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THE HAUSDORFF COMPLETION OF THE SPACE 
OF CLOSED SUBSETS OF A MODULE 

E. W. JOHNSON AND JOHNNY A. JOHNSON 

ABSTRACT. In this paper, we show that the lattice of closed subsets of the comple­
tion, in the Jacobson radical topology, of a finitely generated module M is isomorphic 
to the completion, under the Hausdorff topology, of the lattice of closed subsets of M. 
This extends submodule-theoretic results for complete modules to modules satisfying 
Chevalley's Theorem. We show that the lattice of submodules of every finitely gener­
ated module over a semi-local ring R is complete in the Hausdorff topology if and only 
if/? is complete in the Jacobson radical topology. 

Throughout, all rings are commutative with identity 1, and all modules are unitary. M 
denotes a finitely generated module over a semi-local ring R, and J = J(R) denotes the 
Jacobson radical ofR. 

Recall that the </-adic metric d is defined on M by d(x,y) = 1 /28^\ where 8(x,y) = 
sup{« G Z | x — y E J"M}. Recall also that the Hausdorff metric h is defined on the 
space of nonempty subsets of M which are closed under the J-adic metric by 

h(A,B) = max[suplmf{d(a,b)}},suplmf{d(a,b)}}). 

For any i?-module M, we denote by M the completion of M in the J = J(R)-adic 
topology. We denote the Jacobson radical of R by J. 

We denote by KR(M) the collection of nonempty subsets of M closed under the J-adic 
topology, and by KR(M) the completion of KR(M) in the Hausdorff topology. We denote 
byJLr(Mf the order completion KR(M) U {0} oJKR{M). We denote by K^M) the set 
KR(M)U{®}, which is the order completion of KR(M) with respect to the order induced on 
it by Ç. Finally, we denote by LR(M) the lattice of/?-submodules of M. All submodules 
of M are closed under the 7-adic topology, so LR(M) Ç KR(M) Ç KR(M) C KR(M) . 

We note that KR(M)* is a complete, modular lattice with respect to the order Ç. We 
also note that A + B is empty if either A or B is empty. 

-—- * 
In this paper, we obtain a representation of KR(M) as K^{Mf (Theorem 2). This map 

can be used to extend submodule-theoretic results for complete modules to the larger 
class of modules satisfying LR{M) = LR(M). We show that LR(M) = LR(M) for all 
finitely generated /^-modules M if and only ifR is complete under the J-adic metric d 
(Theorem 3). 

It is useful to collect the following well-known results into a lemma for ease of refer­
ence. They can all be found in [3,4 or 5], for example. 
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LEMMA 1. Let M be a finitely generated module over R. 

(a) If S Ç M, then the closure of S in M is given byS=f)™{(S + JM). 

(b) R is a semi-local ring with Jacobson radical J = RJ. 

(c) M is a finitely generated module over R with M = RM. 

(d) JiMHM = JiM. 

(e) JM = JM. 

COROLLARY 1. For any S CM and for each i > 0, S + J1 M is closed in M. 

Given Cauchy sequences C = {Q}^ andD = {A}^i i n KR(M)9 we write C - / / D 
iflim/_,oo/z(Q,A) = 0. WewriteC <H D if, given any positive integer n,Q Ç D[+rM 
for large /. 

The following clarifies the relationship between <H and ~H and shows that <// in­
duces an order on the completion of KR(M) in the HausdorfY topology. 

LEMMA 2. Let M be a finitely generated module'over a semi-local ring M with Ja­
cobson radicalJ. Then, for A andB inKR(M), h{A,B) < 1/2" if andonlyif,A+rM = 
B+J"M. 

PROOF. Assume A + I'M = B + rM. Then for each a G A there exists ba G B 
with a-bae FM. It follows that, for a E A, infbeB{d(a,b)} < 1/2", and hence that 
supaeA{infbeB{d(a,b)}} < 1/2". By symmetry, h(A,B) < 1/2". 

Now, assume A + 1 1 M ^ B + J"M, say A g B + rM. Choose a £ A so a fi B + 
rM. Then, for any b G B, d(a,b) > 1/2""1. It follows that supaeA{infbeB{d(a,b)}} > 
1/2"-1. 

The following simplifies calculations with Cauchy sequences in KR(M). 

COROLLARY 2. Any Cauchy sequence C = {C/}^i in KR(M) is equivalent to a 
decreasing Cauchy sequence C in KR(M). IfC lies in LR(M) then C can be chosen from 
LR(M) as well. 

PROOF. Let C = { C / } ^ be a Cauchy sequence in KR(M). By extracting a sub­
sequence if necessary, we can assume h(Cf,Cj) < 1/2" for all / and y > n. Then 
Ct + rM = Cj + rM for all i and y > n. It follows that the sequence {Ç- + JM}^ 
is Cauchy, decreasing and equivalent to C. • 

We require some information on extensions and contractions. 

