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Self-Maps of Low Rank Lie Groups at
Odd Primes

Jelena Grbić and Stephen Theriault

Abstract. Let G be a simple, compact, simply-connected Lie group localized at an odd prime p. We

study the group of homotopy classes of self-maps [G, G] when the rank of G is low and in certain cases

describe the set of homotopy classes of multiplicative self-maps H[G, G]. The low rank condition gives

G certain structural properties which make calculations accessible. Several examples and applications

are given.

1 Introduction

When studying any mathematical object it is a natural to ask what its self-maps are,

as this often reveals an interesting structure. In homotopy theory the objects are

topological spaces and the self-maps are homotopy classes of pointed, continuous

self-maps. One collection of spaces that is interesting to study is Lie groups, as they

are fundamental to many areas of mathematics. However, little is known about their

homotopy classes of self-maps. It is classical that for SU(2) ≃ S3 the set of homotopy

classes of self-maps is π3(S3) ∼= Z. Mimura and Oshima [MO] determined the set of

homotopy classes of SU(3) and Sp(2). But for higher rank Lie groups the calculations

quickly become overwhelming, largely due to an inability to control the 2-primary

information.

In this paper we invert the prime 2 in order to get more information. To be precise,

assume that all spaces are pointed, connected, topological spaces with the homotopy

types of finite type CW -complexes. Assume that all spaces and maps have been lo-

calized at an odd prime p and homology is taken with mod-p coefficients. For spaces

X and Z, let [X, Z] be the set of homotopy classes of pointed, continuous maps. If X

and Z are H-spaces, a distinguished subset of [X, Z] is the set H[X, Z] of homotopy

classes of H-maps between X and Z. Let G be a simple, compact, simply-connected

Lie group. In this paper we study [G, G] when the rank of G is low and in certain cases

describe H[G, G]. For example, we consider [SU(n), SU(n)] when n ≤ (p − 1)2 + 1

and H[SU(n), SU(n)] when 2n < p. The methods we use are also applicable in other

cases, some of which will be indicated as we proceed.

We begin with a general theorem that decomposes certain homotopy classes of

maps.
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Theorem 1.1 Let Z be a homotopy associative H-space. Let X be a space such that

ΣX ≃
∨t

i=1 ΣXi . Then there is an isomorphism of sets

[X, Z] ∼=
t∏

i=1

[Xi , Z].

Furthermore, if Z is also homotopy commutative, then the isomorphism is of abelian

groups.

Theorem 1.1 is most useful when Z is not known to be a loop space. For if

Z = ΩZ ′, the set isomorphism in Theorem 1.1 is a straightforward consequence of

adjunction, although the group isomorphism in the commutative case requires a bit

of work. An example which is not a loop space is S2n+1, which is both homotopy asso-

ciative and homotopy commutative when localized at p ≥ 5. More generally, families

of p-local finite torsion free H-spaces are constructed in [CHZ, CN] and work of the

second author [Th1] gives conditions for when they are homotopy associative and

homotopy commutative. Many interesting spaces satisfy the suspension condition

on the domain in Theorem 1.1. For example, if X = Sg is a surface of genus g, then

ΣSg ≃ (
∨2g

i=1 ΣS1) ∨ ΣS2, or if X = M is a simply-connected 4-manifold, then (at

odd primes) ΣM ≃ (
∨d

i=1 ΣS2) ∨ ΣS4 for some nonnegative integer d.

The spaces of primary interest that satisfy the suspension condition in Theo-

rem 1.1 are torsion-free simple, compact, simply-connected Lie groups. The list of

such groups and the relevant primes is: Spin(n) for n ≥ 3 and p ≥ 3; SU(n) for

n ≥ 2 and p ≥ 3; Sp(n) for n ≥ 1 and p ≥ 3; G2 for p ≥ 3; F4, E6, and E7 for

p ≥ 5, and E8 for p ≥ 7. In all such cases, we have H∗(G) ∼= Λ(x2n1+1, . . . , x2nt +1)

where n1 < n2 < · · · < nt , the degree of x2ni +1 is 2ni + 1, and t is the rank of G. Let

q = 2(p − 1). It is well known that there is an algebra decomposition

H∗(G) ∼=
p−1⊗
i=1

Λ(Vi),

where Vi consists of those generators in {x2n1+1, . . . , x2nt +1} whose degrees are of the

form 2i + jq + 1 for some j ≥ 0. Note that, depending on G, it may be the case

that Vi = ∅ for some i. Mimura, Nishida, and Toda [MNT2] realized this algebra

decomposition geometrically by showing that there is a homotopy equivalence G ≃∏p−1
i=1 Bi , where H∗(Bi) ∼= Λ(Vi). This can be pushed further. Let li be the cardinality

of Vi . For 0 ≤ k ≤ li , let Λk(Vi) be the submodule of Λ(Vi) consisting of the elements

of tensor length k. Then there is a module isomorphism

Λ(Vi) ∼=
li⊕

k=0

Λk(Vi).

Thus there is a module isomorphism

H∗(G) ∼=

l1,...,lp−1⊕

k1,...,kp−1=0

Λk1
(V1) ⊗ · · · ⊗ Λkp−1

(V p−1).
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We will show that in low rank this module decomposition can be realized geometri-

cally, in the following sense.

Theorem 1.2 Let G be one of the following: SU(n) if n ≤ (p − 1)2 + 1; Sp(n) if

2n ≤ (p − 1)2; Spin(2n + 1) if 2n ≤ (p − 1)2; Spin(2n) if 2(n − 1) ≤ (p − 1)2; G2

if p ≥ 3; F4 or E6 if p ≥ 5; E7 or E8 if p ≥ 7. Then for each 1 ≤ i ≤ p − 1 and

0 ≤ ki ≤ li there are spaces Ski
such that H̃∗(Ski

) ∼= Λki
(Vi), and there is a homotopy

decomposition

ΣG ≃

l1,...,lp−1∨

k1,...,kp−1=0

ΣSk1
∧ · · · ∧ Skp−1

.

(Here Λki
(Vi) = {1} if ki = 0, in which case Ski

= ∗, and then the smash product is

interpreted as excluding Ski
rather than smashing with a point.)

It should be emphasized that the new information contained in Theorem 1.2 is

not the existence of a wedge decomposition of ΣG that geometrically realizes the

module decomposition of ΣH∗(G), it is the fact that a decomposition can be chosen

so that each of the wedge summands is a suspension. This suspension property will

be shown to be a consequence of the fact that the smash of a co-H-space with itself is

homotopy equivalent to a suspension [GTW].

Theorem 1.2 is reminiscient of a p-local stable decomposition of U (n) by Nishida

and Yang [NY], which is an odd primary refinement of Miller’s [Mil] integral stable

decomposition of U (n). Nishida and Yang showed that the mod-p module decom-

position for H∗(U (n)) can be geometrically realized stably. So in this sense, after

replacing U (n) with SU(n), Theorem 1.2 can be regarded as a maximal desuspension

of Nishida and Yang’s stable decomposition, at least in low rank.

Theorems 1.1 and 1.2 combine to give the following decomposition of [G, G]

which is useful for calculations.

Corollary 1.3 Let G be one of the Lie groups listed in Theorem 1.2. Then there is an

isomorphism of sets

[G, G] ∼=

l1,...,lp−1∏

k1,...,kp−1=0

[Sk1
∧ · · · ∧ Skp−1

, G],

which is an isomorphism of abelian groups if the loop multiplication on G is homotopy

commutative.

