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Abstract. We give an upper bound for the exponential sum
PM

m¼1 e
2ipf ðmÞ in terms of M and l,

where l is a small positive number which denotes the size of the fourth derivative of the real
valued function f .The classical van der Corput’s exponent1/14 is improved into1/13 by reducing
the problem to a mean square value theorem for triple exponential sums.
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1. Introduction and Statement of the Result

The aim of this paper is to ¢nd upper bounds for the exponential sum

SM ¼
XM
m¼1

eðf ðmÞÞ; ð1:1Þ

where we have set eðxÞ for e2ipx and whereM is a large integer and f : ½1;M� ! R is a
four times continuously differentiable function which satis¢es van der Corput’s
condition

lW f ð4ÞðxÞ � l; for 1W xWM ð1:2Þ

where l is a small positive number, and where the Vinogradov’s symbol u� vmeans
that there exists an absolute positive constant C such that jujWCv. Under the
condition (1.2), van der Corput has obtained the following classical bound (cf. [3],
Theorem 2.8)

SM �Ml1=14; provided that M 	 l
4=7: ð1:3Þ

The proof consists in applying twice Weyl and van der Corput’s A-process (cf. [3],
Lemma 2.5), and then van der Corput’s inequality (cf. [3], Theorem 2.2). Slight
improvements on (1.3) have been obtained later, but only under stronger hypothesis
(see, e.g., [3] or [4]). It is interesting to notice that the bound (1.3) can be improved
without any new hypothesis, as a consequence of a strong result of Bombieri
and Iwaniec [2] on the mean value of eighth powers of simple cubic exponential
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sums. The deduction has been made in [7] with the bound

SM �e M1þel3=40; provided that M 	 l
3=5: ð1:4Þ

Here and in the sequel, the symbol �e means that the inequality holds for each e > 0
and that the implied constant depends at most on e and on the previous implied
constants. Our result can be stated as follows:

THEOREM 1. If the condition (1.2) is satis¢ed, then the two equivalent properties

SM �e M1þel1=13; provided that M 	 l
8=13; ð1:5Þ

and

SM �e MeðMl1=13
þ l
7=13

Þ ð1:6Þ

hold true.

We conclude this section with some remarks and comments while Sections 2, 3,
and 4 are entirely devoted to the proof of Theorem 1.

Exponent pairs. Most of problems in analytic number theory where exponential
sums occur, involve phase functions which satisfy much more than (1.2). Namely,
these functions f : ½M; 2M� ! R satisfy conditions (3.3.3) of [3] (we shall call them
‘semi-monomial functions’). Bounds for exponential sums SM ¼

P2M
m¼Mþ1 eðf ðmÞÞ

are then obtained in terms of exponent pairs (see ‰3.3 of [3]). For semi-monomial
functions, the bound

SM �e M1þely ð1:7Þ

corresponds to the property

ðyþ e; 1 
 3yþ eÞ is an exponent pair for each e > 0: ð1:8Þ

Thus, our Theorem 1 implies that (1.8) holds for W ¼ 1=13 (to see this, we only have
to complete the proof in the case M � l
8=13 by means of the classical exponent
pair ð2=18; 13=18Þ ¼ ABA2Bð0; 1Þ). But this value of W is not the best known. Indeed,
the re¢nement by Huxley and Kolesnik [5] (see also [4], ‰19.3) of Huxley’s deep
method for exponential sums with a large second derivative ([4], ‰17.4), yields a
better value of W. Namely, one can take out from table 19.2 of [4] the following result:

THEOREM (Huxley and Kolesnik). The property (1.8) holds for

W ¼
516247
6629696

¼
1

12:84 . . .
:
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The interest of our Theorem 1 consists, on the one hand, in the simplicity of its
proof and, on the other hand, in the wider range of its applications, particularly
to short exponential sums.

Van der Corput’s exponent. The exponent 1=14 in (1.3) can be sharpened to 1=13,
at least with some restrictions on the relative size of M and l. The question of
knowing how much van der Corput’s exponent 1=14 can be improved and under
which conditions, arises naturally.

We have heuristic proofs of the two following assertions that we state as
conjectures:

CONJECTURE 1. Under the hypothesis (1.2), we have

SM �e M1þel3=38; provided that M 	 l
13=19: ð1:9Þ

CONJECTURE 2. Under the hypothesis (1.2), we have

SM �e M1þel1=12; provided that M 	 l
1: ð1:10Þ

This last conjecture, if true, is far from implying that the pair
ð1=12 þ e; 9=12 þ eÞ is an exponent pair for each e > 0. The restriction M 	 l
1

in (1.10) is quite constraining and we think that, perhaps, it cannot be weakened.
Furthermore, if we restrict conjecture 2 to semi-monomial phase functions, then
Huxley’s results already imply (1.10) (cf. [4], ‰17.4).