LEMMA 3. If S Ç M, then (S + JiM)nM= S + SM. 

PROOF. If S — 0, the result is clear, so assume S ^ 0. 

(Ç). Assume s + j = m G M; s G S, j G ÎM. Then j = m- s G SMnM = IM 
(Lemma 1), so m G S + JM. 

Q ) . This is clear. • 
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LEMMA4. IfT QMjhen((T + fM)nM)+JiM=T + JiM. 

PROOF. If T is empty, both sides of the equation evaluate to 0. Assume 7 ^ 0 . 
(Ç). This is clear. 

Q ) . Assume / G T. Then either t G M, in which case t G ((T+SlÇfpiM) +J*M9 or there 
exists m G M with d(m, t) < 1 jl1. In the latter case, t- m G / M and /w G (ÎT+fM)nM, 
so t = m + (t-m) (E ((T + fAfjnirf+SM. m 

LEMMA 5. Assume {Q}^ Ç X/?(À/)- ?*ew {Ci}£i & Cauchy in KR(M) if and only 
ifiQ+SM}^ is Cauchy in Kk(M). 

PROOF. Assume {C,-}?^ is a Cauchy sequence in KR{M). Then, given w, Q +JnM — 
Cj + / M for large / andy, so C, + T^M = C/ + J"M for large / andy*. Hence (Lemma 2), 
{C, + fM}^ is Cauchy in Kk(M). 

Conversely, assume that {C,}?^ is a sequence in KR{M) and {C, + JM}^ is Cauchy 
in Kk(M). Then, (Lemma 2) given «, C, + J"M = Cj + 7"M for large / andy. It follows 
that (Q +J"M) C\M = (Cj +rM) DM, and hence (Lemma 3) that Q +rM = Cj +rM, 
for large / andy. By Lemma 2, {Q}gj is Cauchy in KR(M). m 

Elements of KR(M) can be thought of as points or as equivalence classes of Cauchy 
sequences of elements of KR(M). For any Cauchy sequence C = {C/}gj in KR(M), we 
denote both by [C\H. We note that K^(M) is naturally ordered with [C]H = [{C/}?^]/, < 
[ { A l g i k = [Dh if, given n, G Ç Dt + rM for large i. We define 0 < £> for all 
Z) G KR(M). 

THEOREM 1. Let {GY£z\ be a decreasing sequence in KR(M) with flïïi G — C0. 
The the following are equivalent. 

I. Hindoo Cf = Co. 
2- {<w}£i converges in KR(M). 
3. Ci Ç Co + J" M for fixed n and large i. 

PROOF. Clearly (1) implies (2). Assume (2) with lim^oo G = L. Then for fixed 
n and large i, h(G,L) < 1/2", and so L+J"M = G + rM, for large i. Fix k. Then 
LQCk +rM for all n,soLC Ck. By the choice of &, it follows that L Ç f|j£i Ck = C0. 
Then C, Ç G + rM =L+ rM Ç C0 + 7"M, for large i. Hence, (2) implies (3). Now, 
assume C, Ç Co + ./"M for fixed n and large /. Then G + J"Af = Co + J"M for large /, so 
(Lemma 2) A(C,-, C0) < 1 /2n. Hence also (3) implies (1). • 

A famous theorem of Chevalley, when stated for modules, says that in a complete 
module over a semi-local ring, any decreasing sequence {C/}gj of submodules satisfies 
G Q (fljSi Cj) + rM for fixed n and large i [5, Theorem 13, p. 270]. We say that a 
subspaceSof KR(M) satisfies Chevalley's Theorem if every decreasing sequence {C/}£2j 
in S with nonempty intersection satisfies C,- Ç (fj/Si Cj)+r M for fixed w and large i. The 
following relates Chevalley's Theorem to the completeness of KR(M) and LR(M) under 
the Hausdorff metric h. 
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COROLLARY 3. Let M be a finitely generated R-module. 

1. KR(M) = KR{M) if and only ifKR(M) satisfies Chevalley's Theorem. 

2. LR(M) = LR(M) if and only ifLR(M) satisfies Chevalley s Theorem. 

The following gives a precise description of KR{M) and LR(M) in general. 

THEOREM 2. Let M be a finitely generated module over the semi-local ring R. Then 
the map ^:Kk(Kff -> K^(M) defined by V>(S) - [{(S + JM) n M}™x]Hfor S ^ ®, 
and ^(0) = 0 w a lattice isomorphism ofKk(M)* onto K(M) . The isomorphism carries 
Lk(M) onto L*(M). 

