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Abstract. We give the necessary and sufficient conditions for Lagrangian
submanifolds in Kähler manifolds to be biharmonic. We classify biharmonic PNMC
Lagrangian H-umbilical submanifolds in the complex space forms. Furthermore, we
classify biharmonic PNMC Lagrangian surfaces in the two-dimensional complex space
forms.
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1. Introduction. The theory of harmonic maps has been applied to various fields
in differential geometry. Harmonic maps between two Riemannian manifolds are
critical points of the energy functional E(φ) = 1

2

∫
M ‖dφ‖2vg for smooth maps φ :

M → N. The Euler–Lagrange equation is τ (φ) = 0, where τ (φ) = trace∇dφ is the
tension field of φ.

On the contrary, in 1983, Eells and Lemaire [8] proposed the problem to consider
polyharmonic maps of order k: they are critical points of the functional

Ek(φ) =
∫

M
ek(φ)vg, (k = 1, 2, . . .),

where ek(φ) = 1
2‖(d + δ)kφ‖2 for smooth maps φ : M → N, where δ is the

codifferentiation. Jiang [10] studied the first variational formula of the bi-energy E2

(k = 2), which is written as

E2(φ) =
∫

M
|τ (φ)|2vg, (1.1)

and the critical points of E2 are called biharmonic maps. There have been extensive
studies on biharmonic maps. Harmonic maps are always biharmonic maps by
definition. Here, one of our central problems is to find non-harmonic biharmonic
maps. Recently, Sasahara [11] classified the two-dimensional biharmonic Lagrangian
submanifolds in the two-dimensional complex space forms.

In this paper, we first show the biharmonic equations for a Lagrangian submanifold
Mm in a Kähler manifold (Nm, J, 〈·, ·〉) of complex m dimension (cf. Theorem 3.2).
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We next give the necessary and sufficient conditions for Lagrangian submanifolds
in the complex space forms to be biharmonic (cf. Proposition 4.1). In Section 5, we
classify biharmonic Lagrangian H-umbilical submanifolds in the complex space forms
(Nm(4ε), J, 〈·, ·〉) which have the parallel normalized mean curvature vector field (cf.
Definition 5.3 and Theorem 5.8). Finally, we classify biharmonic PNMC Lagrangian
surfaces in the two-dimensional complex space forms (cf. Theorem 6.2).

2. Preliminaries. In this section, we give necessary notations on biharmonic maps
for later use.

Let φ : (M, g) → (N, h = 〈·, ·〉) be a smooth map from an m-dimensional
Riemannian manifold (M, g) into an n-dimensional Riemannian manifold (N, h). The
second fundamental form of φ is a covariant differentiation ∇̃dφ of 1-form dφ, which
is a section of �2T∗M ⊗ φ−1TN. For every vector fields X, Y on M,

(∇̃dφ)(X, Y ) = (∇̃X dφ)(Y ) = ∇X dφ(Y ) − dφ(∇X Y )

= ∇N
dφ(X)dφ(Y ) − dφ(∇X Y ).

Here, ∇,∇N,∇ and ∇̃ are the connections on the bundles TM, TN, φ−1TN and
T∗M ⊗ φ−1TN, respectively.

We consider critical points of the energy functional

E(φ) =
∫

M
e(φ)vg,

where e(φ) = 1
2‖dφ‖2 = 1

2

∑m
i=1〈dφ(ei), dφ(ei)〉 is the energy density of φ, {ei}m

i=1 is a
locally defined orthonormal frame field on (M, g). Here, 〈·, ·〉 is an induced metric φ∗h.
The tension field τ (φ) of φ is defined by

τ (φ) =
m∑

i=1

(∇̃dφ)(ei, ei) =
m∑

i=1

(∇̃ei dφ)(ei).

Then, φ is a harmonic map if and only if τ (φ) = 0.
For the bi-energy E2, Jiang [10] showed the first variational formula. φ is called

biharmonic maps if bitension field τ2(φ) vanishes, that is,

τ2(φ) = �τ (φ) −
m∑

i=1

RN(τ (φ), dφ(ei))dφ(ei) = 0, (2.1)

where RN is the curvature tensor field, i.e.

RN(U, V )W = ∇N
U ∇N

V W − ∇N
V ∇N

U W − ∇N
[U,V ]W, (U, V, W ∈ X(N)),

and � = ∇∗∇ = −∑m
k=1(∇ek∇ek − ∇∇ek ek ) is the rough Laplacian.

