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IN FULL-INFORMATION MODELS
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Abstract

The problem we consider here is a full-information best-choice problem in which n

applicants appear sequentially, but each applicant refuses an offer independently of other
applicants with known fixed probability 0 ≤ q < 1. The objective is to maximize
the probability of choosing the best available applicant. Two models are distinguished
according to when the availability can be ascertained; the availability is ascertained just
after the arrival of the applicant (Model 1), whereas the availability can be ascertained only
when an offer is made (Model 2). For Model 1, we can obtain the explicit expressions for
the optimal stopping rule and the optimal probability for a given n. A remarkable feature
of this model is that, asymptotically (i.e. n → ∞), the optimal probability becomes
insensitive to q and approaches 0.580 164. The planar Poisson process (PPP) model
provides more insight into this phenomenon. For Model 2, the optimal stopping rule
depends on the past history in a complicated way and seems to be intractable. We have
not solved this model for a finite n but derive, via the PPP approach, a lower bound on
the asymptotically optimal probability.

Keywords: Best-choice problem; secretary problem; optimal stopping; planar Poisson
process; insensitivity; full-history dependence; Robbins’ problem
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1. Introduction

A known number, n, of applicants appear sequentially in a random order, and one of them
must be chosen. An applicant that has been rejected cannot be recalled later. In the classical
best-choice problem, often referred to as the secretary problem, the objective is to maximize
the probability of choosing the best applicant. At each time, we observe only the relative rank
of the current applicant with respect to his/her predecessors. It is well known that the optimal
rule lets approximately e−1n applicants go by and then selects the first relatively best applicant,
if any. The optimal probability of choosing the overall best tends to e−1 ≈ 0.368 as n → ∞.

In contrast to the above no-information version of the problem, the full-information analogue
is the problem in which the observations are the true values of n applicants X1, X2, . . . , Xn,
assumed to be independent and identically distributed random variables from a known con-
tinuous distribution, taken without loss of generality to be the uniform distribution on the
interval [0, 1]. There exists a single increasing sequence of thresholds {bk, 1 ≤ k}, where bk
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Optimal choice of the best available applicant in full-information models 1087

is defined as a solution x ∈ (0, 1) to the equation

k∑
i=1

1

i
(x−i − 1) = 1, (1)

such that the optimal stopping rule is to select the j th applicant if this applicant is a relative
maximum, i.e. Xj = max(X1, . . . , Xj ) and Xj ≥ bn−j . For example, b1 = 1

2 and b2 =
(1 + √

6)/5. Let c ≈ 0.804 35 be a root of the equation

∞∑
j=1

cj

j ! j = 1. (2)

Then, as n → ∞, n(1 − bn) → c, and the optimal probability of choosing the largest of
X1, X2, . . . , Xn tends to

e−c + (ec − c − 1)

∫ ∞

1

e−cx

x
dx, (3)

which is numerically evaluated as 0.580 164. These best-choice problems were studied in
Gilbert and Mosteller (1966) together with many other best-choice problems. See Samuels
(1982), (1991), (2004) and Berezovsky and Gnedin (1984) for the limiting form (3). We refer
to the above full-information problem as the GM problem.

Though we have so far implicitly assumed that the applicant is always available, that is,
he/she accepts an offer of selection (employment) with certainty, Smith (1975) introduced the
possibility of the applicant refusing an offer. He considered a best-choice problem in the no-
information setting and Petruccelli (1982) later considered the corresponding full-information
problems in a greater generality. However, the common objective of their problems is to
choose the best overall, implying that the trial is automatically unsuccessful if the overall best
is unavailable.

Another more appropriate objective may be to choose the best available applicant, i.e. the
best among all the available applicants. Tamaki (1991) considered this problem in the no-
information setting. The problem we consider in this paper is the full-information analogue
of Tamaki (1991). We simply assume here that each applicant is available with a known
fixed probability p (0 < p ≤ 1) and unavailable with the remaining probability q = 1 − p,
independent of the value and also of the other applicants. The decision of when to make an
offer is based on both the values of the applicants and their availabilities observed so far, and
the objective is to maximize the probability of choosing the best available applicant. If all are
unavailable, we lose. Two models are distinguished according to when the availability can be
ascertained.