The cases when the loop multiplication on G is (p-locally) homotopy commu-

tative are known. McGibbon [Mc] showed that homotopy commutativity holds in

precisely the following cases1:

(1.1)

SU(n) if 2n < p; G2 if p ≥ 13; G2 if p = 5;

Sp(n) if 4n < p; F4, E6 if p ≥ 29; Sp(2) if p = 3.

Spin(2n + 1) if 4n < p; E7 if p ≥ 37;

Spin(2n) if 4(n − 1) < p; E8 if p ≥ 61;

1The second author would like to apologize for omitting the groups in the second column in [Th2], to
which the results in that paper also apply.
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We now turn to H-maps. In general, it is difficult to determine when a self-map

of G is an H-map, so the set H[G, G] can be mysterious. However, when G is homo-

topy commutative, there is a tractable description of H[G, G]. To state this, it is well

known (see, for example [Th2]) that when G is torsion free there is a space A such

that H∗(G) ∼= Λ(H̃∗(A)) and a map A → G that induces the inclusion of the gen-

erating set in homology. In [Th2] it was shown that if G is homotopy commutative,

then there is an isomorphism of abelian groups

(1.2) H[G, G] ∼= [A, G].

Using this in combination with Corollary 1.3 gives interesting results. In particular,

we prove the following theorem, which identifies cases when every self-map of G is

homotopic to an H-map.

Theorem 1.4 Let p be an odd prime and let G be a homotopy commutative Lie group.

There is a group isomorphism [G, G] ∼= H[G, G] in the following cases:

(i) G = SU(n) and n ≤ 7, 2n < p, and n2 − 1 < 2p;

(ii) G = Sp(n) and n ≤ 13, 4n < p, and 2n2 + n < 2p;

(iii) G = Spin(2n + 1) and n ≤ 13, 4n < p, and 2n2 + n < 2p;

(iv) G = Spin(2n) and n ≤ 6, 4(n − 1) < p, and 2n2 − n < 2p;

(v) G = G2 and p = 5.

For example, the conditions on n and p in Theorem 1.4 (i) hold for n = 2 and

p ≥ 5; n = 3 and p ≥ 7; n = 4 and p ≥ 11; n = 5 and p ≥ 13; n = 6 and

p ≥ 19; n = 7 and p ≥ 29. It should be noted that there may be cases for which the

conclusion of the theorem holds but which fall outside the hypotheses, for example,

when G = SU(n), n = 6, and p = 17. We go on in Section 6 to give an explicit

generating set of H[G2, G2].

This paper is organized as follows. Section 2 gives general results on H-maps. Sec-

tion 3 proves Theorem 1.1. Section 4 discusses low rank torsion free finite H-spaces,

which establishes some of the background for the following section on Lie groups,

as well as providing interesting examples of Theorem 1.1 in action. Section 5 dis-

cusses low rank Lie groups and proves Theorem 1.2. Section 6 gives examples and

applications of the preceeding theorems, and in particular proves Theorem 1.4.

2 Preliminary Results on H-Maps

This section gives some general results on H-maps. To begin, let Z be an H-space.

Recall that we are assuming that all spaces have the homotopy type of a CW -complex.

So by [J2], Z has a left homotopy inverse and a right homotopy inverse. Further, these

coincide if Z is homotopy associative and there is a unique homotopy inverse. Thus

if Z is homotopy associative, then [A, Z] is a group for any space A. If Z is homotopy

commutative as well, then [A, Z] is an abelian group.

Now suppose X and Z are H-spaces, and consider the subset H[X, Z] of [X, Z]. If

Z is homotopy associative, then [X, Z] is a group, but the restriction to H[X, Z] need

not preserve the group structure. To see this, let f , g : X → Z represent homotopy
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classes in H[X, Z]. The sum f + g is given by the composite

f + g : X
∆
−→ X × X

f×g
−−→ Z × Z

µ
−→ Z,

where ∆ is the diagonal map and µ is the multiplication on Z. This sum, however,

need not be an H-map. For if f + g were an H-map, there would be a homotopy

commutative diagram

X × X
( f +g)×( f +g)

//

µ

²²

Z × Z

µ

²²

X
f +g

// Z.

But the definition of f + g implies that the upper direction around the diagram sends

a pair of points (a, b) to f (a)g(a) f (b)g(b), while the lower direction around the di-

agram sends (a, b) to f (a) f (b)g(a)g(b). Thus, to have the two directions around

the diagram homotopic, some commutativity condition is needed. The following

lemma shows that if Z is homotopy associative and homotopy commutative, then

the restriction of [X, Z] to H[X, Z] does preserve the group structure.

Lemma 2.1 Let X be an H-space and let Z be a homotopy associative, homotopy

commutative H-space. Then the multiplication on Z gives H[X, Z] the structure of an

abelian group and the inclusion I : H[X, Z] → [X, Z] is a group homomorphism.

Proof Consider H[X, Z] as a subset of [X, Z]. The assertions of the lemma follow

if we show that H[X, Z] is a subgroup of [X, Z]. The identity element in the group

[X, Z] is the trivial map, which is an H-map, and so is in H[X, Z]. It is well known

(and easy to verify) that the homotopy associativity and homotopy commutativity

of Z implies that the multiplication Z × Z
µ
−→ Z is an H-map, and that the inverse

Z
−1
−−→ Z is also an H-map. Thus if f , g : X → Z are H-maps, then the composite

f + g : X
∆

−→ X × X
f×g
−→ Z × Z

µ
−→ Z is an H-map as each of ∆, f × g, and µ are.

Thus H[X, Z] is closed under addition. As well, the composite − f : X
f
−→ Z

−1
−−→ Z

is an H-map as are each of f and −1. Thus H[X, Z] is closed under inverses. Hence

H[X, Z] is a subgroup of [X, Z].

In general, if X and Z are H-spaces, then it is difficult to determine when a map

X → Z is an H-map. However, there are special cases when H-maps can be deter-

mined by using a certain universal property. The best known case is due to James [J1].

For a space A, let E : A → ΩΣA be the suspension map.

Theorem 2.2 Let A be a path-connected space, and let Z be a homotopy associative

H-space. Let f : A → Z be a map. Then there is a unique H-map f : ΩΣA → Z such

that f ◦ E ≃ f . Therefore, the map θ : [A, Z] → H[ΩΣA, Z] defined by θ( f ) = f is a

bijection

Thus Theorem 2.2 gives a means of determining the set H[ΩΣA, Z]. Assuming

Z is also homotopy commutative, the correspondence can be strengthened to one of

abelian groups.
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Lemma 2.3 Let A be a path-connected space, and let Z be a homotopy associative,

homotopy commutative H-space. Then the one-to-one correspondence

[A, Z]
θ

−→ H[ΩΣA, Z]

of Lemma 2.2 is an isomorphism of abelian groups.

Proof First note that the H-structure on Z implies that [A, Z] is an abelian group

and by Lemma 2.1 H[ΩΣA, Z] is also an abelian group. By Theorem 2.2, θ is a

bijection, so it only remains to show that θ is a group homomorphism. Suppose

f , g : A → Z represent homotopy classes in [A, Z]. Then θ( f + g) = f + g has the

property that it is the unique H-map such that ( f + g) ◦ E ≃ f + g. On the other

hand, θ( f ) = f and θ(g) = g, where f and g are H-maps such that f ◦ E ≃ f and

g ◦ E ≃ g. Since Z is homotopy associative and homotopy commutative, Lemma 2.1

says that f + g is an H-map. Moreover, ( f + g) ◦ E ≃ ( f ◦ E) + (g ◦ E) ≃ f + g. Thus

f + g is another H-map which precomposes with E to give f + g. The uniqueness

property of f + g therefore implies that f + g ≃ f +g. That is, θ( f +g) ≃ θ( f )+θ(g)

and so θ is a group homomorphism.