Very short exponential sums. In the opposite direction, we have the following
improvement of (1.3) (cf. [7], Lemma 2.6):

SM �Ml1=14; provided that M 	 l
3=7; ð1:11Þ

which concerns shorter exponential sums. It would be of interest, both in itself and
for the applications, to ¢nd the in¢mum of positive real b such that the bound

SM �Ml1=14; provided that M 	 l
b; ð1:12Þ

holds under the hypothesis (1.2). The example

f ðmÞ ¼
m4

100M4 ;

in which we have jSM j 	 l
1=4; shows that bX 9=28; so we have

9=28W bW 3=7 ð1:13Þ

Outline of proof. At ¢rst, we apply van der Corput’s A-process to the initial sum
(1.1) and get a double sum in the variables h and m. Then we apply A� A
process
to the new double sum and get a quadruple sum in the variables r; q; h;m. At last,
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we shift the main variable m to produce a new variable n. This can be sketched in the
following diagram:

SM ¼
X
m

eðf ðmÞÞ 
!
A X

h

X
m

eðDhf ðmÞÞ


!
A�AX

r

X
q

X
h

X
m

eðDhþrf ðmÞ 
 Dhf ðmþ qÞÞ


!
shift X

r

X
m

X
h

X
n

X
q

eðDhþrf ðmþ nÞ 
 Dhf ðmþ nþ qÞÞ

�����
�����:

ð1:14Þ

where we have set Dhf ðmÞ for f ðmþ hÞ 
 f ðm
 hÞ. By expanding the phase in the last
exponential sum by means of Taylor’s formula, we are in a position to apply
Bombieri and Iwaniec’s double large sieve [1]. Thus we have reduced the initial
problem into that of counting the number of solutions of a (very particular)
diophantine system, which is the purpose of our Theorem 2. The whole proof is
self contained and elementary.

2. Preliminary Lemmas

We recall some basic lemmas.

2.1. WEYL AND VAN DER CORPUT A � A LEMMA

LEMMA 1. Let M and H be positive integers and let ðaðm; hÞÞ
ðm;hÞ2Z2 be complex

numbers which are zero whenever ðm; hÞ is outside the compact ½1;M� � ½1;H�.
We set

S ¼
X

ðm;hÞ2Z2

aðm; hÞ

and we choose two integers Q and R such that 1WQWM and 1WRWH. We then
have

S2 �
MH
QR

X
jqj<Q

X
jrj<R

1 

jqj
Q

� �
1 


jrj
R

� � X
ðm;hÞ2Z2

aðmþ q; hÞaðm; hþ rÞ ð2:1Þ

For the proof, see [3], Lemma 6.1. &

2.2. PARTIAL SUMMATION FOR MULTIPLE SUMS

We give a general statement of partial summation for k-dimensional sums, where k is
a positive integer. We need some notations.
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Let M1; . . . ;Mk be positive integers and set:

P ¼ ½1;M1� � � � � � ½1;Mk� � Rk: ð2:2Þ

Let I be any ¢nite set and, for each ¢xed i 2 I , let fi: P ! C be a function which
satis¢es the following regularity condition.

For each integer r ð0W rW kÞ, for each ðj1; . . . ; jrÞ such that 1W jsW k ð1W sW rÞ
and js 6¼ jt for s 6¼ t, the rth order derivative @rfi

@xj1 ... @xjr
exists and is continuous on

P and satis¢es the bound:

@rfi
@xj1 . . . @xjr

ðxÞ
���� ����W D

Mj1 . . . Mjr

whenever i 2 I ; x 2 P; r 2 f0; . . . ; kg; 1W j1 < � � � < jrW k ð2:3Þ

for some D > 0. We recall that the bound (2.3) in case r ¼ 0 means that jjiðxÞjWD
for each i 2 I and x 2 P.

Let us now consider the k-dimensional sum

S0 ¼
X
i2I

X
m2P\Nk

aiðmÞfiðmÞ

������
������ ð2:4Þ

where ðaiðmÞÞi2I;m2P\Nk is any given family of complex numbers. We can now state
our lemma for k-dimensional partial summation.

LEMMA 2. Let the above notations and hypothesis hold. We then have

S0 W 2kDmax
P0

X
i2I

X
m2P0\Nk

aiðmÞ

������
������ ð2:5Þ

where the maximum has to be taken over all possible sets of the form
P0 ¼ ½1;M0

1� � � � � � ½1;M0
k� � P.