Model 1. The availability of the applicant can be ascertained just after his/her arrival. Thus,
we make an offer only to an available applicant because nothing is lost in doing so.

Model 2. The availability of the applicant can be ascertained only when an offer is given. If
the offer is accepted, the applicant proves to be available and the selection process terminates,
but if rejected, the applicant proves to be unavailable and the next one must be observed.

In both models, we give an offer to the nth applicant if the final stage is reached. When
q = 0, these two models are equivalent and reduced to the GM problem.
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1088 M. TAMAKI

In Section 2 we consider Model 1. A remarkable feature of this model is that, asymptotically,
the optimal success probability becomes insensitive to q and approaches 0.580 164 given by (3),
though it in effect depends on q for a finite n. This feature can be directly derived via the limiting
argument of the finite problem. However, as is shown in Section 3, the planar Poisson process
model provides more insight into this phenomenon. This model is known to facilitate the
derivation of the asymptotic values for some best-choice problems. Model 2 will be discussed
in Section 4. When trying, by means of backward induction, to find the optimal rule for a
given n, we immediately find it to be a formidable task. Our attempt to find the exact optimal
probability has been unsuccessful. However, we can derive a lower bound on the asymptotically
optimal probability by exploiting a reasonable rule suggested from Model 1.

2. Model 1

Let Xj and Ij respectively denote the value and the availability indicator of the j th applicant,
1 ≤ j ≤ n. It is assumed that (X1, X2, . . . , Xn) is a sequence of n independent random
variables each uniformly distributed on [0, 1], and that (I1, I2, . . . , In) is also a sequence of n

independent random variables each taking a value of 1 or 0 with probability p and q = 1 − p

respectively according to whether the applicant is available or not, that is,

P{Ij = 1} = p = 1 − P{Ij = 0}.

The two sequences (X1, X2, . . . , Xn) and (I1, I2, . . . , In) are also assumed to be independent
of each other.

Let Ji be the index set of the available applicants observed up to time i, i.e. Ji = {1 ≤
j ≤ i : Ij = 1}, 1 ≤ i ≤ n, and define the largest value of the first i observations as
Li = maxj∈Ji

Xj for Ji 	= ∅. (For Ji = ∅, define Li = 0 for convenience.) Call Xi (or the
ith applicant) a candidate if Ii = 1 and Xi = Li . The objective is to maximize the probability
of success, i.e. choosing the applicant having the largest value Ln for Jn 	= ∅. Obviously,
an optimal rule at any decision point only chooses a candidate, depending on the past only
through the largest value observed so far and on the future through the remaining number of
observations. Thus, if we denote by vk(x) the maximal probability of success, provided that
there are k applicants yet to observe and the largest value observed so far is x, the principle of
optimality gives, for 1 ≤ k ≤ n − 1,

vk(x) = (q + px)vk−1(x) + p

∫ 1

x

max{(q + pt)k−1, vk−1(t)} dt, (4)

where (q + pt)k−1 is the probability that the (n − k + 1)th applicant is the best available,
that is, Xn−k+1 = Ln, given that the applicant is a new candidate having value t (this is just
the probability that all the subsequent Xj s are smaller than t or unavailable). The boundary
condition is v0(x) ≡ 0.

The main results of Model 1 can be summarized as follows.

Theorem 1. (a) Optimal stopping rule: let

m = m(q) = min{k ≥ 1 : bk ≥ q},

where bk is defined by (1); then, for a given q, there exists a nondecreasing sequence of the
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thresholds {bk(q), 1 ≤ k} defined as bk(q) = max{0, (bk − q)/(1 − q)} or

bk(q) =
⎧⎨
⎩

bk − q

1 − q
if k ≥ m,

0 if 1 ≤ k < m,

(5)

as a function of k, such that the optimal rule is to choose the first candidate Xj that exceeds
the threshold bn−j (q).