The Gauss formula is given by

∇N
X Y = dφ(∇X Y ) + B(X, Y ), X, Y ∈ X(M), (2.2)
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where X(M) is the space of vector field on M, and B denotes the second fundamental
form. The Weingarten formula is given by

∇N
X ξ = −Aξ X + ∇⊥

X ξ, X ∈ X(M), ξ ∈ �(TM⊥), (2.3)

where Aξ is the shape operator for a normal vector field ξ on M and ∇⊥ denotes the
normal connection of the normal bundle on M in N. It is well known that the second
fundamental form and the shape operator are related by

〈B(X, Y ), ξ 〉 = 〈Aξ X, Y〉. (2.4)

The equations of Gauss and Codazzi are given by

〈RN(X, Y )Z, W 〉 = 〈R(X, Y )Z, W 〉 + 〈AB(X,Z)Y, W 〉 − 〈AB(Y,Z)X, W 〉, (2.5)

(∇⊥
X B)(Y, Z) = (∇⊥

Y B)(X, Z), (2.6)

where ∇⊥B is given by

(∇⊥
X B)(Y, Z) = ∇⊥

X (B(Y, Z)) − B(∇X Y, Z) − B(Y,∇X Z).

If φ : (M, g) → (N, h) is a biharmonic isometric immersion, then M is called a
biharmonic submanifold. In this case, the tension field satisfies that τ (φ) = m H, where
H is the harmonic mean curvature vector along φ. The bitension field τ2(φ) is rewritten
as

τ2(φ) = m

{
� H −

m∑
i=1

RN(H, dφ(ei))dφ(ei)

}
, (2.7)

and φ is biharmonic if and only if

� H −
m∑

i=1

RN(H, dφ(ei))dφ(ei) = 0. (2.8)

3. The necessary and sufficient conditions for biharmonic Lagrangian submanifolds
in Kähler manifolds. In this section, we give the necessary and sufficient conditions
for a Lagrangian submanifold in a Kähler manifold to be biharmonic.

Let us recall fundamental materials on a Lagrangian submanifold in a Kähler
manifold following Chen and Ogiue [7].

Let (Nm, J, 〈·, ·〉) be a Kähler manifold of complex dimension m, where J is the
almost complex structure and 〈·, ·〉 denotes the Kähler metric, which satisfies that
〈JU, JV〉 = 〈U, V〉 and d	 = 0, where 	(U, V ) = 〈U, JV〉, (U, V ∈ X(N)) is the
fundamental 2-form. Let (Mm, g) be a Lagrangian submanifold in a Kähler manifold
(Nm, J, 〈·, ·〉), that is, for all x ∈ M, J(TxM) ⊂ TxM⊥, where we also denote that J is
the almost complex structure on M, TxM denotes the tangent space of M at x and
TxM⊥, the normal space at x. Then, it is well known that the following three equations
hold:

∇⊥
X JY = J(∇X Y ), (3.1)
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RN(JX, JY ) = RN(X, Y ), (3.2)

for all X, Y ∈ X(M), and

RN(U, V ) · J = J · RN(U, V ), (3.3)

for all U, V ∈ X(N).
To show the biharmonic equations for a Lagrangian submanifold in a Kähler

manifold, we need the following lemma.

LEMMA 3.1. Let φ : (M, g) → (N, 〈·, ·〉) be an isometric immersion of (M, g) into
(N, 〈·, ·〉). Then, it is biharmonic if and only if

traceg (∇AH) + traceg
(
A∇⊥• H(•)

) −
(

m∑
i=1

RN(H, ei)ei

)T

= 0, (3.4)

�⊥H + tracegB(AH(•), •) −
(

m∑
i=1

RN(H, ei)ei

)⊥
= 0, (3.5)

where (·)T is the tangential part and (·)⊥ is the normal part.

Proof. Due to (2.3), we have

∇X H = −AH(X) + ∇⊥
X H,

and

∇Y∇X H = −∇Y AH(X) − B(Y, AH(X)) + ∇⊥
Y ∇⊥

X H − A∇⊥
X HY,

for all X, Y ∈ X(M).
Thus, we have

� H = −
m∑

i=1

{−∇ei AH(ei) − B(ei, AH(ei)) + ∇⊥
ei
∇⊥

ei
H

−A∇⊥
ei H(ei) + AH(∇ei ei) − ∇⊥

∇ei ei
H
}

.

Dividing this into the tangential and normal part, we obtain Lemma 3.1. �

By using Lemma 3.1, we obtain the following theorem.