A similar notion of universality can be defined with respect to homotopy asso-

ciative, homotopy commutative H-spaces. A homotopy associative, homotopy com-

mutative H-space B is universal for a space A if there is a map i : A → B with the

following property: whenever Z is a homotopy associative, homotopy commuta-

tive H-space and f : A → Z is a map, then there is a unique H-map f : B → Z

such that f ◦ i ≃ f . There is no known functorial construction which starts with

a space A and produces its universal space B. However, there are many special cases

of interesting spaces whose universal spaces have been constructed by ad hoc meth-

ods [Gra,Grb1,Grb2,Th1,Th2]. The analogue of Theorem 2.2 and Lemma 2.3 is the

following.

Lemma 2.4 Let B be a homotopy associative, homotopy commutative H-space which

is universal for a space A. Let Z be a homotopy associative, homotopy commutative

H-space. Then the map Θ : [A, Z] → H[B, Z] defined by Θ( f ) = f is an isomorphism

of abelian groups.

Proof Since Z is homotopy associative and homotopy commutative, [A, Z] is an

abelian group, and by Lemma 2.1, H[B, Z] is also an abelian group. The bijectivity

of Θ is built into the definition of universality through the existence and uniqueness

conditions on the H-map f . The proof that Θ is a group homomorphism is exactly

the same as in Lemma 2.3.

3 Homotopy Classes of Maps

The purpose of this section is to prove Theorem 1.1. To motivate this, suppose Z is

a loop space, Z = ΩZ ′. Suppose X has the property that ΣX ≃ ΣX1 ∨ · · · ∨ ΣXt .

This decomposition is only assumed to be a homotopy equivalence of spaces, not
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co-H-spaces. Consider the string of isomorphisms

(3.1) [X,ΩZ ′] ∼= [ΣX, Z ′] ∼=
[ t∨

i=1

ΣXi , Z ′
]
∼=

t∏
i=1

[ΣXi , Z ′] ∼=
t∏

i=1

[Xi ,ΩZ ′].

Numbering from left to right, the first and fourth isomorphisms are adjunctions,

and so are group isomorphisms. The third isomorphism is a categorical identifica-

tion and so is a group isomorphism. The second isomorphism is due to the homo-

topy decomposition ΣX ≃
∨t

i=1 Xi ; as this is a homotopy equivalence of spaces, the

isomorphism is as sets. Thus [X,ΩZ ′] is isomorphic to
∏t

i=1[Xi ,ΩZ ′] as sets.

This can be improved if Z is a double loop space, so that Z = Ω2Z ′ ′. Consider the

string of isomorphisms

[X,Ω2Z ′ ′] ∼= [Σ2X, Z ′ ′] ∼=
[ t∨

i=1

Σ
2Xi , Z ′ ′

]
∼=

t∏
i=1

[Σ2Xi , Z ′ ′]

∼=
t∏

i=1

[Xi ,Ω
2Z ′ ′].

(3.2)

Again, the first and fourth isomorphisms are adjunctions and so are group isomor-

phisms, while the third isomorphism is a categorical identification and so is a group

isomorphism. The second isomorphism is now also an isomorphism of groups be-

cause it comes from the homotopy equivalence of co-H-spaces Σ2X ≃
∨t

i=1 Σ2Xi .

Thus [X,Ω2Z ′ ′] is isomorphic to
∏t

i=1[Xi ,Ω
2Z ′ ′], as groups. Moreover, this is an

isomorphism of abelian groups because Ω2Z ′ ′ is homotopy commutative.

Theorem 1.1 is a generalization of the isomorphism in (3.1) when Z is not a loop

space but only a homotopy associative H-space, and of the isomorphism in (3.2)

when Z is not a double loop space but only a homotopy associative, homotopy com-

mutative H-space.

Proof of Theorem 1.1 We will regard
∏t

i=1[Xi , Z] equivalently as [
∨t

i=1 Xi , Z]. Let

f : X → Z represent a homotopy class in [X, Z]. Since Z is homotopy associative,

Theorem 2.2 states that there is a unique H-map f : ΩΣX → Z such that f ◦ E ≃ f .

By hypothesis, there is a homotopy equivalence e : ΣX → Σ(X1 ∨ · · · ∨ Xt ). Define

π : [X, Z] −→ [X1 ∨ · · · ∨ Xt , Z]

by π( f ) = f ◦ Ω(e−1) ◦ E. That is, π( f ) is the composite

π( f ) : X1 ∨ · · · ∨ Xt
E

−−−−→ ΩΣ(X1 ∨ · · · ∨ Xt )
Ω(e−1)
−−−−→ ΩΣX

f
−−−−→ Z.

Similarly, let g : X1 ∨ · · · ∨ Xt → Z represent a homotopy class in [X1∨· · ·∨Xt , Z].

Since Z is homotopy associative, Theorem 2.2 says that there is a unique H-map

g : ΩΣ(X1 ∨ · · · ∨ Xt ) → Z such that g ◦ E ≃ g. Define

ρ : [X1 ∨ · · · ∨ Xt , Z] → [X, Z]
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by ρ(g) = g ◦ Ωe ◦ E. That is, ρ(g) is the composite

ρ(g) : X
E

−→ ΩΣX
Ωe
−→ ΩΣ(X1 ∨ · · · ∨ Xt )

g
−→ Z.

The asserted isomorphism of sets [X, Z] ∼= [
∨t

i=1 Xi , Z] will be proved by showing

that π is a bijection. This is equivalent to showing that ρ◦π and π◦ρ are the respective

identity maps. Given f : X → Z, let g = π( f ) = f ◦ Ω(e−1) ◦ E. Then by definition

we have (ρ◦π)( f ) = ρ(π( f )) = ρ(g) = g ◦Ωe◦E, where g is the unique H-map such

that g ◦ E ≃ g. On the other hand, f ◦ Ω(e−1) is an H-map as it is the composite of

H-maps, and by definition, g = π( f ) = ( f ◦Ω(e−1))◦E. Thus f ◦Ω(e−1) is another

H-map such that ( f ◦ Ω(e−1)) ◦ E ≃ g. The uniqueness property of g therefore

implies that g ≃ f ◦ Ω(e−1). Hence

(ρ ◦ π)( f ) ≃ g ◦ Ωe ◦ E ≃ ( f ◦ Ω(e−1)) ◦ Ωe ◦ E ≃ f ◦ E ≃ f ,

and so ρ ◦ π is the identity map on [X, Z]. Similarly, π ◦ ρ is the identity map on

[X1 ∨ · · · ∨ Xt , Z]. Thus π is a bijection.