(b) Optimal probability: let P∗
n(q) denote the optimal success probability as a function of n

and q; then

P∗
n(q) = 1

n

[
1 +

n−1∑
i=m

i∑
r=1

1

n − r
bn−r
i

]
+ qn

m∑
r=1

1

r

[(
m − r

n − r

)
q−r −

(
m

n

)]
(6)

for n > m and P∗
n(q) = qn

∑n
r=1(q

−r − 1)/r for n ≤ m.

(c) Asymptotics: let c ≈ 0.804 35 be a root of (2); then, as n → ∞,

P∗
n(q) → P∗(q) = e−c + (ec − c − 1)

∫ ∞

1

e−cx

x
dx ≈ 0.580 164, (7)

showing the insensitivity to 0 ≤ q < 1 of the asymptotic success probability.

Proof. See Appendix A.

Remark 1. Besides the expression P∗
n(q) = qn

∑n
r=1(q

−r − 1)/r , as given in Theorem 1(b)
for n ≤ m, we have another expression:

P∗
n(q) =

n∑
r=1

1

r

(
n

r

)
(1 − q)rqn−r .

This follows because the total number, M , of available applicants is a binomial random variable
with parameters (n, p), i.e. P{M = r} = (

n
r

)
pr(1 − p)n−r , 0 ≤ r ≤ n, and because the optimal

rule chooses, due to bj (q) = 0, the first available applicant, and if there are r available
applicants, the first one has probability 1/r of being the best by exchangeability.

For n = 2 and 3, the optimal success probabilities are given as follows:

P∗
2(q) =

{
3
4 − 1

2q2 if 0 ≤ q < b1,
1
2 + q − 3

2q2 if b1 ≤ q < 1,

P∗
3(q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

293 + 48
√

6

600
− 1

3
q3 if 0 ≤ q < b1,

67 + 12
√

6

150
+ 1

2
q2 − q3 if b1 ≤ q < b2,

1

3
+ 1

2
q + q2 − 11

6
q3 if b2 ≤ q < 1,

where b1 = 1
2 and b2 = (1 + √

6)/5, as mentioned before.
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The neat expression (6), inspired by Sakaguchi (1973), is crucial to derive (7) as the limit
of the finite problems (see Appendix A). An interesting phenomenon is that no matter what the
value of q, we have asymptotically the same success probability, 0.580 164, by allowing the
stopping rule to depend on q. To give more perspective to this phenomenon, which prevails in
greater generality, we reconsider this problem as a planar Poisson process model in the next
section.

Remark 2. It is not known whether the insensitivity property also holds in the corresponding
noninformative model. Though Tamaki (1991) considered this model, the paper is unfinished
in the sense that it solves only the finite problems, so the asymptotic results remain unsolved.
However, judging from the numerical results of his Table VI, which gives the optimal success
probability for some selected values of n(≤ 1000) and p(= 1 − q), we may conclude that such
a property does not hold when the availability can be ascertained in advance (see Model 2 in
Section 2 of Tamaki (1991), which corresponds to our Model 1.)

3. The planar Poisson process

The planar Poisson process (PPP) model is widely known to be an appropriate setting in
which we can define the infinite version of the corresponding finite problems. Bruss and
Rogers (1991) used a PPP to study no-information problems with a random or infinite number
of applicants and then Gnedin (1996) showed that a PPP model with rate 1 on the semi-infinite
strip [0, 1]×(−∞, 0] serves as the desired setting for the GM problem. For further applications
to the full-information problems related to the GM problem, see Samuels (2004), who preferred
to use an inverted PPP, i.e. a PPP on the semi-infinite strip [0, 1] × [0, ∞), which is equivalent
to Gnedin’s PPP if one turns the problem upside down, making the ‘best’become the ‘smallest’.
The process is scanned from left to right by shifting a vertical detector and the scanning can be
stopped each time a point in the PPP, referred to as an atom henceforth, is detected.