THEOREM 3.2. Let (Nm, J, 〈·, ·〉) be a Kähler manifold of complex dimension m.
Assume that φ : (Mm, g) → (Nm, J, 〈·, ·〉) is a Lagrangian submanifold. Then, φ is
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biharmonic if and only if the following two equations hold:

traceg (∇AH) + traceg
(
A∇⊥• H(•)

)
−

m∑
i=1

〈
traceg

(∇⊥
ei

B
) − traceg

(∇⊥
• B

)
(ei, •), H

〉
ei = 0, (3.6)

�⊥H + tracegB (AH(•), •) +
m∑

i=1

RicN(JH, ei)Jei

−
m∑

i=1

Ric(JH, ei)Jei − J tracegAB(JH,•)(•) + mJAH(JH) = 0, (3.7)

where Ric and RicN are the Ricci tensor of (Mm, g) and (Nm, 〈·, ·〉) respectively. Here,
the trace, traceg

(
A∇⊥• H(•)

)
stand for

∑m

i=1
A∇⊥

ei H(ei), and so on.

Proof. First note that due to (3.1), the harmonic mean curvature vector H can be
written as H = JZ for some vector field Z on M. By using (3.2) and (3.3), we obtain

m∑
i=1

〈
RN(H, ei)ei, JX

〉 = m∑
i=1

〈
RN(Z, Jei)Jei, X

〉
,

which implies that

m∑
i=1

〈
RN(H, ei)ei, JX

〉 + m∑
i=1

〈
RN(Z, ei)ei, X

〉 = RicN(Z, X).

By the Gauss equation (2.5), we havem∑
i=1

〈
RN(H, ei)ei, JX

〉 = RicN(Z, X)

−
{

m∑
i=1

〈R(Z, ei)ei, X〉 +
m∑

i=1

〈B(Z, ei), B(ei, X)〉 −
m∑

i=1

〈B(ei, ei), B(Z, X)〉
}

= RicN(Z, X) − Ric(Z, X) −
m∑

i=1

〈B(Z, ei), B(ei, X)〉 + m〈H, B(Z, X)〉

= − RicN(JH, X) + Ric(JH, X)

+
m∑

i=1

〈B(JH, ei), B(ei, X)〉 − m〈H, B(JH, X)〉. (3.8)
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From (3.8), we have(
m∑

i=1

RN(H, ei)ei

)⊥

=
m∑

j=1

〈
m∑

i=1

RN(H, ei)ei, Jej

〉
Jej = −

m∑
j=1

RicN(JH, ej)Jej +
m∑

j=1

Ric(JH, ej)Jej

+
m∑

i,j=1

〈B(JH, ei), B(ei, ej)〉Jej −
m∑

j=1

m〈H, B(JH, ej)〉Jej. (3.9)

By (2.4), we have

m∑
i,j=1

〈B(JH, ei), B(ei, ej)〉Jej =
m∑

i,j=1

〈
AB(JH,ei)(ei), ej

〉
Jej

=
m∑

i,j=1

〈
JAB(JH,ei)(ei), Jej

〉
Jej

=
m∑

i=1

JAB(JH,ei)(ei)

= J tracegAB(JH,•)(•), (3.10)

and

m∑
j=1

〈H, B(JH, ej)〉Jej =
m∑

j=1

〈AH(JH), ej〉Jej

=
m∑

j=1

〈JAH(JH), Jej〉Jej

= JAH(JH). (3.11)

Combining (3.9)–(3.11), we obtain(
m∑

i=1

RN(H, ei)ei

)⊥
= −

m∑
j=1

RicN(JH, ej)Jej +
m∑

j=1

Ric(JH, ej)Jej

+ J tracegAB(JH,•)(•) − mJAH(JH). (3.12)

By (2.5), we have(
m∑

i=1

RN(H, ei)ei

)T

=
m∑

i,j=1

〈
RN(H, ei)ei, ej

〉
ej

=
m∑

i,j=1

〈(
∇⊥

ej
B
)

(ei, ei) − (∇⊥
ei

B
)

(ej, ei), H
〉

ej. (3.13)

Applying Lemma 3.1, we obtain the theorem. �
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4. Biharmonic Lagrangian submanifolds in the complex space forms. In this
section, we give the necessary and sufficient conditions for Lagrangian submanifolds
in the complex space forms to be biharmonic.