Proof. The proof goes by recurrence on k. When k ¼ 1, the result is nothing but the
classical one-dimensional partial summation. We suppose that the result is true up to
k-dimensional sums, and we want to prove that it is true for ðkþ 1Þ-dimensional
sums.

The ðkþ 1Þ-dimensional sum S0 may be written as

S0 ¼
X
i2I

X
m2Pk

XN
n¼1

aiðm; nÞfiðm; nÞ

�����
�����

In order to apply one dimensional partial summation to the sum in n, we set
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Aiðm; nÞ ¼
Pn

n¼1 aiðm; nÞ and ci;nðmÞ ¼ fiðm; nÞ 
 fiðm; nþ 1Þ. We have

S0 W
X
i

X
m2Pk

Aiðm;NÞfiðm;NÞ

�����
�����þX

i

XN
1

n¼1

X
m2Pk

Aiðm; nÞci;nðmÞ

�����
�����:

We apply the recurrence hypothesis to both terms

S0 W 2kDmax
P0
k

X
i

X
m2P0

k

XN
n¼1

aiðm; nÞ

������
������þ 2k

D
N

max
P0
k

X
i

XN
1

n¼1

X
m2P0

k

Xn
n¼1

aiðm; nÞ

������
������;

and the desired result follows. &

2.3. THIRD DERIVATIVE TEST AND PARTIAL SUMMATION

The following lemma is not essential in the proof of Theorem 1, but it gives rise to
simpli¢cations.

LEMMA 3. LetM be a positive integer, and let g and u: ½1;M� ! R be two functions,
respectively C

3 and C
1, such that

mW jg000ðxÞj � m and u0ðxÞ � m1=2; for 1W xWM; ð2:6Þ

where m is a small positive number. We then have

XM
m¼1

eðgðmÞ þ uðmÞÞ �Mm1=6 þ m
1=3: ð2:7Þ

Proof. If u � 0, Lemma 3 is the third derivative test for exponential sums ([7],
Corollary 4.2). If M � m
1=2, we can eliminate without cost the term uðmÞ by a
(one-dimensional) partial summation, and (2.7) follows. Now, we suppose
M 	 m
1=2. Then we divide the initial sum into OðMm1=2Þ sums of length m
1=2

and we apply the previous case to each short sum. &

2.4. DOUBLE LARGE SIEVE INEQUALITY

We consider the exponential sum

eSS ¼
X

0<jrj<R

XM
m¼1

X
0<jqj<Q

X2H
1

h¼H

XN
n¼1

brðq; h; nÞeðxmP1ðr; q; h; nÞ þ ymP2ðr; q; h; nÞÞ

������
������;
ð2:8Þ

with the following notations:R;M;Q;H;N are positive integers; brðq; h; nÞ are
complex numbers with modulus at most one; P1 and P2 are polynomials in four
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variables, P1 with integer coef¢cients and P2 with real coef¢cients; ðxmÞ1WmWM and
ðymÞ1WmWM are two families of real numbers.

We suppose that the next two inequalities hold

max
1Wm;m0 WM

jym 
 ym0 jW m ð2:9Þ

max
r;q;h;n

jPiðr; q; h; nÞjWXi ði ¼ 1; 2Þ ð2:10Þ

the latter maximum being taken over all quadruples ðr; q; h; nÞ of integers such that

0 < jrj < R; 0 < jqj < Q; HW h < 2H; 1W nWN:

We introduce the numbers N and B which correspond to spacing problems

N ¼ max
1WQ1<Q

#
ðr; q1; q2; h1; h2; n1; n2Þ 2 Z7 which satisfy

conditions ð2:11aÞ . . . ð2:11dÞ

� �
ð2:11Þ

0 < jrj < R; jQ1jW jqij < minð2Q1;QÞ;HW hi < 2H; 1W niWN;

for i ¼ 1; 2; ð2:11aÞ

q1q2 > 0; ð2:11bÞ

P1ðr; h1; q1; n1Þ ¼ P1ðr; h2; q2; n2Þ; ð2:11cÞ

jP2ðr; h1; q1; n1Þ 
 P2ðr; h2; q2; n2ÞjW 1=m ð2:11dÞ

and

B ¼ # ðm1;m2Þ 2 f1; . . . ;Mg2
kxm1 
 xm2kWX
1

1

and
jym1 
 ym2 jWX
1

2

�������
8><>:

9>=>; ð2:12Þ

with the usual notation:kxk ¼ minm2Z jx
mj:
We can now state the double large sieve inequality in the particular form which

will be needed later.