It is obvious that, when we use an inverted PPP (as we do so throughout this paper), the
appropriate setting for Model 1 is a PPP with rate p on the semi-infinite strip [0, 1] × [0, ∞)

because only available applicants are under consideration for choice (i.e. unavailable applicants
are neglected). A link to the finite problems can be established by embedding suitably the finite
independent and identically distributed sequences in the PPP in a similar manner as given to
the GM problem in Gnedin (1996, Section 3). However, for more generality, we consider here
the PPP best-choice problem with parameters (a, λ) defined as the problem of maximizing
the probability of stopping on the lowest atom in the PPP with rate λ on the semi-infinite
strip [0, a] × [0, ∞), where a, λ > 0. This problem corresponds to the GM problem when
(a, λ) = (1, 1) and to Model 1 when (a, λ) = (1, p). The typical properties of the PPP are

(a) the number of atoms in each bounded domain of the PPP with rate λ has a Poisson
distribution with mean equal to λ × (the area of the domain),

(b) the numbers of atoms in disjoint domains are independent.

See Gnedin (2004, Section 2.1) for further properties of the PPP.
The goal in this section is to show that, though the optimal rule of the PPP best-choice

problem with parameters (a, λ) in fact depends on the values of the parameters, its optimal
success probability is insensitive to these values (Theorem 2, below). Let u(t, y) denote the
probability of success if we choose the point (t, y) in the PPP, i.e. we stop at time t with a
relatively best atom having value y. Then, if we denote by PPoisson(k, µ) the Poisson probability
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of k events, for a given mean µ, we have

u(t, y) = PPoisson(0, λy(a − t)), (8)

because u(t, y) is just the probability that there is no atom in the box domain [t, a] × [0, y]
whose area is y(a − t). On the other hand, let v(t, y) denote the probability of success if we do
not choose the point (t, y), but instead choose the point related to the next relatively best atom,
if any; then

v(t, y) =
∞∑

j=1

1

j
PPoisson(j, λy(a − t)),

because, if there are j atoms in the box [t, a] × [0, y], the leftmost atom has probability 1/j

of being best (lowest). Solving for the locus of point (t, y) at which u(t, y) = v(t, y) yields
λy(a − t) = c for c ≈ 0.804 35 given as a root of (2). Moreover, since u(t, y) ≥ v(t, y)

implies that u(t ′, y′) ≥ v(t ′, y′) for t ′ > t and y′ < y, we are in the monotone case of optimal
stopping and can conclude that the optimal rule stops with the first relatively best atom, if any,
that lies below the threshold curve

y = c

λ(a − t)
.

We have the following result.

Theorem 2. Let Pa,λ denote the optimal success probability of the PPP best-choice problem
with parameters (a, λ). Then

Pa,λ = e−c + (ec − c − 1)

∫ ∞

1

e−cx

x
dx ≈ 0.580 164,

which is insensitive to (a, λ).

Proof. Our proof is essentially the same as Samuels (2004, Section 10.2) established for the
GM problem. Let T be the arrival time of the first (leftmost) atom that lies below the threshold
curve y = c/λ(a − t), and let S be the time when the value of the best (lowest) atom above the
threshold is equal to the threshold. Then, from properties (a) and (b) of the PPP, T and S are
independent and their distributions are given by

P{T > t} = PPoisson

(
0, λ

∫ t

0
ga,λ(r) dr

)
, (9)

P{S > s} = PPoisson

(
0, λ

∫ s

0
(ga,λ(s) − ga,λ(r)) dr

)
, (10)

where ga,λ(r) = c/λ(a − r), 0 < r < a. Exploiting the virtual stopping time, min(S, T ),
which makes the calculations simpler, we have

Pa,λ =
∫ a

0

∫ t

0
u

(
s,

c

λ(a − s)

)
fS(s)fT (t) ds dt

+
∫ a

0

∫ s

0

[
λ(a − t)

c

∫ c/λ(a−t)

0
u(t, y) dy

]
fT (t)fS(s) dt ds, (11)
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where fT (t) and fS(s) are the densities of T and S, respectively. Substituting u(t, y) =
e−λy(a−t) from (8) into (11) yields

Pa,λ = e−c P{S ≤ T } + 1

c
(1 − e−c) P{S > T }

= e−c +
(

1

c
− 1

c
e−c − e−c

)
P{S > T }. (12)

By the way, we have, from (9) and (10),

P{S > T } =
∫ a

0
P{S > t}fT (t) dt

=
∫ a

0

(
a

a − t

)c

e−ct/(a−t) c(a − t)c−1

ac
dt

= cec

∫ ∞

1

e−cx

x
dx,

which, combined with (12), gives the desired result.