Now suppose that Z is also homotopy commutative. To prove that there is a group

isomorphism [X, Z] ∼= [
∨t

i=1 Xi , Z] it remains to show that φ is a group homomor-

phism. Let f1, f2 : X → Z represent homotopy classes in [X, Z]. Then by defini-

tion, π( f1 + f2) = ( f1 + f2) ◦ Ω(e−1) ◦ E, where ( f1 + f2) is the unique H-map

such that ( f1 + f2) ◦ E ≃ f1 + f2. On the other hand, since Z is homotopy asso-

ciative, Theorem 2.2 applied to each of f1 and f2 individually gives H-maps f 1 and

f 2 such that f 1 ◦ E ≃ f1 and f 2 ◦ E ≃ f2. Since Z is also homotopy commuta-

tive, Lemma 2.1 implies that the sum f 1 + f 2 is also an H-map. As well, we have

( f 1 + f 2) ◦ E ≃ f 1 ◦ E + f 2 ◦ E ≃ f1 + f2. The uniqueness property of ( f1 + f2)

therefore implies that ( f1 + f2) ≃ f 1 + f 2. Thus, with t = Ω(e−1) ◦ E, we have

π( f1 + f2) ≃ ( f1 + f2) ◦ t ≃ ( f 1 + f 2) ◦ t ≃ ( f 1 ◦ t) + ( f 2 ◦ t) ≃ π( f1) + π( f2)

and so π is a group homomorphism.

Example 3.1 By [J1], if A is a path-connected space then ΣΩΣA ≃
∨∞

i=1 ΣA(i),

where A(i) is the i-fold smash of A with itself. If Z is a homotopy associative H-space,

then Theorem 1.1 says that there is a bijection of sets [ΩΣA, Z] ∼=
∏∞

i=1[A(i), Z]

which is a group isomorphism if Z is also homotopy commutative. In particular, if

A = Sm, there is a bijection of sets

[ΩSm+1, Z] ∼=
∞∏
i=1

[(Sm)(i), Z] ∼=
∞⊕
i=1

πmi(Z)

which is a group isomorphism if Z is homotopy commutative.

Example 3.2 When localized at an odd prime p ≥ 5, S2n+1 is a homotopy as-

sociative, homotopy commutative H-space. So Example 3.1 implies that there is a
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(p-local) group isomorphism [ΩSm+1, S2n+1] ∼=
⊕∞

i=1 πmi(S2n+1). A curious instance

of this is when m = 1, in which case there is a (p-local) group isomorphism

[ΩS2, S2n+1] ∼=
∞⊕
i=1

πi(S2n+1).

Thus calculating [ΩS2, S2n+1] is equivalent to calculating the p-local homotopy

groups of spheres.

4 Low Rank Torsion Free Finite H-Spaces

We will see in Section 5 that if G is a low rank Lie group, then it decomposes as

a product of certain torsion-free finite H-spaces which have nice properties. The

purpose of this section is to introduce these finite H-spaces, and discuss their relevant

properties. In particular, we will see that when they are suspended, they decompose

as a wedge of suspensions, allowing us to apply Theorem 1.1.

In all that follows, we start with a space X which has l odd dimensional cells, and

then localize at a prime p. Homology is taken with mod-p coefficients. We consider

p-local H-spaces Y such that H∗(Y ) ∼= Λ(H̃∗(X)). The rank of Y is the number of

generators it has in rational cohomology, so in this case Y has rank l. For 1 ≤ k ≤ l,

let Λk(H̃∗(X)) denote the submodule of length k tensor elements in Λ(H̃∗(X)). The

following theorem was proved in [CN].

Theorem 4.1 Let X be a CW -complex consisting of l odd-dimensional cells, where

l ≤ p − 1. Suppose there is an H-space Y such that H∗(Y ) ∼= Λ(H̃∗(X)) and a map

X → Y that induces the inclusion of the generating set in homology. Then there is a ho-

motopy equivalence ΣY ≃
∨l

k=1 Rk(X), where Rk(X) is a space such that H̃∗(Rk(X)) ∼=

ΣΛk(H̃∗(X)), and R1(X) = ΣX.

In [CN,CHZ] it was shown that if X has l odd-dimensional cells, where l < p− 1,

then it is guaranteed that there is an H-space Y such that H∗(Y ) ∼= Λ(H̃∗(X)) and a

map X → Y that induces the inclusion of the generating set in homology. If X has

p − 1 odd-dimensional cells, then it may be the case that such an H-space Y exists,

but there is no guarantee of it.

We would like to apply Theorem 1.1 with one of the H-spaces Y in Theorem 4.1 as

the domain. This requires that each of the wedge summands Rk(X) be a suspension.

So we wish to find conditions on X that guarantee that Rk(X) is a suspension for

each k. To do so we must first consider how Rk(X) was constructed in [CN].

Let Σk be the symmetric group on k letters, Z(p) be the p-local integers, and let

Z(p)[Σk] be the group ring. Let

s̄k =

∑

σ∈Σk

σ ∈ Z(p)[Σk].

It is a standard fact that s̄k ◦ s̄k = k!s̄k. If k < p, then k! is invertible in Z(p) and so

sk =
1
k!

s̄k is an idempotent in Z(p)[Σk]. In terms of topology, let X(k) be the k-fold

smash product of X with itself. An element σ ∈ Σk gives a map σ : X(k) → X(k)
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defined by permuting the smash factors. Suspending, we can add, giving a map

sk : ΣX(k) → ΣX(k) corresponding to the idempotent sk ∈ Z(p)[Σk]. The space Rk(X)

in Theorem 4.1 is defined as the mapping telescope: Rk(X) = hocolimsk
ΣX(k). In

homology, (sk)∗ is an idempotent and we have H̃∗(Rk(X)) ∼= Im(sk)∗ ∼= ΣΛk(V ).

Moreover, if R ′
k(X) = hocolim1−sk

ΣX(k), then H∗(ΣX(k)) ∼= H∗(Rk(X))⊕H∗(R ′
k(X))

because (sk)∗ and (1 − sk)∗ are orthogonal idempotents. This homology decompo-

sition can be realized geometrically. Using the co-H structure on ΣX(k), we can add

the telescope maps, giving a composite ΣX(k) → ΣX(k) ∨ ΣX(k) → Rk(X) ∨ R ′
k(X),

which is an isomorphism in homology and so is a homotopy equivalence. (It does

not play a role in what follows, but it may be helpful to observe that what we have

done is show that ΣY is a retract of ΣΩΣX ≃
∨∞

k=1 ΣX(k), where for 1 ≤ k ≤ l, Rk(X)

is a retract of ΣX(k) corresponding to the suspension of the submodule of symmetric

tensors of length k in H∗(ΩΣX) ∼= T(H̃∗(X)).)

We now consider conditions which guarantee that Rk(X) is a suspension for 1 ≤
k ≤ l. Note that R1(X) = ΣX, so the issue is for k > 1. First, suppose that X

is a suspension, X = ΣX. Then X(k) ≃ ΣkX
(k)

and the map ΣX(k) sk−→ ΣX(k)

is essentially (up to shuffling suspension coordinates) the k-fold suspension of the

map ΣX
(k) sk−→ ΣX

(k)
. Thus there is a homotopy equivalence of mapping telescopes

Rk(X) ≃ ΣkRk(X). So in this case, the decomposition of ΣY becomes

ΣY ≃
l∨

k=1

Σ
kRk(X).

More generally, suppose X is a co-H-space. Now X(k) is not apparently a suspension.

However, by [GTW] it is in fact a (k − 1)-fold suspension for k ≥ 2, and satisfies the

appropriate properties.

Proposition 4.2 Let X be a co-H-space, and let V = Σ−1H̃∗(X). For k ≥ 2,

there is a homotopy equivalence X(k) ≃ Σk−1Mk(X), where Mk(X) is a space such

that H̃∗(Mk(X)) ∼= ΣV⊗k. Furthermore, there is a homotopy equivalence Rk(X) ≃
ΣkMRk(X), where MRk(X) is a space such that H̃∗(MRk(X)) ∼= ΣΛk(V ).

