third semiparametric fit,
σ̂ ¼ 0:8847, is the most robust estimate of σ.
We also consider additional robustness checks for the estimate in fit (3).

Firstly, we check if outliers are affecting the results meaningfully. We run the
fit (3) regression but trim a larger number of outliers. We find that trimming
an additional 1 percent, 5 percent, or 10 percent of outliers does not appear

Table 2. Regression Results

Partially Linear IV
OLS 2SLS

(1) (2) (3) (4) (5)

�ln(Pt,i/Ps,i) 2.9976*** 1.2123*** 0.8847*** 1.305*** 5.818***

(0.169) (0.052) (0.044) (0.169) (0.524)

Δt,s 0.0065* 0.003***

(0.0003) (0.0004)

CDDt 1.174*** 1.657***

( × 1000�1) (0.075) (0.067)

CDDs �1.224*** 1.657***

( × 1000�1) (0.075) (0.067)

HDDt 0.236*** 0.007

( × 1000�1) (0.031) (0.030)

HDDs �0.236*** 0.007

( × 1000�1) (0.038) (0.034)

Degree Day Controls Yes Yes Yes Yes

Time Control Yes Yes Yes

R22 0.524

F Statistic 1241*** 472***
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to significantly change the estimate of σ̂ or meaningfully affect its standard
error. Secondly, we test whether any particular states are driving the results.
We run regression fit (3) on 48 subsamples; in each subsample, one of the
48 states in our data set is dropped out. We plot the results in the Appendix
Figure B1. The mean and median of the estimates for σ are 0.8873 and
0.8860; additionally, 95 percent of the estimates lie in (0.8333, 0.9343). All of
these estimates are highly significant—the average |t| value is 19.88, and the
smallest |t| is 18.52. And although it seems that some of the estimates are
(statistically) significantly from the full sample estimate of σ̂ ¼ 0:8847
(stdev¼ 0.044), the magnitude of the difference does not appear to be
economically meaningful. That is, the largest estimate of σ̂ is 0.9793, which is
only 0.0946 larger than the full sample estimate, while the smallest estimate
is 0.8174, which is 0.0674 smaller than the full sample estimate. These
differences are not meaningful in the practical application of our model.
Additionally, our estimates of σ appear to be much larger than estimates from

the literature. Specifically, Schwarz et al. (2002) estimates σ to be between 0.02
and 0.04, while Herriges et al. (1993) and King and Shatrawka (1994) get
estimates between 0.1 and 0.3. Our larger estimates may be due to
limitations in our data—we use monthly data, while the literature uses
hourly and daily data from real-time pricing experiments. However, in the
following section, we implement our model numerically using our preferred
estimate σ̂ ¼ 0:8847 and then repeat our implementation using estimates
closer to those in the literature. Our model’s results do not change when
using estimates from the literature; we discuss this in further detail in the
“Robustness” section.

The Elasticity of Substitution between Renewable and Fossil Energy

So far, we have primarily focused on the (demand-side) intertemporal elasticity
of substitution for electricity consumption σ. In this subsection, we discuss
what implications σ has for the (supply-side) elasticity of substitution
between energy inputs;7 from here on, we will refer to this latter elasticity as
e. Understanding this elasticity is important, because the substitutability of
energy inputs determines the trade-offs required to transition into greener
economy in the future. For instance, Acemoglu et al. (2012) provide a model
where they argue: “When the two sectors [clean and dirty energy] are
substitutable but not sufficiently so, preventing an environmental disaster
requires a permanent policy intervention. Finally, when the two sectors are
complementary, the only way to stave off a disaster is to stop long-run growth.”
The elasticity e is often assumed to be a constant value in the literature

(Papageorgiou, Saarn, and Schulte 2017). This is because existing models

7 For two commodities {Wi,Wj} and their prices{pi, pj}, the elasticity of substitution between the
two is given by∂log (Wi/Wj)/∂log (pj/pi).
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often represent the electricity sector using the production function

~Z ¼
X
i

βi~X
ω
i

 !1=ω

(18)

where ~Z is the quantity of electricity output, ~Xi is the quantity of electricity-
producing input, βi is a share parameter, and (ω� 1)�1 is the elasticity of
substitution between the inputs. Since ω is a fixed parameter, the implied
elasticity of substitution is constant. The literature often represents electricity
production using a CES function and treats electricity as a single,
homogeneous good. Furthermore, such models would generally have firms
maximizing profit against a demand function based on some utility-
maximizing agent. This approach captures the imperfect substitution between
energy inputs in a tractable way. However, any results based on this model
may be driven by the assumption that the elasticity of substitution between
energy inputs, e, is constant.
Different from the exiting literature, our model implies that e is non-constant.

We arrive at this conclusion through the numerical results which follow,
although we can also see that e is non-constant in a simpler setting.
Specifically, when σ¼ 1 and we have two periods and two technologies, the
elasticity of substitution is given by8

e ¼
�αsαtc1c2(ξ1sξ2t � ξ1tξ2s)

2(αsc1ξ1tξ2s � αsc2ξ1sξ1t þ αtc1ξ1sξ2t � αtc2ξ1sξ1t)
�1

(αsc1ξ2sξ2t � αsc2ξ1sξ2t þ αtc1ξ2sξ2t � αtc2ξ1tξ2s)

(19)

It is clear from the above equation that e will vary with the unit cost of the
inputs c. However, what is not clear from this equation is the extent to which
e varies with c or the link between intermittency and the elasticity σ. Since
e does not have a tractable solution when σ≠ 1, we parametrize and
implement our model numerically.
To start, let technology 1 be coal power and technology 2 be solar power.