Remark 3. The PPP best-choice problem with parameters (p, 1) deserves special attention.
Many authors have introduced various forms of uncertainty about the number, N , of applicants.
Among those, Porosinski (1987) studied the full-information best-choice problem with such
prior distributions on N as uniform, Poisson, and geometric. The GM problem corresponds
to the case where P{N = n} = 1. It is known that the asymptotic success probability heavily
depends on the distribution of N , e.g. for the case where N is uniform on {1, 2, . . . , n}, the
asymptotic success probability, as n → ∞, tends to 0.435 17 (see Porosinski (1987) and
Samuels (2004)). When N is a binomial random variable with parameters (n, p), not treated
in detail by Porosinski, it is conjectured that the infinite version of this problem as n → ∞
is the PPP best-choice problem with parameters (p, 1), so has the same asymptotic success
probability, 0.580 164, as Model 1. An intuitive reasoning is as follows (this statement is due to
Gnedin (1996)). Consider an infinite sequence of independent random variables X1, X2, . . . ,

each uniformly distributed on [0, 1]. For a fixed n, think of the two-dimensional random
point set χn = {(1/n, nX1), (2/n, nX2), . . . , (N/n, nXN)} as a sequence of N applicants
arriving at fractional times 1/n, 2/n, . . . , N/n and consider the problem of stopping with the
applicant having the smallest value of (nX1, nX2, . . . , nXN). The set χn contains the same
order structure as X1, X2, . . . , XN , implying that the stopping problem is equivalent to the
original discrete-time problem. Since, as n → ∞, N/n → p with probability 1 by the strong
law of large numbers, χn has an asymptotic pattern, i.e. PPP with rate 1 on the semi-infinite strip
[0, p]×[0, ∞). It is noted that, for a finite n, Model 1 has an advantage over the above binomial
model in the sense that the optimal success probability of the former is at least as large as that
of the latter. The reason is that Model 1 has more precise information than the binomial model
at each decision epoch concerning the number of possible applicants that may yet appear; more
specifically, in Model 1 we know not only the number of available applicants seen so far but
also their arrival times, whereas in the binomial model we only know the number of applicants
that have appeared. We have found that the advantage of Model 1 disappears asymptotically as
n → ∞ and that the binomial model is also insensitive to p. As a related work, see Das and
Tsitsiklis (2008), whose main concern was, in our terminology, to make comparisons between
Model 1 and the binomial model in several ways when the objective is to maximize the expected
(true) value of the applicant chosen.
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4. Model 2

In Model 2 we must give an offer to the applicant without knowing his/her availability. Let
the two independent sequences (X1, X2, . . . , Xn) and (I1, I2, . . . , In) be defined as in Model 1.
Imagine a situation where we have observed the first (n − k) applicants with no one chosen
previously. Let Jn−k be the index set of the applicants passed up previously (this implies
that we have ascertained Ij = 0 for j ∈ {1, 2, . . . , n − k} − Jn−k by giving an offer to be
rejected). Obviously, the information necessary for the future decision is the observed values
indexed by Jn−k , i.e. {Xj = xj : j ∈ Jn−k}. However, since the arrival times of these values
do not matter, they can be arranged, for ease of description, in an ascending order as a vector
y = (y1, y2, . . . , ym), referred to as the history, where yt , 1 ≤ t ≤ m, is the t th smallest xj and
m denotes the size of the set Jn−k . Denote by vk(y) the maximal probability of success starting
from this situation, indicating that this quantity depends on the past through the history and on
the future through the remaining number of observations. To derive the optimality equation,
denote by (k − 1; t, y) a state where we have just observed the value of the next applicant to
be t , i.e. Xn−(k−1) = t . Let sk−1(t, y) and ck−1(t, y) be the probabilities of success when
we make an offer and when we make no offer, respectively, to the current applicant in state
(k − 1; t, y) and proceed optimally thereafter. Define a(t, y) as a history revised by adding a
new value t (0 < t ≤ 1) to the previous history y, that is,