The space MRk(X) is defined as the mapping telescope of a map

s̃k : Mk(X) → Mk(X),

which is, essentially, a (k − 1)-fold desuspension of X(k) sk−→ X(k). To normalize the

number of suspensions, for k ≥ 2 let Sk(X) = Σk−1MRk(X). Then there is a homo-

topy equivalence ΣY ≃
∨l

k=1 ΣSk(X), where

H̃∗(Sk(X)) ∼= Σ
k−1H̃∗(MRk(X)) ∼= Σ

k
Λk(V ) ∼= Λk(H̃∗(X)).

Summarizing, we have the following.

Proposition 4.3 Let X be a CW -complex consisting of l odd-dimensional cells, where

l ≤ p − 1. Suppose X is a co-H-space and there is an H-space Y such that H∗(Y ) ∼=
Λ(H̃∗(X)), together with a map X → Y that induces the inclusion of the generating set

in homology. Then there is a homotopy equivalence ΣY ≃
∨l

k=1 ΣSk(X), where Sk(X)

is a space such that H̃∗(Sk(X)) ∼= Λk(H̃∗(X)), and S1(X) = X.
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Applying Theorem 1.1 immediately gives the following.

Corollary 4.4 Given X and Y as in Proposition 4.3, if Z is a homotopy associative

H-space, then there is an isomorphism of sets [Y, Z] ∼=
∏l

k=1[Sk(X), Z] and if Z is also

homotopy commutative, then this isomorphism is of abelian groups.

We have already remarked that if X has l odd-dimensional cells, where l < p − 1,

then it is known that there is an H-space Y with H∗(Y ) ∼= Λ(H̃∗(X)) and a map

X → Y that induces the inclusion of the generating set in homology. In [Th1] it

was shown that if X is a suspension and l < p − 2, then Y is homotopy associative

and homotopy commutative. This was generalized in [Th2] to the case when X is

a co-H-space and l < p − 2. Thus Proposition 4.3 and Corollary 4.4 imply the

following.

Corollary 4.5 Let X be a co-H-space consisting of l odd-dimensional cells, l < p − 2,

and let Y be the corresponding homotopy associative, homotopy commutative H-space

with H∗(Y ) ∼= Λ(H̃∗(X)). Then there is an isomorphism of abelian groups

[Y,Y ] ∼=
l∏

k=1

[Sk(X),Y ].

5 Lie Groups

In this section we prove Theorem 1.2. The following proposition is well known,

although not usually stated this way in the literature. An explicit proof can be found

in [Th2] and is based on work in [H, MT, MNT1, MNT2]. Let q = 2(p − 1).

Proposition 5.1 Let G be a torsion free, compact, simply-connected, simple Lie group.

Then there is a co-H-space A such that H∗(G) ∼= Λ(H̃∗(A)) and a map A → G that

induces the inclusion of the generating set in homology. Furthermore, there is a homo-

topy decomposition A ≃
∨p−1

i=1 Ai , where H̃∗(Ai) consists of those elements in H̃∗(A) in

degrees 2i + kq + 1 for some k ≥ 0.

For example, if G = SU(n), then A = ΣCPn−1. In this case the space A and the

map A → G exist integrally, but in other cases the existence of the map A → G occurs

only after localization at p. Also note that for a given G it may be possible that there

are no elements in H∗(A) in degrees of the form 2i + kq + 1, in which case H̃∗(Ai) = 0

and so Ai ≃ ∗.

The decomposition A ≃
∨p−1

i=1 Ai in Proposition 5.1 results in a homology de-

composition H∗(G) ∼=
⊗p−1

i=1 Λ(H̃∗(Ai)). This homology decomposition was real-

ized geometrically by Mimura, Nishida, and Toda [MT, MNT2], incorporating work

of Harris [H]. They showed that there is a homotopy decomposition

(5.1) G ≃
p−1∏
i=1

Bi ,

where H∗(Bi) ∼= Λ(H̃∗(Ai)), and each Bi is indecomposable. Let li be the number of

cells in Ai .
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Proof of Theorem 1.2 First consider ΣBi for each i. Observe that Bi is an H-space

because it is a retract of the H-space G. Theorem 5.1 and the decomposition in (5.1)

give a map Ai → Bi which induces the inclusion of the generating set in homology.

All the homology generators of H∗(G), and therefore of H∗(Bi), are in odd dimen-

sions, so the cells of Ai are in odd dimensions. By [MNT2], the hypotheses on the

rank and the prime in the statement of the theorem guarantee that the number li of

cells in Ai satisfies li ≤ p − 1. Thus all the hypotheses of Proposition 4.3 are fulfilled

with respect to Ai and Bi , and so we obtain a homotopy decomposition

ΣBi ≃
li∨

ki=1

ΣSki
(Ai),

where Ski
(Ai) is a space such that H̃∗(Ski

(Ai)) ∼= Λki
(H̃∗(Ai)) ∼= Λki

(Vi), and

S1(Ai) = Ai .

In general, for any spaces X and Y there is a homotopy decomposition

Σ(X × Y ) ≃ ΣX ∨ ΣY ∨ (ΣX ∧ Y ).

If ΣX ≃ ΣX1 ∨ ΣX2 and ΣY ≃ ΣY1 ∨ ΣY2, then this homotopy decomposition

can be refined to Σ(X × Y ) ≃
∨2

i=0

∨2
j=1 ΣXi ∧ Y j where X0 ∧ Y j is regarded as Y j

and Xi ∧ Y0 is regarded as Xi . Applied iteratively to ΣG ≃ Σ(
∏p−1

i=1 Bi) and each

of the wedge decompositions of ΣBi gives the decomposition in the statement of the

theorem.

Theorem 1.2 is useful for calculations. Consider G = SU(n) as an example. There

are homotopy fibrations

SU(n − 1) −→ SU(n) −→ S2n−1,
SU(n − 2) −→ SU(n − 1) −→ S2n−3,

...

S3 −→ SU(3) −→ S5,

which determine long exact sequences

[SU(n), S2m−1] −→ [SU(n), SU(m)] −→ [SU(n), SU(m − 1)] −→

[SU(n),ΩS2m−1] −→ · · ·

for 3 ≤ m ≤ n. This gives an inductive approach to calculating [SU(n), SU(n)]

by first calculating the cohomotopy groups [SU(n), S2m−1] and then assembling this

information using the long exact sequences. To calculate the cohomotopy groups,

observe that if p ≥ 5, then S2m−1 is homotopy associative and homotopy commu-

tative, so the decomposition of Σ SU(n) in Theorem 1.2 together with Theorem 1.1

gives an isomorphism

[SU(n), S2m−1] ∼=

l1,...,lp−1∏

k1,...,kp−1=0

[Sk1
(A1) ∧ · · · ∧ Skp−1

(Ap−1), S2m−1],

where A1 ∨ · · · ∨ Ap−1 ≃ ΣCPn−1. The factors on the right are easier to calculate in

the sense that they are determined by smaller spaces.
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6 Examples

In this section we prove Theorem 1.4 and give several concrete calculations. As many

of these will involve calculations of specific homotopy groups, we give some prelimi-

nary information first, together with two lemmas that will allow us to identify when

certain sets of homotopy classes of maps are zero.