These two technologies exemplify consistent fossil energy and intermittent
renewable energy. Furthermore, let period t represent peak hours and period
s represent off-peak hours. We assume that, holding prices equal, consumers
prefer that approximately 60 percent of their energy arrive in period t and
the remaining 40 percent arrive in period s; that is, we have αt¼ 0.6 and
αs¼ 0.4. Since the union of both periods makes up only a single day, our

8 The full derivation is given in Appendix A.A.
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model’s assumption of an exogenous and constant ξ is fairly reasonable in this
context.
Next, we normalize the remaining parameters in our model to a MWh basis

rather than a per unit basis. This has no effect on the model at the theoretical
level but makes it easier to empirically parametrize the unit cost of electricity
production c. This is because the cost of electricity generation is generally
reported in terms of $ per unit of electricity, while we originally set c to
represent cost per unit of input. Here, we set the cost parameters for each
input equal to their LCOE ($/MWh).9 In particular, we use estimates for 2023
for “Solar PV” and “Coal with 30 percent CCS” from Table 1b in EIA (2019b).
Additionally, normalizing unit cost parameter c requires us to normalize ξ as
well; this ensures the rest of the model is unaffected. Consequently,
ξrepresents the percent of total capacity utilized in each period; we assume
coal uses 100 percent of its capacity in both periods, while solar can access
100 percent during peak hours and only 10 percent during the off-peak. In
total, we have the following parameters.
Model Parameters: αt¼ 0.6, αs¼ 0.4, ξ1¼ (1, 1), ξ2¼ (1, 0.1), c1¼ 104.3,

c2¼ 60.
We use these parameters with the theoretical results in the “Model”

subsection of the “Electricity Market Equilibrium” section, to numerically
compute the equilibrium. Specifically, given ξ and c, we can compute the
equilibrium prices using the firm FOC p¼ ξ�1 c (Equation 7). Then, knowing
the prices, we can compute the price index given by the solution to the
consumer’s utility maximization problem P ¼Pt α

σ
t p

1�σ
t (Equation 4). Next,

using the consumer’s demand function Zt ¼ (αt=pt)
σ(I=P), we are able to

compute the solution for Z (Equation 3).10 Finally, by definition, we have Z≡
ξT X, which gives us the solution for X. In total, we have the equilibrium
quantities X, Z and prices p.
Now, we explore how the elasticity of substitution e between these two

technologies, solar and coal, changes with σ. Recall that for any two
technologies i and j, the elasticity of substitution ei,j is given by:

ei,j ¼ ∂ log (Xi=Xj)
∂ log (cj=ci)

9 The LCOE for a generation technology is equal to the sum of its lifetime costs divided by its
lifetime energy output. Joskow (2011) explains the flaws of comparing generation technologies
solely on the basis of LCOE, but our use of this measure is unrelated to his critique. That is, he
argues that the economic value of an intermittent technology should also account for when it
produces electricity and the prices of electricity in those periods (see Table 2 of his paper). Our
model does exactly this, but we still need to use LCOE to parametrize the cost of developing
capacity.
10 The numerical solutions that will follow are invariant to the parametrization of I. This is
because CES preferences are homothetic—the utility function is homogeneous of degree 1.
Consequently, the implied consumer preferences are invariant to income.
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We compute and plot our numerical estimates of e1,2, the elasticity of
substitution between solar and coal power, in Figure 1. To compute e1,2, we
numerically differentiate log (X1/X2) with respect to log (c2/c1). This is done
by first computing the equilibrium quantities X across a range of cost
vectors c; the results, in terms of log (X1/X2) and log (c2/c1), are shown in
the first subplot of Figure 1. We only keep the results for X that correspond
to interior solutions. Then, we numerically estimate e by computing the
slope of log (X1/X2) with respect to log (c2/c1); this result is plotted in the
lower subplot. Since log (X1/X2) is rising at an increasing rate with respect
to log (c2/c1), we see that e is positive and increasing. We repeat this
process with different values of σ, the IES in the consumer’s utility function.
Specifically, we use our estimate of σ̂ ¼ 0:8847 (0:044) and its 95 percent
confidence interval (0.7985, 0.9709). Overall, this shows how elasticity of

Figure 1. The Elasticity of Substitution between Solar and Coal
Notes: Technology 1 is coal and technology 2 is solar. The legend in the upper subplot also applies
to the lower subplot. These results were obtained using the following parameters: αt¼ 0.6, αs¼ 0.4,
ξ1¼ (1, 1), ξ2¼ (1, 0.1), c1¼ 104.3, c2¼ 60. Furthermore, we set the parameter for the intertemporal
elasticity of substitution for electricity consumption equal to our estimate σ̂¼ 0.8847. In order to
generate these numerical results, we first found the optimal quantities of X over a range of prices
c1*ε(0.5c1, 2c1). Then, we obtained estimates of the elasticity of substitution by numerically
differentiating ln(X1/X2) with respect to �ln(c1/c2). That is, the elasticity of substitution between
technology 1 and 2 is given by the slope of the upper subplot, and it is graphed in the lower subplot.
Finally, we repeat this procedure with σ equal to two standard deviations above and below its
estimated value σ̂; that is, the dashed lines represent σ¼ 0.8847± (1.96)(0.044).
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substitution between solar and coal, e1,2, changes with unit costs c and the
consumer-side elasticity σ.
We see in Figure 1 that e1,2 varies nonlinearly with the relative unit costs of

each technology; in particular, it appears to take on a hockey stick shape. This
shape can be understood as the interaction of two effects: intermittency and
costs. The intermittency effect is that e falls when our electricity output is
highly intermittent. The cost effect is that e is high when unit costs (c1, c2)
differ significantly.
First, we explain the intermittency effect. Suppose that a majority of our