Let N = Nm(4ε) be the simply connected complex m-dimensional complex space
form of constant holomorphic sectional curvature 4ε. The curvature tensor RN of
Nm(4ε) is given by

RN(U, V )W

= ε{〈V, W 〉U − 〈U, W 〉V + 〈W, JV〉JU − 〈W, JU〉JV + 2〈U, JV〉JW}, (4.1)

for U, V, W ∈ X(N), where 〈·, ·〉 is the Riemannian metric on Nm(4ε) and J is the
almost complex structure of Nm(4ε). The complex space from Nm(4ε) is the complex
projective space ��m(4ε), the complex Euclidean space �m or the complex hyperbolic
space ��m(4ε) according to ε > 0, ε = 0 or ε < 0.

By using Lemma 3.1, we obtain the following proposition which will be used in
the next section.

PROPOSITION 4.1. Let (Nm(4ε), J, 〈·, ·〉) be the complex space form of complex
dimension m. Assume that φ : (Mm, g) → (Nm(4ε), J, 〈·, ·〉) is a Lagrangian submanifold.
Then, φ is biharmonic if and only if

traceg (∇AH) + traceg
(
A∇⊥• H(•)

) = 0, (4.2)

�⊥H + tracegB (AH(•), •) − (m + 3)εH = 0. (4.3)

Proof. By (4.1), we have

m∑
i=1

RN(H, dφ(ei))dφ(ei) = ε

m∑
i=1

{〈dφ(ei), dφ(ei)〉H − 〈dφ(ei), H〉dφ(ei)

+ 〈dφ(ei), Jdφ(ei)〉JH − 〈dφ(ei), JH〉Jdφ(ei)

+2〈H, Jdφ(ei)〉Jφ(ei)}

=
{

mH +
m∑

i=1

〈H, Jdφ(ei)〉Jdφ(ei) + 2H

}
= (m + 3)εH.

By using this and Lemma 3.1, we obtain the proposition. �
REMARK 4.2. We remark that Proposition 4.1 is obtained in [9].

5. Biharmonic Lagrangian H-umbilical submanifolds in the complex space forms.
In this section, we classify biharmonic PNMC (see Definition 5.3) Lagrangian H-
umbilical submanifolds in the complex space forms. We recall several notions.

Chen introduced the notion of Lagrangian H-umbilical submanifolds [5]:

DEFINITION 5.1 [5]. If a Lagrangian submanifold M in a Kähler manifold has the
second fundamental form as follows:{

B(e1, e1) = λJe1, B(ei, ei) = μJe1,

B(e1, ei) = μJei, B(ei, ej) = 0, (i �= j), i, j = 2, . . . , m,
(5.1)
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for suitable functions λ and μ with respect to some a suitable orthonormal frame field
{e1, . . . , em} on M, then M is called a Lagrangian H-umbilical submanifold.

Lagrangian H-umbilical submanifolds are the simplest examples of Lagrangian
submanifolds next to totally geodesic submanifolds. Since it is known that there are no
totally umbilical Lagrangian submanifolds in the complex space forms Nm(4ε) with
m ≥ 2, we should consider H-umbilical Lagrangian submanifolds.

In this case, the harmonic mean curvature vector H can be denoted by

H = λ + (m − 1)μ
m

Je1.

Hereinafter, we put a = λ+(m−1)μ
m .

REMARK 5.2. The class of Lagrangian H-umbilical submanifolds in the complex
space forms includes the following interesting submanifolds:
(1) the Whitney’s spheres in the complex Euclidean spaces (cf. [4]),
(2) twistor holomorphic Lagrangian surfaces in the complex projective planes
(cf. [2, 5]).
Furthermore, all Lagrangian H-umbilical submanifolds in the complex space forms
were classified (cf. [4–6]).

Chen also introduced PNMC submanifolds (cf. [1, 3]):

DEFINITION 5.3 [1, 3]. A submanifold M in a Riemannian manifold is said to have
a parallel normalized mean curvature vector field (say, PNMC) if it has nowhere zero
mean curvature and the unit vector field in the direction of the mean curvature vector
field is parallel in the normal bundle, i.e.

∇⊥
(

H
|H|

)
= 0. (5.2)

We denote as ∇ei ej = ∑m
l=1 ωl

j(ei)el (i, j = 1, . . . , m). Then, we obtain the following
lemma.