a(t, y) = (y1, . . . , yi, t, yi+1, . . . , ym) if yi < t ≤ yi+1,

where y0 = 0 and ym+1 = 1. Also, define K(t, y) = #{i ∈ Jn−k : yi > t} as the number
of applicants indexed by Jn−k whose values are greater than t . Then we have the following
optimality equation:

vk(y) =
∫ 1

0
max{sk−1(t, y), ck−1(t, y)} dt, (13)

where
sk−1(t, y) = pqK(t,y)(q + pt)k−1 + qvk−1(y), (14)

ck−1(t, y) = vk−1(a(t, y)). (15)

Equations (13)–(15), which are also valid for Jn−k = ∅ if y is interpreted as 0, can be solved
recursively (in principle) to yield the optimal rule and the success probability vn(0) for a finite
n starting with v0(y) ≡ 0.

From its definition, vk−1(y) is nonincreasing in each component of y. Hence, from (14) and
(15), for given q and y, sk−1(t, y) is increasing in t whereas ck−1(t, y) is nonincreasing in t .
This implies that there exists a threshold defined as

bk−1(q, y) = max{t : sk−1(t, y) ≥ ck−1(t, y)}
such that, in state (k − 1; t, y), the optimal rule makes an offer to the (n − k + 1)th applicant
if Xn−k+1 = t ≥ bk−1(q, y). However, since the optimal rule is history dependent, it is
a formidable task to derive the explicit expression for the threshold, even for the simplest
threshold b1(q, y) for which the vector y has a single component y. After a considerable
amount of arithmetic, we obtain, for 0 < q < 1,

b1(q, y) = min

(
max

{
1 − 1

2p
, y

}
, max

{
(1 − q − q2) − p2y

2pq
, 0

})
,
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or, more specifically,

(i) for 0 < q < 1
2 ,

b1(q, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − 1

2p
if 0 ≤ y < 1 − 1/2p,

y if 1 − 1/2p ≤ y < (1 − q − q2)/p(1 + q),

(1 − q − q2) − p2y

2pq
if (1 − q − q2)/p(1 + q) ≤ y ≤ 1,

(ii) for 1
2 ≤ q < (

√
5 − 1)/2,

b1(q, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y if 0 ≤ y < (1 − q − q2)/p(1 + q),

(1 − q − q2) − p2y

2pq
if (1 − q − q2)/p(1 + q)≤y <(1 − q − q2)/p2,

0 if (1 − q − q2)/p2 ≤ y ≤ 1,

(iii) for (
√

5 − 1)/2 ≤ q < 1,

b1(q, y) ≡ 0, 0 ≤ y ≤ 1.

It is observed that b1(q, y) is nonincreasing in q, but is not necessarily a monotone function
of y.

We give up finding the optimal rule or the success probability for a finite n, but instead
examine the asymptotic value achieved by a simple stopping rule. As a promising rule suggested
from Model 1, we here consider and evaluate the rule that makes an offer to the applicant, say
the kth applicant, as long as the applicant satisfies Xk ≥ max{bn−k(q), y∗}, where y∗ denotes
the largest value passed up previously. Let P̃(q) represent the asymptotic success probability
achieved by this tractable rule for a given q. Then, since this rule depends on the history only
through the largest component, if any, P̃(q) gives a lower bound on the asymptotically optimal
success probability for Model 2. This value is given as follows through the PPP argument.

Theorem 3. We have

P̃(q) = e−c + (ec − c − 1)

(
pe

c

)qc/p

L

(
qc

p
,

c

p

)
, 0 ≤ q < 1,

where L(a, b) = ∫ ∞
b

xa−1e−x dx for a, b > 0 is an incomplete gamma function.