energy came from solar; this corresponds to the left side of the graph where
log (c2/c1) is lower and, as shown in the first subplot, log (X1/X2)is lower. In
this case, a majority of the electricity is coming from an intermittent
technology, therefore the overall supply of electricity is highly intermittent—
it varies significantly over time. Specifically, solar generates primarily during
peak hours, so consumers are being starved of electricity during the off-peak.
This makes it difficult to replace even more coal power with solar. So the
elasticity of substitution between solar and coal, e, is low. On the other hand,
suppose that a majority of our electricity supply comes from coal; this
corresponds to the right side of Figure 1. In this case, the electricity output is
quite consistent over time. Consequently, replacing a marginal amount of coal
input with solar input is not an issue. That is, making the overall energy
output slightly more intermittent when it is already stable does not create as
much disutility. Hence, when the intermittency of output is low, the elasticity
e is relatively higher since it is easier to substitute between the energy
inputs. In short, as the electricity output becomes less intermittent, e should
rise.
Next, we study the effects of costs on e. We see quantities become more

sensitive to unit costs when they differ significantly.11 To understand why,
suppose that the unit costs of two inputs are drastically different. And note
that consumers want more electricity during peak hours compared to the off-
peak based on the parametrization of α. This demand profile can only be
achieved by combining solar and coal, since the electricity output of coal is
constant, while solar produces more during peak hours. But if solar is
extremely expensive, this makes it expensive to get relatively more electricity
during peak hours than off-peak hours. Consequently, it may actually be more
economical for consumers to rely primarily on coal. In other words, they
would have to give up too much of their income to get more power during

11 We explore this point further in Appendix B, in which we consider a numerical example
where technologies are minimally intermittent. That is, we again consider a two-period, two-
technology example but assume that ξ1 and ξ2 are nearly constant over time. We plot our
results in Figure 7 and find that the elasticity of substitution takes on a u-shape. In other
words, when intermittency is not a concern as a result of the output parameters ξ, we see e rise
significantly whenever costs differ significantly.
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peak-hours than off-peak hours. Now, note that the elasticity e is defined as the
derivative of the log difference in input quantities with respect to the log
difference in unit costs. Consequently, when unit costs are very different, we
would expect that small changes in costs would do much to change
quantities, since costs (as opposed to other factors like intermittency) are
primarily driving the market equilibrium. So ewould be high when log (c2/c1)
takes extreme values. On the other hand, when unit costs are similar, the cost
of generation does not matter for consumers as much as intermittency; so we
would expect e to be low when log (c2/c1) takes more intermediate values.
We can add up the intermittency and cost effects to understand the shape of e.

This means looking at three cases. The first case is the left-hand side of the
second subplot of Figure 1, where solar is much cheaper. Here, the overall
energy supply is highly intermittent, so e gets strongly pushed downwards; at
the same time, the cost effect pushes e upwards. These two effects cancel out,
and we see e take an intermediate value. The second case is near the middle
of the subplot where we have more intermediate unit costs. Here, the
intermittency effect moderately increases e, while the cost effect moderately
decreases e. So, again, etakes an intermediate value. Finally, the third case is
the right-hand side of the subplot where the majority of the electricity comes
from coal. Both the intermittency and cost effect push e upwards. So, in this
case, we see e being relatively high. In total, the two effects cause e to stay
flat when the unit cost ratio, log (c2/c1), is low and then rise sharply when
the unit cost ratio is high.
Additionally, these results and the intuition is not only limited to solar, as the

following example illustrates. Consider a technology that produces most of its
output during the off-peak period; this may be representative of wind energy.
Now, for simplicity, suppose we parametrize this technology the same way as
solar but with ξ2¼ (0.1, 1); this is simply the reverse of the parametrization
we used for solar output per unit over time. Despite the fact that this
technology primarily generates electricity in the lower demand period, the
elasticity e between this hypothetical technology and coal as a function of the
unit cost ratio will look nearly identical to that for solar in Figure 1.12 This is
because the intuition behind the cost effect and intermittency effect still
applies. The intermittency effect causes e to rise as intermittency falls, and
the cost effect creates a u shape. Like before, when we add these effects up,
we get low e when we primarily rely on this new intermittent input and high
e when we mainly rely on coal.
Secondly, we can see that the elasticity of substitution e1,2 between solar and

coal becomes larger as σ rises. To explain why, we first study the magnitude of e
in two extreme cases: σ→ 0 and σ→∞. Specifically, we show that e will be

12 We include a plot of e for this hypothetical technology in Figure B3 in Appendix B.
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small when σ→ 0 and e will be large when σ→∞. Understanding these two
cases helps develop the intuition for why e rises with σ.
To start, consider the case where σ→∞. Here, electricity consumption in

each period is a perfect substitute for electricity consumption in other
periods. Furthermore, from the equilibrium results, recall that the optimal
solution was to only use whatever input had the highest cost-adjusted
marginal utility

P
t αtξ i,t=ci. This is because σ→∞ causes utility becomes a

linear function of electricity output in each period. So consumers only care
about their total electricity consumption rather than when they get their
electricity.13 As a result, solutions generally turn into edge cases where we
rely entirely on one input—whichever has the highest cost-adjusted marginal
utility. Small changes in the cost of input i can cause it to become suboptimal.
This means that the equilibrium quantity of the input may go from its
maximum level to zero. Since e12¼ ∂log (X1/X2)/∂log (c2/c1) measures the
sensitivity of the quantities of each input with respect to prices, we expect e
to be extremely large in this case.
Next, consider the case where σ→ 0. Here, electricity consumption across

periods becomes complementary, with the optimal solution using some
combination of inputs that make electricity as smooth as possible. This is
because, when σ→ 0, utility takes on a Leontiff functional form: min

t
Zt=αt . In

the context of our parametrization, this would imply that consumers want a
relatively fixed ratio of peak and off-peak consumption. We know that coal
offers a strictly smooth output, while solar offers more during peak hours.
Hence, the equilibrium would be one which primarily uses coal and then a
small amount of solar to account for the fact that consumers demand slightly
more electricity during peak hours. Furthermore, even if unit costs change,
the optimal solution would still require the consumer to maintain a relatively
fixed ratio of peak and off-peak electricity cosnumption to maximize utility;
this then requires maintaining a fixed ratio of solar and coal. Consequently,
changes in the unit cost of solar and coal would do little to affect the
equilibrium ratio of inputs. Thus, since e measures how sensitive the two
inputs are with respect to their unit costs, it would be close to zero in this case.
These two extreme cases illustrate the link between e andσ. When σ rises,

consumers care less about smoother consumption. Consequently, consumers
are more willing to accept intermittency in the electricity supply. This causes
the implicit demand for inputs to become relatively less sensitive to
intermittency and relatively more sensitive to their costs. As a result, the
substitutability of intermittent and consistent technologies rises, so we see e
increase.
Thirdly, we can see that the higher levels of σ cause e to change shape. To

understand why, we can appeal to the intermittency effect and the cost effect.