LEMMA 5.4 [5, 12]. Let Mm be an m-dimensional Lagrangian H-umbilical
submanifold in the complex space form. For an orthonormal frame field {ei}m

i=1, we have

ejλ = (2μ − λ)ω1
j (e1), j > 1, (5.3)

e1μ = (λ − 2μ)ωl
1(el), for all l = 2, . . . m, (5.4)

(λ − 2μ)ωi
1(ej) = 0, i �= j > 1, (5.5)

ejμ = 0, j > 1, (5.6)

μω
j
1(e1) = 0 (5.7)

μω2
1(e2) = · · · = μωm

1 (em), (5.8)

μωi
1(ej) = 0, i �= j > 1. (5.9)
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Proof. By (∇⊥
ej

B)(e1, e1) = (∇⊥
e1

B)(ej, e1) and (5.1), we obtain (5.3)–(5.5).
By (∇⊥

e1
B)(ej, ej) = (∇⊥

ej
B)(e1, ej) and (5.1), we obtain (5.6) and (5.7).

By (∇⊥
ei

B)(ej, ej) = (∇⊥
ej

B)(ei, ei), (i �= j > 1), and (5.1), we obtain (5.8) and (5.9). �

By using Lemma 5.4, Sasahara [12] showed the following (see also [13]):

THEOREM 5.5 [12]. Let (Nm(4ε), J, 〈·, ·〉) be the complex space form of complex
dimension m, where ε = {−1, 0, 1}. Assume that φ : (Mm, g) → (Nm(4ε), J, 〈·, ·〉) is a
biharmonic Lagrangian H-umbilical submanifold. Then, the mean curvature of Mm is
non-zero constant if and only if ε = 1 and φ(M) is congruent to an m-dimensional
submanifold of ��m(4) given by

π

⎛⎝√ μ2

μ2 + 1
e− i

μ
x
,

√
1

μ2 + 1
eiμxy1, . . . ,

√
1

μ2 + 1
eiμxym

⎞⎠ ⊂ ��m(4), (5.10)

where x, y1, . . . , ym run through real numbers satisfying y1
2 + · · · + ym

2 = 1. Here, μ =
±
√

m+5±√
m2+6m+25
2m .

Due to this theorem, we shall classify biharmonic PNMC Lagrangian H-umbilical
submanifolds in the complex space forms. We shall show the necessary and sufficient
conditions for Lagrangian H-umbilical submanifolds in the complex space forms to
be biharmonic.

PROPOSITION 5.6. Let (Mm, g) be a Lagrangian H-umbilical submanifold in the
complex space form (Nm(4ε), J, 〈·, ·〉). Then, Mm is biharmonic if and only if

2 λ (e1a) + a (e1λ) + λ a
m∑

l=2

ωl
1(el) = 0, (5.11)

2 μ(eja) + a λ ω
j
1(e1) = 0, j > 1, (5.12)

−
m∑

i=1

ei(eia) + a
m∑

i,j=1

ω
j
1(ei)2 +

m∑
i,j=1

(
eja

)
ωj

i(ei)

+ a
{
λ2 + (m − 1)μ2 − ε(m + 3)

} = 0, (5.13)

− 2
m∑

i=1

(eia)ωj
1(ei) − a

m∑
i=1

ei

(
ω

j
1(ei)

)
− a

m∑
i,l=1

ωl
1(ei)ω

j
l(ei) + a

m∑
i,l=1

ωl
i(ei)ω

j
1(el) = 0, j > 1. (5.14)
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Proof. We shall calculate the tangential part (4.2). By using Lemma 5.4, we have

traceg
(
A∇⊥• H(•)

) =
m∑

i=1

A∇⊥
ei aJe1 ei

=
m∑

i=1

(eia)AJe1 ei + a
m∑

i,l=1

ωl
1(ei)AJel ei

=λ

m∑
i=1

(eia)e1 + μ

m∑
i=2

(eia)ei

+ aμ

m∑
l=2

ωl
1(e1)el + aμ

m∑
l=2

ωl
1(el)e1

=λ

m∑
i=1

(eia)e1 + μ

m∑
i=2

(eia)ei + aμ

m∑
l=2

ωl
1(el)e1, (5.15)

and

traceg (∇AH) =
m∑

i=1

∇ei (AHei ) −
m∑

i=1

AH (∇ei ei)

=
m∑

i=1

∇ei (AaJe1 ei) − a
m∑

i,l=1

AJe1

(
ωl

i(ei)el
)

=
m∑

i=1

{
(eia)AJe1 ei + a∇ei (AJe1 ei)

} − a
m∑

i,l=1

ωl
i(ei)AJe1 el

=λ(e1a)e1 + a(e1λ)e1 + aλ

m∑
l=1

ωl
1(e1)el

+
m∑

i=2

{
μ(eia)ei + a(eiμ)ei + aμ

m∑
l=1

ωl
i(ei)el

}

− aλ

m∑
l=1

ω1
l (el)e1 − aμ

m∑
l=1

m∑
i=2

ωi
l(el)ei. (5.16)