LEMMA 4. With the above notations, we have

eSS2
� Rð1 þ X1Þð1 þ mX2ÞBðlogQÞ

2: ð2:13Þ

Proof. We set

eSSðr;Q1Þ ¼
XM
m¼1

����� X
Q1<jqj<maxð2Q1;QÞ

X2H
1

h¼H

XN
n¼1

brðq; h; nÞ

eðxmP1ðr; q; h; nÞ þ ymP2ðr; q; h; nÞÞ

�����;
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so that we have

eSS � max
1WQ1<Q

X
0<jrj<R

Sðr;Q1Þ

 !
logQ: ð2:14Þ

We apply Bombieri and Iwaniec’s double large sieve [1] (cf. also [3], Lemma 7.5 or
[4], Lemma 5.6.6) to each sum eSSðr;Q1Þ and we get

eSSðr;Q1Þ
2
� ð1 þ X1Þð1 þ mX2ÞN ðr;Q1ÞB; ð2:15Þ

where Nðr;Q1Þ is the number of ðq1; q2; h1; h2; n1; n2Þ 2 Z6 which satisfy conditions
(2.11.a); . . . ; (2.11.d).

Next we apply Cauchy’s inequality and we substitute (2.15) into (2.14) to get
(2.13). &

2.5. IWANIEC AND MOZZOCHI’S ARITHMETIC LEMMA

For a positive integer n, we set

tðnÞ ¼
X
djn

1 and sðnÞ ¼
X
djn

d: ð2:16Þ

The following lemma is contained in the proof of theorem 14.1 of [6]. A complete and
independent proof may be found in Lemma 13.1.2 of [4] (see also [8]).

LEMMA 5. Let a; b; c be three nonzero integers, with gcdða; b; cÞ ¼ 1 and c > 0. Let
VX 1; a < b be real numbers. We denote by V the number of triplets ðu; v;wÞ with
nonzero integers such that gcdðu; v;wÞ ¼ 1, VW vW 2V and

auþ bvþ cw ¼ 0 and aW
u
v
W b: ð2:17Þ

We then have

V � tðcÞ þ ðb
 aÞV2 sðcÞ
c2 ð2:18Þ

3. The Diophantine Problem

3.1. STATEMENT OF THE RESULT

Let R;H;Q;N be real numbers X 1 with RWH=2 and let d be a positive number.
We denote by NðR;Q;H;N; dÞ the number of integer points
ðr; q1; q2; h1; h2; n1; n2Þ 2 Z7 lying in the domain

0 < jrj < R; QW jqij < 2Q; HW hi < 2H; 1W niWN

for i ¼ 1; 2; and q1q2 > 0; ð3:1Þ
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and satisfying the system

rn1 þ h1q1 ¼ rn2 þ h2q2;
jrn2

1 þ 2h1q1n1 þ h1q2
1 
 ðrn2

2 þ 2h2q2n2 þ h2q2
2ÞjW dHQ2: ð3:2Þ

THEOREM 2. The number of solutions of the diophantine system (3.2), lying in the
domain (3.1) satis¢es the bound

NðR;H;Q;N; dÞ �e ðRNHQÞ
1þe

ð1 þ dQÞ: ð3:3Þ

The rest of this section is devoted to the proof of Theorem 2.

3.2. REDUCTION OF THE PROBLEM

We reduce the diophantine system (3.2) into a simpler one by means of easy
calculations. Let J 1ðR;Q;H; dÞ be the number of integer points
ðr; q1; q2; h1; h2; dÞ 2 Z6 lying in the domain

0 < jrj < R; QW jqij < 2Q; HW hi < 2H;

for i ¼ 1; 2; q1q2 > 0 and 0 < jdj � ð1 þ dÞQ ð3:4Þ

satisfying the system

rd þ h1q1 
 h2q2 ¼ 0
jrd2 þ 2h1q1d þ h1q2

1 
 h2q2
2jW dHQ2; ð3:5Þ

just as the additional condition

gcdðd; q1; q2Þ ¼ 1; gcdðr; h1; h2Þ ¼ 1: ð3:6Þ

LEMMA 6. With the above notations, we have

NðR;Q;H;N; dÞ

�e ðRNHQÞ
1þe

ð1 þ dQÞ þN
X

1W jWR

X
1W kWQ

J ðR=j;Q=k;H=j; dÞ: ð3:7Þ

Proof. We set n1 ¼ n2 þ d and we insert this in (3.2). We observe that the terms
containing n2 cancel out each other and we obtain (3.5). On the other hand, the
system

rd þ h1q1 
 h2q2 ¼ 0;
jðh1q1 þ h2q2Þd þ h1q2

1 
 h2q2
2jW dHQ2; ð3:8Þ

is equivalent to (3.5). From it, since q1 and q2 have the same sign, we deduce that

d � ð1 þ dÞQ: ð3:9Þ
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Using only the ¢rst line of (3.2), we see that the number of solutions of (3.2) with
d ¼ 0 (i.e. n1 ¼ n2) is OeððRQHNÞ