Toda [To] calculated the low-dimensional odd primary homotopy groups of

spheres. They are as follows.

Theorem 6.1 Let p be an odd prime and let q = 2(p − 1). Fix m ≥ 2 and let

t ≤ 2m + pq − 4. Then the following hold:

π2m−1+rq−1(S2m−1) = Z/pZ for 1 ≤ r ≤ p − 1;

π2m−1+rq−2(S2m−1) = Z/pZ for 2 ≤ r ≤ p − 1 and r ≥ m;

πt (S2m−1) = 0 otherwise.

The elements in π2m−1+rq−1(S2m−1) for 1 ≤ r ≤ p − 1 are stable for all m ≥ 2. The

remaining elements are unstable.

It is often useful in practise to know when homotopy groups of spheres are zero.

Theorem 6.1 is helpful as it shows that the odd primary low-dimensional homotopy

groups of spheres are relatively sparse. The next two lemmas can be thought of as

systematically taking advantage of homotopy groups of spheres which are zero.

A space B is said to be spherically resolved by S2n1+1, . . . , S2nt +1 if there is a se-

quence of homotopy fibrations

B2 −→ B1 −→ S2n1+1,
B3 −→ B2 −→ S2n2+1,

...

Bt −→ Bt−1 −→ S2nt−1+1,
∗ −→ Bt −→ S2nt +1,

where B1 = B. A standard example is SU(n) which is spherically resolved by

S2n−1, S2n−3, . . . , S3.

Lemma 6.2 Let B be a space which is spherically resolved by S2n1+1, . . . , S2nt +1. Fix

m ≥ 1. If πm(S2n j +1) = 0 for each 1 ≤ j ≤ t, then πm(B) = 0.

Proof Induct on the number t of resolving spheres. If t = 1, then B = S2n1+1 and

the hypothesis πm(S2n1+1) = 0 equivalently says that πm(B) = 0. Suppose the lemma

is true when B is resolved by t − 1 spheres. Let f : Sm → B represent a homotopy

class in πm(B). Consider the homotopy fibration B2 → BS2n1+1. As πm(S2n1+1) = 0,

composing f to S2n1+1 is null homotopic, and so f lifts to a map f ′ : Sm → B2. Since

B2 is resolved by the t − 1 spheres S2n2+1, . . . , S2nt +1, the inductive hypothesis says

that πm(B2) = 0. Thus f ′ is null homotopic, and so f is null homotopic. Hence

πm(B) = 0.
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Lemma 6.3 Let X be a finite CW -complex with cells in dimensions m1 < m2 <
· · · < ms. Let B be a space which is spherically resolved by spheres S2n1+1, . . . , S2nt +1. If

πmi
(S2n j +1) = 0 for 1 ≤ i ≤ s and 1 ≤ j ≤ t, then [X, B] = 0.

Proof Induct on the number of dimensions for which X has cells. If s = 1, then X is

a wedge of copies of Sm1 . The hypothesis that πm1
(S2n j +1) = 0 for 1 ≤ j ≤ t lets us

apply Lemma 6.2 to say that πm1
(B) = 0. Thus [X, B] = 0.

Suppose the lemma is true for finite CW -complexes with cells in s − 1 different

dimensions. Let X ′ be the m1-skeleton of X. So X ′ is a wedge of copies of Sm1 . Define

a space X ′ ′ by the homotopy cofibration X ′ → X → X ′ ′. Observe that X ′ ′ is a finite

CW -complex with cells in s − 1 different dimensions, m2 < · · · < ms. Now let

f : X → B represent a homotopy class in [X, B]. The composite f ′ : X ′ → X
f
−→ B

represents a homotopy class in [X ′, B]. By the base case of the induction, this set

is zero. Thus f ′ is null homotopic, and so f extends along the cofiber to a map

f ′ ′ : X ′ ′ → B. Since πmi
(S2n j +1) = 0 for 2 ≤ i ≤ s and 1 ≤ j ≤ t , the inductive

hypothesis applied to X ′ ′ says that [X ′ ′, B] = 0. Thus f ′ ′ is null homotopic and

therefore so is f . Hence [X, B] = 0.

6.1 Cases When All Self-Maps Are Homotopic to H-Maps

In this subsection we establish cases of homotopy commutative Lie groups G for

which every self-map of G is homotopic to an H-map. Lemmas 6.4 through 6.11

will collectively prove Theorem 1.4.

Lemma 6.4 Let p be an odd prime. Suppose

(i) n ≤ 7,

(ii) 2n < p,

(iii) n2 − 1 < 2p.

Then there is a group isomorphism [SU(n), SU(n)] ∼= H[SU(n), SU(n)].

Proof The hypothesis 2n < p implies that SU(n) is homotopy commutative. So

by (1.2) there is a group isomorphism H[SU(n), SU(n)] ∼= [A, SU(n)], where A =

ΣCPn−1. Thus, to prove the lemma, it is equivalent to show that there is a group

isomorphism [SU(n), SU(n)] ∼= [A, SU(n)].

The hypothesis 2n < p also implies that there is a homotopy equivalence SU(n) ≃
S3 × · · · × S2n−1. Suspending therefore gives a homotopy equivalence

Σ SU(n) ≃

n∨

k=2

( ∨

2≤i1<···<ik≤n

ΣS2i1−1 ∧ · · · ∧ S2ik−1
)
.

To compress notation, let I be an index set consisting of sequences

α = (2i1 − 1, 2i2 − 1, . . . , 2ik − 1)

with 2 ≤ k ≤ n and 2 ≤ i1 < i2 < · · · < ik ≤ n. Let tα = Σk
s=2(2is − 1). Then

Σ SU(n) ≃
∨

α∈I
ΣStα . This decomposition, together with the fact that SU(n) is a
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homotopy associative, homotopy commutative H-space, lets us apply Proposition 1.1

to show that there is a group isomorphism

[SU(n), SU(n)] ∼=
∏
α∈I

[Stα , SU(n)].

The multiplicative homotopy equivalence SU(n) ≃ S3 ×· · ·×S2n−1 lets us refine this

to a group isomorphism

(6.1) [SU(n), SU(n)] ∼=
n∏

j=2

∏
α∈I

[Stα , S2 j−1].

Observe that the cell of highest dimension in SU(n) is in dimension

3 + 5 + · · · + 2n − 1 = (2n + 2)(n − 1)/2 = n2 − 1.

The hypothesis n2−1 < 2p therefore implies that the cells of SU(n) are of dimension

less than 2p, and so tα < 2p for all α. For j ≥ 2, the least dimensional torsion

homotopy group of S2 j−1 occurs in dimension (2 j − 1) + (2p − 3) ≥ 2p. Thus

[Stα , S2 j−1] = πtα (S2 j−1) = 0 in all cases except when tα = 2 j − 1.

We are left to consider the cases when a Z(p) summand may appear in (6.1). If α
is the sequence (2 j − 1) of length 1, then Stα = S2 j−1 and so [Stα , S2 j−1] ∼= Z(p). If α
is a sequence of even length, then Stα has even dimension, so [Stα , S2 j−1] 6= Z(p). If α
is a sequence of odd length ≥ 3, there are many possible ways that Stα can have odd

dimension. The possibility of least dimension is Stα = S3 ∧ S5 ∧ S7. Thus we have to

avoid the possibility of having [S3 ∧ S5 ∧ S7, S15] in (6.1). The hypothesis that n ≤ 7

does this, as it implies that S15 cannot appear on the right.