By (5.15) and (5.16), we obtain

traceg (∇AH) + traceg
(
A∇⊥• (•)

) =
{

2λ(e1a) + a(e1λ) + aλ

m∑
l=2

ωl
1(el)

}
e1

+
m∑

j=2

{
2μ(eja) + aλω

j
1(e1)

}
ej, (5.17)

which yields (5.11) and (5.12).
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We shall calculate the normal part (4.3). By using Lemma 5.4, we have

�⊥H = −
m∑

i=1

∇⊥
ei

∇⊥
ei

(aJe1) +
m∑

i=1

∇⊥
∇ei ei

(aJe1)

= −
m∑

i=1

(eieia)Je1 −
m∑

i,j=1

{
2(eia)ωj

1(ei)Jej + aei
(
ω

j
1(ej)Jel

)}
− a

m∑
i,j,l=1

ω
j
1(ei)ωl

j(ei)Jel +
m∑

i,j=1

ω
j
1(ei)(eja)Je1

+ a
m∑

i,j,l=1

ωj
i(ei)ωl

1(ej)Jel, (5.18)

and

tracegB (AH(•), •) = a
{
λ2 + (m − 1)μ2} Je1. (5.19)

By (5.18) and (5.19), we obtain

�⊥H + tracegB (AH(•), •) − (m + 3)εH

=
{

−
m∑

i=1

eieia + a
m∑

i,j=1

ω
j
1(ei)2 +

m∑
i,j=1

(eja)ωj
i(ei)

+ a
{
λ2 + (m − 1)μ2 − ε(m + 3)

}}
Je1

+
m∑

j=2

{
− 2

m∑
i=1

(eia)ωj
1(ei) − a

m∑
i=1

ei
(
ω

j
1(ei)

)
− a

m∑
i,l=1

ωl
1(ei)ω

j
l(ei) + a

m∑
i,l=1

ωl
i(ei)ω

j
1(el)

}
Jej,

which yields (5.13) and (5.14). �
From Proposition 5.6, we obtain the following proposition.

PROPOSITION 5.7. Let (Mm, g) be a Lagrangian H-umbilical submanifold in the
complex space form (Nm(4ε), J, 〈·, ·〉). Then, Mm is (non-harmonic) biharmonic if and
only if μ �= 0 and

2λ (e1a) + a (e1λ) + aλ(m − 1)k = 0, (5.20)

eja = 0, j > 1, (5.21)

−e1(e1a) + a(m − 1)k2 − (e1a) (m − 1)k + a
{
λ2 + (m − 1)μ2 − ε(m + 3)

} = 0,

(5.22)

ejk = 0, j > 1, (5.23)
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where, k = ω2
1(e2) = · · · = ωm

1 (em).

Proof. We shall show μ �= 0. If μ = 0, then a = 1
mλ �= 0. By Lemma 5.4, we have

ωi
1(ej) = 0, j = 2, . . . , m. (5.24)

From (5.11), e1a = 0. From (5.12), we obtain

ω
j
1(e1) = 0, j = 1, . . . , m. (5.25)

Combining (5.24) and (5.25), we have

ωi
1(ej) = 0, i, j = 1, . . . , m. (5.26)

It follows that 〈R(e1, ei)ei, e1〉 = 0. Thus, by (2.5), we have ε = 0. By (5.3), we have eja =
0, (j > 1). From these and (5.13), we obtain a = 0, which contradicts the assumption.

We only have to consider the case of μ �= 0. Then, we have

ωi
1(ej) = 0, i �= j, (5.27)

ω2
1(e2) = · · · = ωm

1 (em). (5.28)

We put k = ω2
1(e2) = · · · = ωm

1 (em).
By (5.28), we can denote that the equation (5.11) is (5.20). Putting (5.27) into

(5.12), we obtain (5.21). From (5.21) and (5.13), we have (5.22). Putting (5.21) into
(5.14), we have

−a
m∑

i=1

ei
(
ω

j
1(ei)

) − a
m∑

i,l=1

ωl
1(ei)ω

j
l(ei) + a

m∑
i,l=1

ωl
i (ei)ω

j
1(el) = 0.

Form this and (5.27), we obtain (5.23). �
By using Theorem 5.5, we shall classify all the biharmonic PNMC Lagrangian

H-umbilical submanifolds in the complex space forms.