PROOF. Define xfj is as in the statement of the theorem. Let S be any element of 
Kk{Mf. By Lemma 5, the sequence {(S+JNfynhf}^ is Cauchy in KR(M). Hence, xjj is 

—- * 
a map from Kk{Mf to KR(M) . It is clear that \jj is order preserving. Assume S and T are 
elements ofKÈ(M) and # S ) < i>{T). Then, given n, (S+JiM)nM+JnM Ç (T+SÂf)!! 
M+rMïox large i and/ Then (S+JiM)nM+JM+rM Ç (T+JiM)nM+fM+TM 
for large / andy. 

By Lemma 4, this gives S+J"M Ç T+J*M. As w is arbitrary and 5 and T are closed, 
it follows that S Ç T. Hence, x/j(S!) < VW if and only if S Ç 7\ 

Now, let {C/}J2j be any decreasing Cauchy sequence in KR(M). Then {Q +71'M}g1 

is a decreasing Cauchy sequence in Kk(M). Let Q = f|Si(C' + -/^O- We show 
lim^ooCC+^AO^Co. 

By extracting a subsequence of { C / } ^ if necessary, we can assume that /*(CZ, C7) < 
1/2" for all n > 1 and all /,y > n. Hence, C„ + J"M = Cj + J"M for y > n. Fix « 
and cn G C„. Then c„ = cw+i + m„, for some cn+\ G C +̂i and mn G J"M. Continue 
to get {cj}JZn

 an(* {^/}j2„ with Cj = cj+\ + my for ally > /. Set cry — jjr=n Mr- Then 
cn = Cr+i + o> for all r > «. Also, as mr G J^M, necessarily limr_^oo wr = 0, and hence 
{aj}j^i converges in M, say to cro- It follows that {CJ}JZ{ also converges, say to c$. As 
on G J"Mnecessarily cro G J"Mas well. Likewise, c7 G C, for ally > «, so Co G Q . As 
cn — Co + do, it follows by the choice of cn that C„ Ç C0 + J*M. Hence lim^oo C, = C0. 
As { C } - , ~H {Q? +7 IM}g1, it follows-that ^ ( Q ) = [{G}^] / , . 

It is clear that ^ carries Lk(M) onto LR(M). m 

LR(M) is an "Z#(i?)-module." The natural extension of the scalar multiplication makes 
LR(M) an L#(7?)-module. If p is the isomorphism of Lk(R) onto Z^(ft) corresponding to 
the map x/; in the proof of Theorem 2, then \j){AN) = p{A)%l){N), for A G £/?(ft) and 
TV G l ^ M ) . 

It is possible for LR(M) to be complete without M complete. For example, a one-
dimensional regular local ring need not be complete. On the other hand, if R is complete, 
then every finitely generated /^-module M is complete. It is natural to ask if LR(R) com­
plete implies the lattice LR(M) of every finitely generated 7?-module is complete. The 
following gives a definitive answer. 

THEOREM 3. LetR be a semi-local ring. Then the following are equivalent. 
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1. For every finitely generated R-module M, KR(M) is complete in the Hausdorff 
topology. 

2. For every finitely generated R-module M, LR(M) is complete in the Hausdorff 
topology. 

3. LR(R 0 R) is complete in the Hausdorff topology. 
4. R is complete in the J-adic topology. 

PROOF. (1) implies (2): This is clear. (2) implies (3): Clear. (3) implies (4): Let 
m i , . . . mn be the maximal ideals of/?, and let M be a finitely generated /^-module with 
LR{M) complete under the metric h. Then M is a finitely generated module over R = 
Rm{ © * • * ® Rmn- This induces a decomposition of M which induces a decomposition 
of M by contraction. Hence, we can assume that R is local with maximal ideal m. Fix 
C G LÈ(M). Under the map ^ of Theorem 2, let C0 = ip(Q = lim^oo(C + J*hi) C\M = 

nSiCc+^ÂonM 
Also,nSi(^C0+/AOfW= flSi R(Co^M)nM= n£i(C 0+/M) = C0 = V>(*Co). 

It follows that C = RCo. As C is arbitrary, it follows that every submodule C of M is 
extended. When applied to the cyclic submodules, it follows that every element c G M 
is of the form uc for some c EM and unit û G R. When applied to M = R 0 R, it follows 
that every element of R 0 R is a unit multiple of an element of R 0 R. In particular, (1, c) 
is a unit multiple of an element (r,s) G 7? 0 R, and likewise (r,s) is a unit multiple of 
(1, c). In the latter case, the unit is clearly r. But then c = rs E R, so R Ç R. (4) implies 
(1): Assume R is complete. Let M be a finitely generated /^-module. By Theorem 3, 
Lft(M) = LR{M) is complete in the Hausdorff topology. • 

We note that modules with submodule lattices satisfying Chevalley's Theorem have 
been called quasi-complete. See, for example, [1, 2]. 
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