1þe
Þ; so that we may suppose now d 6¼ 0. Let j

and k be two positive integers and let J ðj; kÞ be the number of integer points
ðr; q1; q2; h1; h2; dÞ 2 Z6; lying in the domain (3.4), satisfying system (3.5) and the
additional condition

gcdðd; q1; q2Þ ¼ k; gcdðr; h1; h2Þ ¼ j:

The following bound is then obvious:

NðR;Q;H;N; dÞ �e ðRNHQÞ
1þe

þN
X

1W jWR

X
1W k<2Q

J ðj; kÞ ð3:10Þ

and it may be transformed into

NðR;Q;H;N; dÞ �e ðRNHQÞ
1þe

ð1 þ dÞ þN
X

1W jWR

X
1W kWQ

J ðj; kÞ: ð3:11Þ

Indeed, if we assume that k ¼ gcdðd; q1; q2Þ is greater than Q, then we have
q1 ¼ q2 ¼ k and there are Oð1 þ dÞ possibilities for d, so that the total number
of solutions of (3.5) with gcdðd; q1; q2Þ > Q, is OðRQHNð1 þ dÞÞ (we have only
to use the ¢rst line of 3.5). We have thus proved (3.11). But, for j and k ¢xed, with
1W jWR and 1W kWQ, we may divide the ¢rst line of (3.5) by jk and the second
line of (3.5) by jk2. The real numbers R=j;Q=k and H=j are X 1, with
R=jW 1

2H=j and we have

J ðj; kÞ ¼ J ðR=j;Q=k;H=j; dÞ:

Thus (3.11) implies (3.7) and the proof of Lemma 6 is complete. &

From Lemma 6, we deduce that Theorem 2 is a consequence of the following
lemma:

LEMMA 7. Let R;Q;H; d be positive real numbers with RX 1; QX 1 and HX 2R.
We have:

J ðR;Q;H; dÞ �e ðRQHÞ
1þe

ð1 þQdÞ; ð3:12Þ

which remains to be proved.

3.3. PROOF OF LEMMA 7

(a) First we treat the case dX 1. The system (3.8) reduces then to

h2q2 ¼ h1q1 þ rd
d � dQ

�
from which we deduce (3.12) at once. From now on, we suppose 0 < d < 1:
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(b) We ¢x the integers r; h1 and h2. In order to apply Lemma 5, we transform the
system (3.8). We use the ¢rst line of (3.8) to express d and we substitute this
expression into the second line; we divide the inequality so obtained by
q2

1h2ðh2 
 rÞ and we get

q2
2

q2
1


h1ðh1 
 rÞ
h2ðh2 
 rÞ

�����
�����W 2d

jrj
H

;

since h2 
 rXH=2: Finally, the system (3.8) implies

rd þ h1q1 
 h2q2 ¼ 0

q2

q1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h1ðh1 
 rÞ
h2ðh2 
 rÞ

s
þO d

jrj
H

� �8><>: ð3:13Þ

By Lemma 5, the number of triplets ðd; q1; q2Þ solutions of (3.13) is

�e He 1 þ
dQ2

H

� �
;

so that we have

J ðR;Q;H; dÞ �e HeðRH2 þ RHQ2dÞ; ð3:14Þ

and this proves (3.12) in the case H � Q.
(c) It only remains to prove Lemma 7 in the following two cases

0 < d < 1; Q� H and d � R=H ð3:15Þ

and

0 < d < 1; Q� H and d 	 R=H ð3:16Þ

We could ¢x the integers d; q1; q2 with the aim of applying Lemma 5 to bound the
number of triplets ðr; h1; h2Þ which satisfy (3.8), as in the previous case. But this
direct method does not yield (3.12) and some extra work is needed. First we want
to prove that (3.8) implies the two systems

drþ q1h1 
 q2h2 ¼ 0;
h1

h2
¼
q2ðq2 
 dÞ
q1ðq1 þ dÞ

þOðdÞ; if ð3:15Þ holds

2d þ q1 
 q2 � RQ=H

;

8><>: ð3:17Þ

and

drþ q1h1 
 q2h2 ¼ 0;
h1

h2
¼
q2

q1
þOðR=HÞ; if ð3:16Þ holds;