THEOREM 5.8. Let (Nm(4ε), J, 〈·, ·〉) be the complex space form of complex dimension
m, where ε = {−1, 0, 1}. Assume that φ : (Mm, g) → (Nm(4ε), J, 〈·, ·〉) is a Lagrangian
H-umbilical submanifold which has PNMC. Then, φ is biharmonic if and only if ε = 1
and φ(M) is congruent to an m-dimensional submanifold of ��m(4) given by

π

⎛⎝√ μ2

μ2 + 1
e− i

μ
x
,

√
1

μ2 + 1
eiμxy1, . . . ,

√
1

μ2 + 1
eiμxym

⎞⎠ ⊂ ��m(4), (5.29)

where x, y1, . . . , ym run through real numbers satisfying y1
2 + · · · + ym

2 = 1. Here, μ =
±
√

m+5±√
m2+6m+25
2m .

REMARK 5.9. The biharmonic immersion in ��m, given in (5.29), has a parallel
mean curvature vector field, i.e. ∇⊥H = 0.

Proof. By the assumption

∇⊥
(

H
|H|

)
= ∇⊥

(
aJe1

|a|
)

= 0,
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and a �= 0, we have

J(∇e1) = ∇⊥Je1 = 0. (5.30)

Thus, we obtain

0 = ∇ei e1 =
m∑

l=1

ωl
1(ei)el, (i = 1, . . . , m), (5.31)

which implies that

ωl
1(ei) = 0, (i, l = 1, . . . , m). (5.32)

In particular, we have

k = ω2
1(e2) = · · · = ωm

1 (em) = 0. (5.33)

By (5.4), we obtain

e1μ = 0. (5.34)

Combining this and (5.6), μ is a constant. Since 〈R(ei, e1)e1, ei〉 = 0, we have

μ2 − λμ = ε. (5.35)

Thus, λ is a constant. Therefore, a = λ+(m−1)μ
m is a non-zero constant.

By using Theorem 5.5, we obtain (5.29).
Conversely, by a direct computation, it turns out that the immersion (5.29) is a

biharmonic PNMC Lagrangian immersion. �

REMARK 5.10. (1) We cannot answer whether or not the same conclusion of
Theorem 5.8 holds without the assumption PNMC.

(2) If μ+ = μ0, and μ− = −μ0, where μ0 =
√

m+5±√
m2+6m+25
2m , then it seems that the

corresponding submanifolds to μ+ and μ− are isometric each other.

6. Biharmonic PNMC surface. In this section, we classify all the biharmonic
PNMC Lagrangian surfaces in the two-dimensional complex space forms
(N2(4ε), J, 〈·, ·〉).

Let φ : M2 → (N2(4ε), J, 〈·, ·〉) be a Lagrangian surface. Let {e1, e2} be an
orthonormal frame field on M2 such that Je1 is parallel to H. Then, the second
fundamental form is

B(e1, e1) = (a − b)Je1 + cJe2,

B(e1, e2) = cJe1 + bJe2,

B(e2, e2) = bJe1 − cJe2,

(6.1)
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for some functions a( �= 0), b and c. We put ∇e1 e1 = αe2 and ∇e2 e1 = βe2 (then, we have
∇e1 e2 = −αe1 and ∇e2 e2 = −βe1). From these, we have

(∇⊥
e1

B)(e2, e2) = (e1b + 3cα)Je1 − (e1c − 3bα)Je2,

(∇⊥
e2

B)(e1, e2) = {e2c + (a − 3b)β}Je1 + (e2b + 3cβ)Je2,

(∇⊥
e1

B)(e1, e2) = {e1c + (a − 3b)α}Je1 + (e1b + 3cα)Je2,

(∇⊥
e2

B)(e1, e1) = {e2(a − b) − 3cβ}Je1 + {e2c + (a − 3b)β}Je2.

By using (2.6), we obtain

e1b + 3cα =e2c + (a − 3b)β, (6.2)

−e1c + 3bα =e2b + 3cβ, (6.3)

e2(a − b) − 3cβ =e1c + (a − 3b)α. (6.4)

Combining (6.3) and (6.4) leads to

e2a = aα. (6.5)

From (2.5), we have

ab − 2b2 − 2c2 + ε = −α2 − β2 + e2α − e1β. (6.6)

By using these results, we obtain the following proposition.