Therefore every term [Stα , S2 j−1] in (6.1) is zero except for the Z(p) summands that

arise from the length 1 sequences α = (2 j − 1). Thus there is a group isomorphism

[SU(n), SU(n)] ∼=
n∏

j=2

[S2 j−1, S2 j−1].

Phrased differently, the summands that arise from the length 1 sequences α =

(2 j−1) arise from the inclusion A = S3 ∨ · · · ∨ S2n−1 → S3 × · · · × S2n−1 ≃ SU(n),

and so [SU(n), SU(n)] ⊆ [A, SU(n)]. On the other hand, the same argument regard-

ing torsion homotopy classes shows that there is a group isomorphism

[A, SU(n)] ∼=
n∏

j=2

[S2 j−1, S2 j−1].

Hence there is a group isomorphism [SU(n), SU(n)] ∼= [A, SU(n)].

Remark 6.5 Observe that the three hypotheses on n in Lemma 6.4 are satisfied in

the following cases: n = 2 and p ≥ 5; n = 3 and p ≥ 7; n = 4 and p ≥ 11; n = 5

and p ≥ 13; n = 6 and p ≥ 19; n = 7 and p ≥ 29. There is one additional case

that falls outside the hypotheses. A direct calculation shows that the conclusion of

Lemma 6.4 also holds when n = 6 and p = 17.
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Lemma 6.6 Let p be an odd prime. Suppose

(i) n ≤ 13,

(ii) 4n < p,

(iii) 2n2 + n < 2p.

Then there is a group isomorphism [Sp(n), Sp(n)] ∼= H[Sp(n), Sp(n)].

Proof Argue as in Lemma 6.4. The hypothesis 4n < p implies that Sp(n) ≃ S3 ×
· · · × S4n−1 and Sp(n) is homotopy commutative. The cell of highest dimension is in

dimension 3 + 7 + · · · + 4n − 1 = 4(1 + 2 + · · · + n) − n = 2n2 + n that, when com-

pared to torsion in the homotopy groups of spheres, is the origin of the hypothesis

2n2 + n < 2p. Note that the analogous spheres Stα in the homotopy decomposition

of Σ Sp(n) have dimensions tα = Σt
s=14is − 1. The least dimensional possibility of a

term [Stα , S4 j−1] being Z(p) with α a sequence of length > 1 is [S3∧S7∧· · ·∧S19, S55].

The hypothesis n ≤ 13 avoids this possibility.

Remark 6.7 The hypotheses on n in Lemma 6.6 for 1 ≤ n ≤ 7 are satisfied in the

following cases: n = 1 and p ≥ 5; n = 2 and p ≥ 11; n = 3 and p ≥ 13; n = 4 and

p ≥ 19; n = 5 and p ≥ 23; n = 6 and p ≥ 41; n = 7 and p ≥ 53. Again, there may

be cases that fall outside the hypotheses but for which the conclusion of the lemma

holds. One example is when n = 4 and p = 17.

By [H] there is a homotopy equivalence Spin(2n + 1) ≃ Sp(n), and the list in (1.1)

shows that Spin(2n + 1) is homotopy commutative for the same values of n as Sp(n).

Thus Lemma 6.6 implies the following.

Corollary 6.8 Let p be an odd prime. Suppose

(i) n ≤ 13,

(ii) 4n < p,

(iii) 2n2 + n < 2p.

Then there is a group isomorphism

[Spin(2n + 1), Spin(2n + 1)] ∼= H[Spin(2n + 1), Spin(2n + 1)].

The Spin(2n) cases are as follows.

Lemma 6.9 Let p be an odd prime. Suppose

(i) n ≤ 6,

(ii) 4(n − 1) < p,

(iii) 2n2 − n < 2p.

Then there is a group isomorphism [Spin(2n), Spin(2n)] ∼= H[Spin(2n), Spin(2n)].

Proof By [H], Spin(2n) ≃ Sp(n − 1) × S2n−1. So we modify the calculations in

Lemma 6.6 to take into account the extra factor of S2n−1. As stated in (1.1), the

hypothesis 4(n − 1) < p implies that Spin(2n) is homotopy commutative. The cell

of highest dimension in Spin(2n) is in dimension

(3 + 7 + · · · + 4n − 1) + 2n − 1 = 4(1 + · · · + n) − n + (2n − 1) = 2n2 − n,
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which, when compared to torsion in the homotopy groups of spheres, is the origin

of the hypothesis 2n2 − n < 2p. The presence of S2n−1 as a factor of Spin(2n) means

that when checking for Z(p) summands one must take into account more cases. The

sequence α of length > 1 that gives the least dimensional occurance of a Z(p) sum-

mand is [S3 ∧ S7 ∧ S13, S23] in [Spin(14), Spin(14)]. The hypothesis n ≤ 6 avoids this

case.

Remark 6.10 The hypotheses on n in Lemma 6.6 are satisfied in the following cases:

n = 2 and p ≥ 5; n = 3 and p ≥ 11; n = 4 and p ≥ 17; n = 5 and p ≥ 23; n = 6

and p ≥ 37. Again, it may be possible that there are other cases where the conclusion

of the Lemma hold which fall outside the hypotheses.

Lemma 6.11 Let p = 5. Then there is a group isomorphism [G2, G2] ∼= H[G2, G2].

Proof We assume throughout that homology is taken with mod-5 coefficients. It is

well known that H∗(G2) ∼= Λ(x3, x11) and P1
∗(x11) = x3. By Theorem 5.1, there is a

space A and a map A → G2 such that H∗(G) ∼= Λ(H̃∗(A)). In particular, A is a two-

cell complex with its cells attached by a P1. By Theorem 1.2, ΣG2 ≃ ΣS1(A)∨ΣS2(A),

where H̃∗(S2(A)) ∼= Λ2(H̃∗(A)) and S1(A) ≃ A. Observe that Λ2(H̃∗(A)) ∼= {x14},

so S2(A) ≃ S14. As stated in (1.1), G2 is homotopy commutative when p = 5, so by

Corollary 1.3 there is a group isomorphism [G2, G2] ∼= [A, G2]⊕[S14, G2]. By [Mim],

π14(G2) = 0 at 5 and so [G2, G2] ∼= [A, G2]. On the other hand, by (1.2) there is

a group isomorphism H[G2, G2] ∼= [A, G2]. Hence there is a group isomorphism

[G2, G2] ∼= H[G2, G2].

6.2 Two-Cell Co-H-Spaces

In this subsection we give an explicit calculation of H[B, B] when B is a homotopy

associative, homotopy commutative H-space which is universal for a certain two-cell

complex. In our case both cells are in odd dimensions; similar calculations were done

in [Grb2] when there is both an odd- and an even-dimensional cell.

Let A be a co-H-space with two odd-dimensional cells. So there is a homotopy

cofibration sequence

S2n ǫ
−→ S2m+1 j

−→ A
q

−→ S2n+1,

where ǫ is the attaching map, j is the inclusion, and q is the pinch map onto the

top cell. If p ≥ 5, then by [Th1, 4.3] there is a homotopy associative, homo-

topy commutative H-space B which is universal for A and has the property that

H∗(B) ∼= Λ(H̃∗(A)). In this case the map i : A → B in the definition of the universal

property induces the inclusion of the generating set in homology. Let ι : B → B be

the identity map on B. It is an H-map which extends i. In fact, since B is homotopy

associative and homotopy commutative, the universal property implies that ι is the

unique H-map extending i. Suppose ǫ has order pr. Then as in [Th2, §5], there is a
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factorization of the pr-power map on B as

B
pr

//

a×q

²²

B

S2m+1 × S2n+1
j·c

// B,

where all maps are H-maps. Here q is an extension of the pinch map q, j ≃ i ◦ j; a

and c are of degree pr in Z(p) homology; and j ·c is the product of j and c given by the

multiplication on B. Since B is homotopy associative and homotopy commutative,

Lemma 2.1 implies that H[B, B] is an abelian group. The homotopy commutativity

of the diagram implies that in the group H[B, B] we have pr = γ + δ where γ and δ
are the homotopy classes of c ◦ q and j ◦ a, respectively.