2d þ q1 
 q2 � Qd:

8><>: ð3:18Þ

For this, we recall that q1 and q2 are of the same sign, so that we have either
jq1 þ djXQ or jq2 
 djXQ. For example, we assume that q1; q2 and d are of
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the same sign. From (3.8), we deduce that

h1

h2
¼
q2ðq2 
 dÞ
q1ðq1 þ dÞ

þOðdÞ: ð3:19Þ

From the ¢rst line of (3.8) and the bound d � Q, we deduce at once

h1

h2
¼
q2

q1
þOðR=HÞ: ð3:20Þ

At last, from (3.19) and (3.20), we deduce

2d þ q1 
 q2 � Qdþ RQ=H; ð3:21Þ

so that the systems (3.17) and (3.18) follow from (3.8) as claimed above.
Now, we suppose that (3.15) holds. We suppose furthermore that jdj has a ¢xed

size D, that is DW jdj < 2D, with D� Q. We then ¢x the integers d; q1 and q2

with only OðDQþDQ2R=HÞ possibilities, by (3.21). By Lemma 5, the number
of triplets ðr; h1; h2Þ which satisfy (3.17) is OeðQeð1 þH2d=DÞÞ, so that the total
number of integer points ðd; q1; q2; r; h1; h2Þ lying in the domain (3.4) and satisfying
(3.17) is

�e Qe max
1WD�Q

1 þH2d=D
� �

DQþDQ2R=H
� �

;

�e Qe Q2 þ dH2QþQ3R=H þQ2HRd
� �

which proves (3.12) in this case. The proof of Lemma 7 in case (3.16) is completely
similar and we have only to use (3.18) instead of (3.17). The proofs of Lemma 7
and of Theorem 2 are complete. &

4. Proof of Theorem 1

We are now going to prove Theorem 1. We may suppose that hypothesis (1.2) holds
with l small enough. We split up the proof into short steps.

STEP 0: THE SIZE OF M

For proving Theorem 1, we may suppose that

M � l
8=13
ð4:1Þ

(where the notation u � vmeans that we have both u� v and v� u). Indeed, we set
M0 ¼ ½l
8=13

�. If we have MXM0, we divide the sum SM into OðMl8=13
Þ shorter

sums and the problem reduces to (4.1). Now we consider the case
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l
7=13
�M <M0. We perform a C4 continuation of f by setting

eff ðM þ tÞ ¼
X4

j¼0

f ðjÞðMÞ
tj

j!

for t > 0. Then by Lemma 5.2.3 of [4], we have

SM � max
0W yW 1

XM0

m¼1

eðeff ðmÞ þ WmÞ

�����
����� logM0

and the problem reduces again to (4.1).

STEP 1: A-PROCESS

We start with the sum SM ¼
PM

m¼1 eð f ðmÞÞ and we apply Weyl and van der Corput’s
A-process in the form that uses symmetrical differences (cf. [4], Lemma 5.6.2). We set
Dhf ðmÞ ¼ f ðmþ hÞ 
 f ðm
 hÞ and choose a positive integer H such that

H � l
2=13
ð4:2Þ

We then have

S2
M �

M2

H
þ
M
H

XH
1

h¼1

1 

h
H

� � XM
h

m¼hþ1

eðDh f ðmÞÞ

�����
�����: ð4:3Þ

Next, we remove the factor ð1 
 h=HÞ by partial summation and we use the following
remark: given any complex numbers a1; a2; . . . ; aH , there exists a positive integer
H1 WH=2 such that

XH
1

h¼1

ah � max
1W hWH
1

jahj þ
X2H1
1

h¼H1

ah

�����
�����

 !
logH: ð4:4Þ

Taking ah ¼
PM
h

m¼hþ1 eðDhf ðmÞÞ, with jahjWM, we get

S2
M �

M2

H
logH þ

M
H

jSðH1Þj logH; ð4:5Þ

for some integer H1 WH=2, where we have set

SðH1Þ ¼
X2H1
1

h¼H1

XM
h

m¼hþ1

eðDhf ðmÞÞ: ð4:6Þ

By the third derivative test (Lemma 3), we see that, if H1 � l
1=7, we have
SM �Ml1=13 logM, and the theorem is proved. Thus it remains to prove that

SðH1Þ �e M1þe ; for l
1=7
� H1 � l
2=13: ð4:7Þ
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STEP 2: A � A-PROCESS