13 To be precise, they maximize U¼ αT Z, which is a weighted sum of electricity output in each
period.
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Note that σ rising makes intermittency matter less; this diminishes the
intermittency effect. As a result, we see the cost effect dominate. Recall that
the cost effect creates a u-shape, while the intermittency effect is what causes
e to fall when we rely heavily on solar. Now note how when σ rises, e
becomes more u-shaped.14 This is because the intermittency effect becomes
more diminished and the cost effect takes over. By this logic, if we keep
raising σ, the level of e becomes increasingly larger; at the same time, we
would also see it become more u-shaped as the cost effect takes over.
To summarize, e depends on two factors, cost and intermittency, while σ

affects the importance of intermittency. When costs are highly different, e
rises—this is the cost effect. When the output of electricity is highly
intermittent, e falls—this is the intermittency effect. These two effects
combine to give e the shape we see in Figure 1. Furthermore, at higher levels
of σ, consumers care less about smoother electricity consumption and thus
intermittency matters less. So higher σ diminishes the magnitude of the
intermittency effect resulting in a larger e. Additionally, a smaller
intermittency effect causes e to take on more of a u-shape as the cost effect
dominates. Overall, these numerical results for e are consistent with the
analytic results and intuition from earlier.

Environmental and Energy Policy Implications

A simple but important finding here is that e, the elasticity of substitution
between renewable and fossil energy, is not constant. Furthermore, it appears
to fall with the level of intermittency. What implications does this result have?

Revisiting Past Models

To start, we consider how a variable elasticity of substitution affects past
models of the energy sector. As an example, consider the results of Acemoglu
et al. (2012). Firstly, they find that the short-run cost of policy intervention is
increasing with the elasticity of substitution between clean and dirty
technologies.15 Additionally, their article states that the cost of delaying
intervention is increasing with the elasticity of substitution. Secondly,
Acemoglu et al. argue that, when the discount rate and elasticity of
substitution between clean and dirty energy (e) is sufficiently low, a disaster
cannot be avoided under laissez-faire.16 And, finally, Acemoglu et al. find that,

14 In the Robustness subsection of the section “Environmental and Energy Policy Implications,”
we consider how larger parametrizations of σ would affect our results. Specifically, in Figure 5 we
plot ewhen σ¼ 2. Based on this graph, we can see that e becomes entirely u-shaped due to the cost
effect taking over.
15 See Corollary 1 of their article for a proof and intuitive explanation.
16 See Proposition 9 of their article.
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“when the elasticity of substitution is high … a relatively small carbon tax is
sufficient to redirect R&D towards clean technologies.”
Based on our results, each of these statements has a complementary

interpretation in terms of intermittency. For instance, the first statement
suggests that the cost of policy intervention is decreasing with the
intermittency of clean technologies; the cost of delaying intervention is
decreasing with intermittency as well. This is because the elasticity of
substitution between renewables and fossil fuels becomes small when
renewables are more intermittent. So in other words, delaying policy
intervention will be the most costly in regions with access to clean, non-
intermittent energy (such as hydro and geothermal energy). Secondly, when
the discount rate is sufficiently low and the intermittency of clean energy is
sufficiently high, a disaster cannot be avoided under laissez-faire. The
intuition here is that, even if clean energy became relatively cheap, its
intermittency would prevent it from adequately substituting for fossil energy.
Finally, Acemoglu et al. argue that the size of a carbon tax should be inversely
proportional to the elasticity of substitution and should decrease over time.
Recall that, in our model, the elasticity of substitution e changes with relative
prices; when fossil fuels are relatively cheap, e is large. Hence, this implies
we need a relatively small carbon tax early on to spur research. As
technological change makes renewables cheaper, fossil fuels will become
relatively more expensive so e will fall; thus, the carbon tax will need to
increase over time. These dynamics (a rising carbon tax) contrast with the
results of Acemoglu et al., who numerically show that an optimal carbon tax
should decrease over time when e is sufficiently large. A potential resolution
to these contradictory solutions may be to take an intermediate route and
maintain a constant carbon tax over time.

Carbon Taxes and Their Distributive Consequences

Our results also suggest that carbon taxes can have important distributional
consequences. Earlier, we showed that the elasticity of substitution between
renewable and fossil fuels (e) is non-constant and falls with the intermittency
of present generation. This further implies that the elasticity of demand for
generation technologies is non-constant as well. Specifically, the elasticity of
demand for non-intermittent energy increases and then decreases with
respect to its own price. Using the earlier numerical example of solar and
coal power, we show this explicitly in Figure 2. As the price of coal power
rises significantly beyond its current price, demand gets more elastic because
its price becomes the primary factor disincentivizing its use. But initially, a
rise in the cost of coal power causes its demand to become inelastic. This is
because a rise in the price of coal shifts generation towards solar;
consequently, generation becomes more intermittent and demand for coal
becomes less price-sensitive since it is needed to help smooth electricity
generation. This relationship should be of concern for policy makers
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considering a pollution tax. Consumers in regions without access to clean, non-
intermittent energy will have the most inelastic demand for fossil fuels; hence,
they will bear the greatest welfare losses from a tax on pollution/carbon. On the
other hand, consumers in regions that have access to dispatchable, renewable
energy such as hydropower will see smaller welfare losses; the demand for
fossil fuels in these regions will not be as inelastic, because dirty generation
can be replaced with non-intermittent, clean generation. All in all, if a carbon
tax were implemented federally and its revenue were distributed equally, it
may nevertheless function as an inequitable, between-state welfare transfer
due to differences in the availability of renewable energy technology. This
same argument would apply to carbon quotas.