In Proposition 6.12 we give an explicit generating set for H[B, B], provided that

π2n+1(B) ∼= Z(p) is generated by the homotopy class of c. This is an easy condition to

check in the applications we have in mind.

Proposition 6.12 Let p ≥ 5. Let A be a two-cell co-H-space with cells in dimensions

2m + 1 and 2n + 1 for n > m. Let B be universal for A and suppose that π2n+1(B) ∼= Z(p)

is generated by the homotopy class of c. Then H[B, B] is isomorphic to the free abelian

group over Z(p) generated by ι and γ. Equivalently,

H[B, B] ∼= Z(p)〈ι, γ, δ | pr · ι = γ + δ〉.

Proof We will show that H[B, B] ∼= Z(p)〈ι, γ〉. If so, then the subsequent isomor-

phism H[B, B] ∼= Z(p)〈ι, γ, δ | pr · ι = γ + δ〉 is immediate. We begin by using the

universal property of B for A to change the problem into an equivalent one.

Combining the universal property of B for A with the fact that B is homotopy

associative and homotopy commutative, Lemma 2.4 implies that there is a group iso-

morphism H[B, B]
∼=
−→ [A, B] which is given by precomposing each H-map B

f
−→ B

with A
i
−→ B. By definition, ι ◦ i ≃ i. Let g be the composite g : A

i
−→ B

γ
−→ B.

Note that the definition of γ implies that g is homotopic to the composite A
q
−→

S2n+1 c
−→ B. Therefore, showing that H[B, B] ∼= Z(p)〈ι, γ〉 is equivalent to showing

that [A, B] ∼= Z(p)〈i, q〉. That is, it is equivalent to show that the homomorphism

Z(p)〈i, g〉 → [A, B] determined by sending i and g to themselves is an isomorphism.

The homotopy cofibration sequence

S2n ǫ
−→ S2m+1 j

−→ A
q

−→ S2n+1 Σǫ
−→ S2m+2 −→ · · ·

determines a long exact sequence

· · · −→ [S2m+2, B]
(Σǫ)∗

−→ [S2n+1, B]
q∗

−→ [A, B]
j∗

−→ [S2m+1, B]
ǫ∗
−→ [S2n, B].

Observe that for dimensional reasons [S2m+2, B] ∼= [S2m+2, S2m+1] and the latter

group is zero at odd primes. So [S2m+2, B] = 0. Also, [S2m+1, B] ∼= [S2m+1, S2m+1] ∼=
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Z(p), and a generator is determined by the inclusion S2m+1 j
−→ B of the bottom cell.

This inclusion extends over A to give the map A
i
−→ B. Thus j∗ is an epimorphism.

Therefore the long exact sequence above reduces to a short exact sequence

0 −→ [S2n+1, B]
q∗

−→ [A, B]
j∗

−→ [S2m+1, B] −→ 0.

By hypothesis, [S2n+1, B] ∼= Z(p) and a choice of the generator is c. We have already

seen that [S2m+1, B] ∼= Z(p) and a choice of generator is the inclusion j. Because

q∗(c) = g and j∗(ι) = i, there is a short exact sequence of groups

0 −→ [S2n+1, B]
q∗

−→ Z(p)〈i, g〉
j∗

−→ [S2m+1, B] −→ 0.

The Five-Lemma therefore implies that the homomorphism Z(p)〈i, g〉 → [A, B] de-

termined by sending i and g to themselves is an isomorphism.

Proposition 6.12 has several applications. By Theorem 6.1, for 1 ≤ k ≤ p − 1

and m ≥ 1, we have π2m+kq(S2m+1) ∼= Z/pZ, generated by a stable class commonly

named αk. Each αk originates on S3, so if m > 1, then αk is a suspension. When

m = 1, it is also known that α1 and α2 are co-H-maps. Let A2m+kq+1 be defined

by the homotopy cofibration S2m+kq αk−→ S2m+1 → A2m+kq+1. Then A2m+kq+1 is a

co-H-space if m > 1 or m = 1 and k = 1, 2. Let B2m+kq+1 be universal for A2m+kq+1.

Since S2m+kq+1 is homotopy associative and homotopy commutative, the pinch map

A2m+kq+1 → S2m+kq+1 extends to an H-map B2m+kq+1 → S2m+kq+1. A Serre spectral

sequence calculation shows that the homotopy fiber of this map has the homology of

S2m+1 and so is homotopy equivalent to S2m+1. Thus there is a homotopy fibration

S2m+1 −→ B2m+kq+1 −→ S2m+kq+1.

By [MNT2, §6] or an easy calculation using Lemma 6.1, π2m+kq+1(B2m+kq+1) ∼= Z(p)

and c is a choice of generator. Thus Proposition 6.12 implies that there is a group

isomorphism

H[B2m+kq+1, B2m+kq+1] ∼= Z(p)〈ι, γ, δ | p · ι = γ + δ〉.

More specific examples are as follows.

Example 6.13 By Lemma 6.11, when p = 5 there is a group isomorphism

[G2, G2] ∼= H[G2, G2].

We can now complete the calculation. As noted in the proof of Lemma 6.11, G2

is universal for a two-cell complex A where H̃∗(A) ∼= {x3, x11} and P1
∗(x11) = x3.

The Steenrod operation P1
∗ detects the homotopy class α1, so the space A is what was

called A11 above. Therefore its universal space G2 is what was called B11 above. Hence

we have a group isomorphism

H[G2, G2] ∼= Z(5)〈ι, γ, δ | p · ι = γ + δ〉.
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Example 6.14 Let p ≥ 5 and consider B2p+1. Note the corresponding homotopy

fibration is S3 → B2p+1 → S2p+1. This is an interesting space because it is homo-

topy equivalent to a Clark–Ewing loop space determined by a reflection group. Note,

though, that the homotopy equivalence may only be as spaces rather than H-spaces.

In terms of its homotopy associative, homotopy commutative multiplication, Propo-

sition 6.12 gives a group isomorphism

H[B2p+1, B2p+1] ∼= Z(p)〈ι, γ, δ | p · ι = γ + δ〉.

Moreover, an argument exactly as in Lemma 6.11 shows that there is a group isomor-

phism [B2p+1, B2p+1] ∼= H[B2p+1, B2p+1]. That is, every self-map of B2p+1 is homo-

topic to an H-map, and the H-maps are described explicitly by the group presenta-

tion above.
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[Grb1] J. Grbić, Universal homotopy associative, homotopy commutative H-spaces and the EHP
spectral sequence. Math. Proc. Cambridge Philos. Soc. 140(2006), no. 3, 377–400.
doi:10.1017/S0305004106009182

[Grb2] , Universal spaces of two-cell complexes and their exponent bounds. Q. J. Math.
57(2006), no. 3, 355–366.
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