We choose two integers R and Q such that

R � l
1=13 and Q � l
3=13: ð4:8Þ

We apply Lemma 1 to get

SðH1Þ
2
�
MH1

QR

X
jrj<R

X
jqj<Q

1 

jrj
R

� �
1 


jqj
Q

� � X
h2J1ðrÞ

X
m2J2ðh;qÞ

�

� eðDhf ðmþ qÞ 
 Dhþrf ðmÞÞ; ð4:9Þ

where J1ðrÞ and J2ðh; qÞ are intervals de¢ned by

J1ðrÞ ¼ ½maxðH1;H1 
 rÞ;minð2H1 
 1; 2H1 
 1 
 rÞ�;

and

J2ðh; qÞ ¼ ½maxð1 þ h; 1 þ h
 qÞ;minðM 
 h;M 
 h
 qÞ�

In the sum in (4.9), we want to remove all terms with r ¼ 0 or q ¼ 0 to get

SðH1Þ
2
�M2 þ

MH1

QR

X
0<jrj<R

X
0<jqj<Q

1 

jrj
R

� �
1 


jqj
Q

� �
�

�
X
h2J1ðrÞ

X
m2J2ðh;qÞ

eðDhf ðmþ qÞ 
 Dhþrf ðmÞÞ: ð4:10Þ

In order to prove (4.10), we ¢rst notice that the terms in the sum (4.9) corresponding
to r ¼ q ¼ 0 have a contribution

�
ðMH1Þ

2

QR
�M2:

The terms corresponding to r ¼ 0 and q 6¼ 0 may be treated as exponential sums on
the variablem, by van der Corput’s inequality ([3], Theorem 2.2). Their contribution
is �M2l1=13

�M2. The terms corresponding to q ¼ 0 and r 6¼ 0 may be treated
similarly, but with Lemma 3. In order to see that the hypotheses are satis¢ed,
we make use of Taylor’s formula to write the phase as:

Dhf ðmÞ 
 Dhþrf ðmÞ ¼ gðmÞ þ uðmÞ;

with gðmÞ ¼ 
2rf 0ðmÞ and

uðmÞ ¼
Z h

0

ðh
 tÞ2

2!
ðf 000ðmþ tÞ þ f 000ðm
 tÞÞdt 





Z hþr

0

ðhþ r
 tÞ2

2!
ðf 000ðmþ tÞ þ f 000ðm
 tÞÞdt:
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If we set m ¼ jrjl, so that jg000ðmÞj � m, we have u0ðmÞ � H3l � m1=2. An application
of Lemma 3 shows that the contribution of these terms is �M2l1=13. We have
completed the proof of (4.10).

STEP 3: SHIFT

We want to apply the following obvious equality:

X
1WmWM

aðmÞ ¼
1
N

XN
n¼1

X
1
nWmWM
n

aðmþ nÞ;

where N is any positive integer and where ðaðmÞÞ1WmWM are any given complex
numbers. Here we choose

N � l
3=13: ð4:11Þ

If gðmÞ is any real valued function, we have

X
m2J2ðh;qÞ

eðgðmÞÞ ¼
1
N

XN
n¼1

X
m2J3ðh;q;nÞ

eðgðmþ nÞÞ;

where J2ðh; qÞ is as in (4.10). Set now J0 ¼ ½H1 þQ;M 
 2H1 
Q
N�; we have
J0 � J3ðh; q; nÞ � ½1;M�, so that

X
m2J2ðh;qÞ

eðgðmÞÞ ¼
1
N

XN
n¼1

X
m2J0

eðgðmþ nÞÞ þOðH1 þQþNÞ:

Inserting the above equality in (4.10), we ¢nally deduce

SðH1Þ
2
�M2 þ

MH1

QRN

X
0<jrj<R

X
m2J0

�

�
X

0<jqj<Q

1 

jqj
Q

� � X2H1
1

h¼H1

XN
n¼1

eðDhf ðmþ nþ qÞ 
 Dhþrf ðmþ nÞÞ

������
������:
ð4:12Þ

STEP 4: TAYLOR’S FORMULA AND PARTIAL SUMMATION

We write

f ðmþ yÞ ¼ f ðmÞ þ f 0ðmÞyþ f 00ðmÞ
y2

2!
þ f 000ðmÞ

y3

3!
þ vmðyÞ;
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with

vmðyÞ ¼
Z y

0

ðy
 tÞ3

3!
f ð4Þðmþ tÞt:

Then vm is a C
4 function which satis¢es

vðjÞm ðyÞ � Q4
jl for 0W jW 4 and y� Q: ð4:13Þ

We introduce the function

um;rðq; h; nÞ ¼ vmðnþ qþ hÞ 
 vmðnþ q
 hÞ 
 vmðnþ hþ rÞ þ vmðn
 h
 rÞ
ð4:14Þ

and the two polynomials

P1ðr; q; h; nÞ ¼ qh
 rn; P2ðr; q; h; nÞ ¼ hq2 þ 2hqn
 rn2 
 rh2 
 r2h; ð4:15Þ

so that we have

Dhf ðmþ nþ qÞ 
 Dhþrf ðmþ nÞ 


¼ 
2rf 0ðmÞ þ 2f 00ðmÞP1ðr; q; h; nÞþ

þ f 000ðmÞP2ðr; q; h; nÞ þ
r3

3
f 000ðmÞ þ um;rðq; h; nÞ: ð4:16Þ

We bring this formula into (4.12). Our aim now is to remove the term um;rðq; h; nÞ
from the triple exponential sum by partial summation. But for the function

ðq; h; nÞ ! eðum;rðq; h; nÞÞ;

the bound (2.3) holds withD� 1, for we haveQ4l � 1. If we use coef¢cients in (2.5)
instead of the sets P0, we have ¢nally obtained

SðH1Þ
2
�M2 þ

MH1

QRN
eSSðH1Þ;

where we have set

eSSðH1Þ ¼
X

0<jrj<R

XM
m¼1

X
0<jqj<Q

X2H1
1

h¼H1

XN
n¼1

brðq; h; nÞeðxmP1ðr; q; h; nÞ þ ymP2ðr; q; h; nÞÞ

������
������;

ð4:17Þ

and

xm ¼ 2f 00ðmÞ; ym ¼ f 000ðmÞ; for m ¼ 1; . . . ;M; ð4:18Þ

and where brðq; h; nÞ are complex numbers of modulus at most one. Taking (4.7) into
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account, we see that Theorem 1 will be proved if we obtain the bound

eSSðH1Þ �e M1þel
5=13: ð4:19Þ

STEP 5: DOUBLE LARGE SIEVE

We want to apply Lemma 4 to the sum eSSðH1Þ. We set

m ¼Ml; X1 ¼ QH; X2 ¼ QHN: ð4:20Þ

We de¢ne N and B as in (2.11) and (2.12). The size of parametersM;H;H1;R;Q and
N (cf. (4.1), (4.2), (4.7), (4.8) and (4.11)) shows that the hypothesis of Lemma 4 are
satis¢ed and that (2.13) implies

eSSðH1Þ
2
� RX1mX2NBðlogQÞ2: ð4:21Þ

It only remains to bound B and N .

STEP 6: A BOUND FOR B

In (2.12), we set m2 ¼ m and m1 ¼ mþ k: We then have

B �
�
ðk;mÞ j 1WmWmþ kWM

and such that the properties ð4:22Þ and ð4:23Þ are satisfied
�

with

jDkf 000ðmÞjWX
1
2 ; ð4:22Þ

k2Dkf 00ðmÞkWX
1
1 ; ð4:23Þ

where we have set DkjðxÞ ¼ jðxþ kÞ 
 jðxÞ.
The inequality (4.22) yields a bound for k, say 0W kWK , with K � ðlX2Þ


1, while
the inequality (4.23) may be treated with respect to m, with ¢xed k, by the ¢rst
derivative test for integer points close to a curve (cf. [4], Lemma 3.1.2). We then
obtain

B �M þ
XK
k¼1

M
X1

þMklþ
1

klX1
þ 1

� �
:

The ¢nal bound is

B �M logM: ð4:24Þ
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STEP 7: A BOUND FOR N

We have to bound the number N of integral solutions of the system

h1q1 
 rn1 ¼ h2q2 
 rn2;
ðh1q2

1 þ 2h1q1n1 
 rn2
1 
 rh

2
1 
 r

2h1Þ
ðh2q2
2 þ 2h2q2n2 
 rn2

2 
 rh
2
2 
 r

2h2Þ �
1
Ml :

ð4:25Þ

We failed in solving this problem in its right generality. If we were able to prove the
expected bound (under some suitable restrictions), then we should obtain
conjecture 1 by the same method (we should only need to change the size of the
parameters).

Presently, we reduce the system (4.25) to the simpler one of Theorem 2 by
transferring the terms rh2

i and r2hi in the error term. This is possible since we have
imposed the condition RH2

1 � 1=Ml:
Furthermore, the hypothesis RWH1=2 of theorem 2 is satis¢ed when l is small

enough, because of (4.7) and (4.8). From Theorem 2, we deduce

N �e Mel
9=13: ð4:26Þ

We take back (4.24) and (4.26) into (4.21). This gives (4.19) and the proof is
complete. &
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