The Case for Subsidizing Battery Research

However, there are alternative policies that can mitigate this distributional side
effect. One such policy is a research subsidy for improving battery technologies.
Reducing battery costs, improving their storage capacity, and reducing their
energy loss can allow intermittent renewables to far more easily substitute
for traditional, fossil energy. To understand the magnitude of this effect, we
again provide a numerical example using solar and coal. We aim to
understand how batteries effect substitutability, so we consider a
parsimonious model where batteries are used to shift a portion of solar

Figure 2. The Price Elasticity of Demand for Coal Power
Notes: These results were obtained using the following parameters: αt¼ 0.6, αs¼ 0.4, ξ1¼ (1, 1),
ξ2¼ (1, 0.1), c1¼ 104.3, c2¼ 60, σ¼ 0.5. We generate these results by finding the optimal quantity of
coal, X1, over a range of percent changes in its price c1. Then, on the y-axis, we plot the log difference
in X1 divided by the log difference in its price. This is equivalent to the price elasticity of demand
for X1.
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energy output from its high-output period to its low-output period.17

Specifically, we initially parametrized solar with ξ2¼ (1, 0.1), implying that it
functions at 100 percent of its potential capacity during the peak and at 10
percent of its potential capacity during the off-peak; this is far from matching
consumer demand. So we represent solar output with batteries using ξ2¼
(0.95, 0.15) and ξ2¼ (0.90, 0.20); this is equivalent to transferring 5 percent
and 10 percent of solar output. We plot our results in Figure 3. It is
immediately clear that making solar output more consistent through the day
results in a large increase in the elasticity of substitution e1,2. Moreover, e1,2
no longer tapers off around 4 as solar becomes the dominant source of
electricity. Rather, with batteries, cost plays a much larger role in determining
the optimal quantity of each technology even when solar is relatively cheap.
Overall, shifting even a small fraction of solar output using batteries can
significantly improve solar power’s substitutability with coal.
Consequently, batteries can complement reductions in the cost of

intermittent renewables and mitigate the distributional side effects of a
carbon tax. As shown in Figure 3 the elasticity of substitution between solar
and coal rises significantly as solar becomes less intermittent; this implies
that a change in the relative price of solar would have a far greater effect on
solar adoption if batteries were employed with solar. Hence, if policy
makers aim to promote the use of renewables, they should subsidize
research that reduces the cost of renewables as well as research that
improves battery technology. Using both policy instruments can be more
effective than either alone. Additionally, the second benefit of batteries is
that they mitigate the distributional problems of a carbon tax. This is
because, by reducing the intermittency of renewables, batteries make
demand for fossil fuels less inelastic. We specifically show this elasticity
would change with another numerical example in Table 3; as in Figure 3,
we model batteries that shift solar output towards the off-peak. We then
estimate the elasticity of demand for coal power around its initial price; this
elasticity is decreasing at an increasing rate with the percent shift in solar
output. The practical implications of this are straightforward. Researching
and implementing battery technology can reduce the welfare losses from a
carbon tax. Moreover, regions without clean, consistent renewables would
benefit in particular, because they will be able to combine intermittent
technologies with better energy storage to help transition away from fossil
fuel energy. In short, subsidizing battery research can reduce some of the

17 Because we are only interested in the effects of batteries on e, we ignore the energy losses and
costs of battery storage. Furthermore, if our goal instead was to economically optimize battery
storage and deployment, we would have to rewrite our model as a dynamic optimization
problem and solve using optimal control theory. However, we set aside these complications and
consider a best solution where batteries are used to shift a fraction of solar output from its
low-output period to its high-output period. But since we are shifting relatively marginal
fractions of energy output, this is likely equivalent to the first-best solution.
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Table 3. The Effect of Battery Storage on the Elasticity of Demand

Solar Output
during Peak
Hours (ξ2t) (%)

Solar Output
during Off-Peak
Hours (ξ2s) (%)

The Elasticity of
Demand for Coal

Power

The Elasticity of
Demand for Solar

Power

100 5 �3.25 �8.90

95 10 �3.71 �10.50

90 15 �4.40 �12.81

85 20 �5.48 �16.43

80 25 �7.29 �23.00

Figure 3. The Effect of Battery Storage on the Elasticity of Substitution
between Solar and Coal
Notes: Technology 1 is coal and technology 2 is solar. The legend in the upper subplot also applies to the
lower subplot. The elasticity of substitution between technology 1 and 2 is given by the slope of the
upper subplot, and it is graphed in the lower subplot. These results were obtained using the following
parameters: αt¼ 0.6, αs¼ 0.4ξ1¼ (1, 1), ξ2¼ (1, 0.1), c1¼ 104.3, c2¼ 60. Furthermore, we set the
parameter for the intertemporal elasticity of substitution for electricity consumption equal to our
estimate σ̂¼ 0.8847. We generated these numerical results with the same procedure used for Figure 1
We repeated this procedure with ξ2¼ (0.95, 0.15) and ξ2¼ (0.90, 0.20) to simulate the effects of shifting
solar power output using batteries.
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unintended distributional consequences of carbon taxes while mitigating
environmental damage.