PROPOSITION 6.1. Let (N2(4ε), J, 〈·, ·〉) be the two-dimensional complex space form.
Assume that φ : M2 → (N2(4ε), J, 〈·, ·〉) is a Lagrangian surface. Then φ is biharmonic
if and only if

3(e1a)a − 2(e1a)b + 4acα + 2abβ = 0, (6.7)

2(e1a)c + 4aαb + a2α − 2acβ = 0, (6.8)

− e1e1a − β(e1a) + a(−5ε + (a − b)2 + b2 + 2c2 + α2 + β2 − e2α) = 0, (6.9)

2(e1a)α + a(2αβ + e1α + e2β − ac) = 0. (6.10)

Proof. We shall calculate the tangential part (4.2). Since AJe1 e1 = (a − b)e1 + ce2,
AJe1 e2 = AJe2 e1 = ce1 + be2 and AJe2 e2 = be1 − ce2, we have

traceg(A∇⊥• H(•)) =
2∑

i=1

A∇⊥
ei H(ei)

=1
2
{(e1a)(a − b) + (e2a)c + aαc + aβb}e1

+ 1
2
{(e1a)c + (e2a)b + aαb − aβc}e2,
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and

traceg(∇AH) =
2∑

i=1

(∇ei AH)ei =
2∑

i=1

{∇ei (AHei) − AH(∇ei ei)
}

=1
2
{(e1a)(a − b) + a(e1a) − a(e1b) − aαc

+ (e2a)c + a(e2c) − abβ − aαc + aβ(a − b)}e1

+ 1
2
{(e1a)c + a(a − b)α + a(e1c) + (e2a)b + a(e2b) + acβ − aαb + aβc}e2.

By using (6.2)–(6.5), we obtain (6.7) and (6.8).
We shall calculate the normal part (4.3). We have

�⊥H = − 1
2

{
e1(e1a)Je1 + 2(e1a)αJe2 + a(e1α)Je2 − aα2Je1 − α(e2a)Je1

}
− 1

2

{
e2(e2a)Je1 + 2(e2a)βJe2 + a(e2β)Je2 − aβ2Je1 + β(e1a)Je1

}
,

and

2∑
i=1

B(AHei, ei) =1
2

a
{
(a − b)2Je1 + (a − b)cJe2 + 2c2Je1 + bcJe2 + b2Je1

}
.

By using (6.5), we obtain (6.9) and (6.10). �
We shall classify all the biharmonic PNMC Lagrangian surfaces in the two-

dimensional complex space forms.

THEOREM 6.2. Let (N2(4ε), J, 〈·, ·〉) be the two-dimensional complex space form.
Assume that φ : M2 → (N2(4ε), J, 〈·, ·〉) is a biharmonic Lagrangian surface. Then, the
following properties are equivalent:
(1) the mean curvature is a non-zero constant;
(2) M2 has PNMC.
Moreover, if the biharmonic Lagrangian surface has the condition (1) or (2), then we have
ε > 0 and M2 is a H-umbilical surface. If ε = 1, φ is locally given by

φ(x, y) =

π

⎛⎝√ b2

b2 + 1
e− i

b x,

√
1

b2 + 1
eibxcos

√
b2 + 1y,

√
1

b2 + 1
eibxsin

√
b2 + 1y

⎞⎠ , (6.11)

where b = ±
√

7±√
41

2 .

Proof. We shall show (1) ⇒ (2). Since the mean curvature a is a non-zero constant,
from (6.5), we have α = 0. From these, we have that (6.7) is bβ = 0, and (6.8) is cβ = 0.
If β �= 0, then we have b = c = 0. But, from (6.2), we have β = 0. This contradicts our
assumption β �= 0. Therefore, we obtain β = 0, which means that M2 has PNMC.

We shall show that (2) ⇒ (1). By the assumption

∇⊥
(

H
|H|

)
= ∇⊥

(
aJe1

|a|
)

= 0,
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and a �= 0, we have

J(∇e1) = ∇⊥Je1 = 0. (6.12)

Thus, we obtain

0 = ∇ei e1 =
{

αe2 (i = 1),

βe2 (i = 2),
(6.13)

which implies that α = 0 and β = 0. From (6.7), we have that e1a = 0 or 3a − 2b = 0.
The case of e1a = 0. By (6.5), a is constant.
The case of 3a − 2b = 0. From (6.10), we have c = 0. It follows from c = 0,

(6.2) and (6.3) that b is constant. By combining (6.6) and (6.9), we have a = 0. This
contradicts our assumption a �= 0.

Therefore a is constant.
If M2 has the condition (1) or (2), from (6.10), we have c = 0, i.e., M2 is a

H-umbilical surface. By using Theorem 5.8, we obtain the theorem. �
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