Learning-by-Doing and Intermittency

Learning-by-doing, originally introduced by Arrow (1992), refers to an increase
in productivity or quality as firms acquire experience producing a particular
good. In the context of renewable policy, a common argument is that
knowledge from learning-by-doing spills over across firms, and thus
governments should subsidize renewable adoption (Borenstein 2012).
Our results suggest that renewable subsidies aimed at correcting the positive

externalities of learning-by-doing should vary geographically. This is because
our model shows that the substitutability of renewable energy depends on
their intermittency and the preexisting technologies used for generation in a
particular area. And both intermittency and existing technologies vary by
region; for instance, the intermittency of wind power may vary due to
regional differences in climate. Consequently, the level of subsidies needed to
promote the deployment of renewables can vary geographically.
But are geographic differences in substitutability economically significant? As

an example, consider equivalent solar panels deployed in two different regions.
In the first region, the solar panels generate energy at 100 percent of their
capacity during peak hours and at 10 percent during the off-peak; on the
other hand, in the second region, the same solar panels produce at 90
percent during the peak and 20 percent during the off-peak due to
geographic differences. This is similar to the earlier exercise where we
studied how substitutability would change if we shifted a portion of solar
output toward the off-peak using batteries. Specifically, we can see how the
elasticity of substitution differs between the “(100 percent, 10 percent)”
region and “(90 percent, 20 percent)” region using Figure 3. That is, if the
regions are otherwise equivalent, solar is far more substitutable for fossil
energy in the (90 percent, 20 percent) region due to its slightly smoother
output profile. Specifically, at the prices used for the numerical simulation
earlier (ccoal¼ 104.3, csolar¼ 60), the point elasticity of demand for solar
power is �8.9 in the (100 percent, 10 percent) region and 12.8 in the (90
percent, 20 percent) region; this is given in Table 3. Consequently, the level
of subsidies needed to promote solar adoption in the former region would
need to be about 43 percent larger than those in the latter region due to
differences in intermittency.
Along with geographic variance in intermittency, preexisting generation

technologies also vary by region and can create large differences in
substitutability between alternative power generation feedstocks. For
instance, consider two regions where the first primarily uses natural gas and
the latter uses coal power. It is easier to promote the adoption of intermittent
renewable energy like solar in the first region, since the output of electricity
from a natural gas plant can be deliberately changed within an hour. Again,
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the intuition is similar to that from the battery storage example where
smoothing solar output increased its substitutability. In this case, solar and
natural gas are strong substitutes, since natural gas can fill gaps in solar’s
intermittent generation; the same idea would apply to other intermittent
renewables such as wind. On the other hand, coal is a base load technology
that is much less flexible in its intra-daily output. So, in the region relying on
coal power, increasing the share of solar power would necessarily create
greater intermittency in the overall electricity supply. This means solar and
coal are much weaker substitutes than solar and natural gas. More generally,
the elasticity of substitution between intermittent renewables and fossil
energy varies significantly based on type of fossil energy in question. This
variation in substitutability creates differences in the efficacy of subsidies/
taxes aimed at promoting renewable adoption. Therefore, regional differences
in the preexisting technologies used for generation can be economically
significant and should be accounted for when designing energy policy aimed
at correcting externalities from learning-by-doing.

Adjusting Future Models

Given that traditional assumption of a CES relationship between renewable and
fossil energy appears to be inaccurate, we offer two alternative approaches for
future models. The first approach is to directly integrate our model within a
given framework. The second approach is to assume a variable elasticity of
substitution (VES) structure18 between clean and dirty energy. These two
approaches have their own advantages/disadvantages and serve different
purposes.
Direct Integration: The first approach is better suited for numerical models.

For example, our model of the energy sector can be embedded within a
Computational General Equilibrium (CGE) model. CGEs, specifically ones
designed to study energy and environmental policy, tend to assume a CES
relationship between generation technologies and treat electricity as a
homogeneous good. On the other hand, our representation of the energy
sector directly models the source of imperfect substitutability between
generation technologies—intermittency. Consequently, embedding our model
within a CGE would improve its predictive accuracy by giving it more
realistic microfoundations.
Furthermore, implementation can be done with relatively few modifications

to standard CGE. To start, CGEs already use CES utility to model consumer
preferences. In order to integrate our method of modeling electricity

18 The VES function was originally introduced by Revankar (1971); we detail its structure in the
supplementary material.
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consumption, a CGE practitioner need only to rewrite preferences as:

U ¼
X
i≠elc

αiZ
η
i þ αelc

Xt¼1

T

αelc,tZ
f
elc,t

 !η=f
0
@

1
A

1=η

(20)

where the intertemporal elasticity of substitution for electricity consumption is
given by σ¼ 1/(1� ϕ), the elasticity of substitution between all consumer
goods is given by 1/(1� η), the consumption of each good is given by Zi, and
the consumption of electricity in each period t is given by Zelc,t. This can be
simplified to:

U ¼
X
i≠elc

αiZ
η
i

 !
þ αelcZ

η
elc

 !1=η

(21)

Zelc ¼
Xt¼1

T

αelc,tZ
f
elc,t

 !1=f

(22)

where Zelc is an aggregate electricity good. Next, we consider the production
functions for electricity production in each period. These are simply linear,
since the total electricity produced in a period is equal to the sum of
electricity produced by each technology in that period. That is, we have

Zelc,t ¼
X
i

ξ i,tXi(23)

where Xi is a generation technology and ξi,t is its output in period t. The
parameters for ξ1,t must be estimated using additional data. For fossil fuels, ξi
can remain constant over time. For intermittent renewables, ξi,t may be set to
empirical estimates of the average output per unit of Xi in period t.19

Additionally, the supply-side equations for building capacity in each
technology can be modeled using the usual CGE approach; total cost is given
by the sum of costs for each input factor, and total quantity is given by a CES
of the input factors used to build capacity (Xi). Finally, since these functional

19 It is important to note that each period t should describe a short time frame. For instance,
each period may represent an hour of a day, or, as in our examples, we may have two periods
that represent peak and off-peak. If larger periods are chosen, the underlying assumptions
behind our model are no longer relevant. That is, technologies like coal and nuclear can change
their output over longer periods of time to respond to changes in price; on the other hand, as
discussed earlier, we assume here that output in each period is exogenous.
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forms are equivalent20 to those used in standard CGEs, they can be calibrated
using the usual procedures and a social accounting matrix. So overall,
implementing our model within a CGE can be done in a fairly simple way.
VES Approximation: The second approach is to use a variable elasticity of

substitution function to model the relationship between clean and dirty
energy. A VES function would approximately capture the dynamics of e, the
elasticity of substitution between clean and dirty technology while keeping a
theoretical model relatively simple. The latter is because assuming a VES
structure between clean and dirty energy only requires considering one more
parameter than a traditional CES function. To be more precise, the VES
function is defined in Revankar (1971) as

Z ¼ γXω(1�δρ)
1 (X2 þ (ρ� 1)X1)

ωδρ(24)

e ¼ 1þ β
X1
X2

� �
(25)

β ¼ ρ� 1
1� δρ

� �
(26)

γ > 0, ω> 0, 0< δ〈1, 0 � δρ � 1,
X2
X1

� �
〉� β

whereω, δ, ρ, and γ are parameters, Z is the output, X1 and X2 are the inputs, and
e is the elasticity of substitution between X1 and X2. In the context of an
electricity sector, we can think of Z as electricity output, while X1 and X2
represent dirty and clean inputs. Note that e is a linear function of X1/X2;
this relationship allows a VES function to approximate the effects of
intermittency. To show why, we plot e against its VES approximation ê for
solar and coal in Figure 4. This approximation was fit by running OLS against
the numerical results for e while holding the intercept fixed at 1.21 We can
see that, as either the capacity of solar or coal dominates the market, the
approximation becomes weaker. But overall it seems to mimic the shape of
the true elasticity of substitution e implied by our model of intermittency.
Hence, a VES function is a reasonable alternative to a CES function—it better
models intermittency while also maintaining parsimony.
One potential objection to using the VES function is that it assumes the

elasticity of substitution e approaches 1 when the majority of electricity

20 Linear production functions simply a special case of CES production functions where the
elasticity of substitution is arbitrarily high.
21 There also exists a VES function described by Revankar (1971) with the form e¼ β0 + β(X1/X2).
This function may provide a better approximation of e, but there is no tractable production function
that underlies it for β0≠ 1. Hence, we only consider the case where β0¼ 1, since the entire point of
taking a VES approximation, in this case, is for analytical tractability.
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output comes from renewables (X1/X2→ 0). And a VES structure assumes linear
e, which does not seem to be the case in Figure 4. However, both these
assumptions may still be fairly reasonable in the right context. That is,
suppose renewable energy was highly intermittent and that the consumer’s
elasticity of substitution σ¼ 1. Firstly, this results in renewable and fossil
energy entering a Cobb-Douglas relationship (e¼ 1) as X1/X2→ 0, which
supports the VES assumption of an intercept of 1. Secondly, no matter the
relative prices, whenever the renewable technology is highly intermittent, e
becomes perfectly linear with respect to X1/X2; this supports the VES
assumption of linearity. The proofs for both are given in Appendix A.C. Hence,
in these cases, a VES approximation can perfectly match e. Additionally, even
when the consumer’s elasticity of substitution is not 1, e may still be
approximately linear; this is shown in Figure B4 where we consider our
estimated σ̂ ¼ 0:8847. In short, the assumptions made by a VES structure
may nevertheless be accurate in certain cases.
Overall, using a VES function is a reasonable alternative to directly modeling

intermittency. It allows theorists to derive policy implications from
intermittency without relying too heavily on numerical models. Furthermore,
it keeps theory simple, since the elasticity of substitution can be represented
as a linear function of a single parameter β. And this parameter can be

Figure 4. The VES Approximation of the Elasticity of Substitution between
Solar and Coal
Notes: Technology 1 is coal and technology 2 is solar. The purple, dash-dots line represents a linear
approximation of e1,2 for σ¼ 0.8847 with a fixed intercept of 1. These results were obtained using
the following parameters: αt¼ 0.6, αs¼ 0.4, ξ1¼ (1, 1), ξ2¼ (1, 0.1), c1¼ 104.3, c2¼ 60. Furthermore,
we set the parameter for the intertemporal elasticity of substitution for electricity consumption equal to
our estimate σ̂¼ 0.8847. In order to generate these numerical results, we first found the optimal
quantities of X over a range of prices c1*ε(0.5c1, 2c1). Then, we obtained estimates of the elasticity of
substitution by numerically differentiating ln(X1/X2) with respect to �ln(c1, c2).
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estimated econometrically, so theoretical models assuming a VES structure can
offer empirically based results. Finally, it may even be of use for CGE modelers.
Its structure is simple enough to be calibrated with a given set of data, while its
implementation can produce simple but reasonably accurate models of energy
sectors with intermittency.

Robustness

As a robustness check, we reproduce the estimates of e shown in Figure 1 across
a larger range of values for σ. This allows us to evaluate the extent to which our
results for e are driven by our estimate of σ. Specifically, we consider
parametrizations of σ closer to estimates from the literature. Herriges et al.
(1993) and King and Shatrawka (1994) estimated σ to be between 0.1 and
0.3, while estimates by Schwarz et al. (2002) were between 0.02 and 0.04.
Additionally, we consider σ¼ 1 and σ¼ 2, which is closer to our OLS and
2SLS estimates. We estimate e using values of σ around these values and plot
our results in Figure 5.
Using values of σ closer to our OLS and 2SLS estimates causes e to be much

higher. This is because the OLS and 2SLS results have σ higher than our
partially linear specification. This suggests that intermittency is much less of a
problem for substitutability if we parametrize our model using the 2SLS results.
However, as argued in the “Results” section, the partially linear model is robust
to functional form misspecifications and nonlinearities, while 2SLS is not.
When using the literature’s estimates of σ, which are much lower than ours,

we find lower values of e. The estimate for e near the parametrized value of c is
10.29 when σ¼ 0.8847 (our estimate) and 8.93 when σ¼ 0.1. Furthermore, the
difference between the implied elasticity e when σ¼ 0.1 and when σ¼ 0.01 is
fairly small. Furthermore, the difference between the results implied by our
estimate of σ and that of the literature gets bigger when solar is relatively
cheaper (left-hand side of the plot); this is because of the intermittency
effect, as discussed earlier.
Although these differences from using the literature’s estimates appear to be

large, they do not negatively affect the implications of our results. Thus far, we
have discussed how intermittency complicates environmental policy. The
literature’s estimates of σ are lower than our own; in other words, the
literature finds that consumers care strongly about smoothing their
electricity consumption. Consequently, if one puts more weight on the
literature’s estimates, then intermittency is more important than we have
argued with our results. That is, when σ is lower, it is harder to substitute
between intermittent renewable and reliable fossil energy; this is shown in
Figure 5, where e is lower at all relative prices log (c2/c1). As a result, using
the literature’s estimates of σ makes the distributional consequences of
energy policy more pronounced and research into batteries more important.
Hence, the policy implications from our article are strengthened when using
the literature’s estimates of σ.
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Conclusion

In this article, we have offered a framework for understanding the economics of
intermittent renewable energy that bears in mind the critique offered by
Joskow (2011). That is, our model evaluates the economic value of a
generation technology by integrating its production profile with the market
value of electricity. Moreover, consumers in our model treat electricity as a
heterogeneous good differentiated by time. The empirical parametrization of
our model and its numerical results suggest that the elasticity of substitution
between renewable and fossil energy is non-constant. We have shown that
this has important implications for policy and future models.
With respect to policy, we have shown (i) the welfare effects of carbon taxes

and renewable subsidies depend on the intermittency of renewables and thus
vary geographically; (ii) the effect that renewable subsidies have on promoting
the adoption of renewables varies geographically; (iii) the combination of (i)
and (ii) can create a trade-off between efficiently and equitably preventing
climate change; (iv) subsidizing battery research can complement other
policies by increasing the substitutability of renewable and fossil energy; (v)
improving batteries can mitigate the unintentional distributional consequences
of carbon taxes and research subsidies. Additionally, we have qualitatively

Figure 5. The Elasticity of Substitution Between Solar and Coal (Robustness
Check)
Notes: This figure is identical to Figure 1, but it considers a large range of values for σ. Technology 1 is
coal and technology 2 is solar. The purple, dash-dots line represents a linear approximation of e1,2 for σ¼
0.8847 with a fixed intercept of 1. These results were obtained using the following parameters: αt¼ 0.6,
αs¼ 0.4, ξ1¼ (1, 1), ξ2¼ (1, 0.1), c1¼ 104.3, c2¼ 60. Furthermore, we set the parameter for the
intertemporal elasticity of substitution for electricity consumption equal to our estimate σ̂¼ 0.8847. In
order to generate these numerical results, we first found the optimal quantities of X over a range of prices
c1*ε(0.5 c1, 2 c1). Then, we obtained estimates of the elasticity of substitution by numerically
differentiating ln(X1/X2) with respect to �ln(c1, c2).
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evaluated the results of Acemoglu et al. (2012) in a setting where renewables and
fossil fuels have a nonlinear elasticity of substitution. Based on their framework,
we have further argued that: (vi) the short-run cost of policy intervention is
decreasing with intermittency; (vii) the cost of delaying intervention is
decreasing with intermittency; (viii) when the discount rate is sufficiently low
and the intermittency of renewables is sufficiently high, a laissez-faire
equilibrium would require policy intervention to prevent disaster; (ix) when
renewables are moderately intermittent, an optimal carbon tax should remain
approximately constant over time.
Given how strongly the elasticity of substitution between renewable and

fossil energy varies with relative price, future models of intermittency should
not assume a CES structure. This work showed that to integrate the
proposed framework with a numerical model, such as a CGE, may improve
predictive accuracy by providing more realistic microfoundations. On the
other hand, theoretical models would be better served by a more analytically
tractable alternative. Therefore, we suggest theoretical models use a VES
production function to approximate the effect of intermittency on the
elasticity of substitution between renewable and fossil energy. Under certain
conditions, our own model simplifies to a VES case; hence, the VES
production function can reasonably approximate for our full model in a more
tractable way.
While constructing our model, we made several simplifications for

tractability. For instance, we set aside modeling reliability—stochastic or
otherwise unpredictable variation in output. An aim for future research may
be to develop a model of clean and dirty energy that incorporates both
intermittency and reliability in a multi-period setting. This could involve
integrating our framework with that of Helm and Mier (2019). Additionally,
another avenue for future research may be to explicitly model the effects of

Table 4. Parameter Restrictions for Z, X> 0

Case 1 Case 2

Cost-Efficiency ξ2t/c2> ξ1t/c1 ξ2t/c2< ξ1t/c1

Restrictions ξ1s/c1> ξ2s/c2 ξ1s/c1< ξ2s/c2

Output Efficiency ξ2t/ξ2s> ξ1t/ξ1s ξ2t/ξ2s< ξ1t/ξ1s

Restrictions ξ1s/ξ1t> ξ2s/ξ2t ξ1s/ξ1t< ξ2s/ξ2t

Mixed Efficiency
Restrictions

αs(ξ1s=c1 � ξ2s=c2)
αt(ξ2t=c2 � ξ1t=c1)

> ξ2s=ξ2t
αs(ξ1s=c1 � ξ2s=c2)
αt(ξ2t=c2 � ξ1t=c1)

< ξ2s=ξ2t

αs(ξ1s=c1 � ξ2s=c2)
αt(ξ2t=c2 � ξ1t=c1)

< ξ1s=ξ1t
αs(ξ1s=c1 � ξ2s=c2)
αt(ξ2t=c2 � ξ1t=c1)

> ξ1s=ξ1t

Notes: The inequalities in this table assume that all elements of ξ are greater than 0. The full proof given
below provides equivalent restrictions for the zero cases.
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battery technology and how storage interacts with intermittency and reliability.
Such models can offer more accurate predictions/suggestions for policy makers
and bring theory closer to reality.

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.
1017/age.2020.7.
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