Proof. The proof is similar to that of Theorem 2. Remember that, for Model 1, the optimal
rule is described as the threshold curve y = c/p(1 − t) defined on the semi-infinite strip
[0, 1] × [0, ∞) with rate p. We use rate p because, as mentioned before, the availability of
the atom is immediately ascertained upon its arrival, so only available atoms can be taken
into consideration. We apply the same threshold curve to our problem. What differs from
Model 1 is the rate of the PPP; the appropriate PPP for our problem must have rate 1 above
the threshold and rate p below the threshold. This follows because the availability of the atom
above the threshold is not ascertained, whereas the availability of the atom below the threshold
is revealed successively (by making an offer) and our rule can stop on the first available atom
that lies below the threshold. Now let T be the arrival time of the first available atom that lies
below the threshold curve y = c/p(1 − t), and let S be the time when the value of the best
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atom above threshold is equal to the threshold. Then

P{T > t} = PPoisson

(
0, p

∫ t

0
g1,p(r) dr

)
, (16)

P{S > s} = PPoisson

(
0,

∫ s

0
(g1,p(s) − g1,p(r)) dr

)
, (17)

where g1,p(r) = c/p(1 − r), 0 < r < 1, as before. It is easy to see that expression (12) also
holds for our problem, that is,

P̃(q) = e−c +
(

1

c
− 1

c
e−c − e−c

)
P{S > T }. (18)

We have, from (16) and (17),

P{S > T } =
∫ 1

0
P{S > t}fT (t) dt

=
∫ 1

0
(1 − t)−c/pe−ct/p(1−t)c(1 − t)c−1 dt

= ec

(
pe

c

)qc/p

L

(
qc

p
,

c

p

)
. (19)

Substituting (19) into (18) yields the desired result.

It is easy to see that, when a is a positive integer,

L(a, b) = (a − 1)! e−b
a−1∑
i=0

bi

i! . (20)

Hence, for some special values of q, P̃(q) can be further simplified.

Corollary 1. Define qm = m/(m + c) for a given positive integer m. Then

P̃(qm) = e−c + (ec − c − 1)e−c
m∑

i=1

(m − 1)!
(m − i)! (m + c)i

, m ≥ 1. (21)

Proof. Let qc/p = m or, equivalently, q = m/(m + c). Then c/p = m + c, so (21) is
immediate from Theorem 3 and (20).

Table 1 presents the numerical values of P̃(q) for specified values of q. This shows that our
rule works well, especially for small values of q, and gives a pretty good lower bound on the
asymptotically optimal value whose trivial upper bound is 0.580 164. The exact asymptotic

Table 1: P̃(q) for some values of q.

q P̃(q)

0.1 0.577
0.3 0.569
0.5 0.558
0.7 0.542
0.9 0.512
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value is still unknown. Since Model 2 is history dependent in a complicated way, finding the
exact value is closely related to the question of how the relevant history can be packed into
tractable limiting form. In addition, there are two more questions of interest which are related
to each other; one is whether the insensitivity to q of the optimal asymptotic value also holds in
Model 2, and the other is whether Models 1 and 2 are asymptotically equivalent in a sense that
the advantage of Model 1 fades away and these two models have the same asymptotic value.
The difficulty of Model 2 is related with the one of Robbins’ problem (see, e.g. Bruss (2005)
for a review of this problem or Bruss and Swan (2009) for a version of Robbins’ problem in a
similar PPP setting).

Appendix A. Proof of Theorem 1

(a) Let pk(x) = (q + px)k, k ≥ 0. To show that pk(x) ≥ vk(x) if and only if x ≥ bk(q)

for a nondecreasing threshold bk(q), it suffices to show that vk(x)/pk(x) is decreasing in x

and increasing in k with vk(x)/pk(x) → 0 as x → 1. This can be easily verified, because the
repeated use of (4) yields

vk(x) = p

k∑
i=1

pk−i (x)

∫ 1

x

max{pi−1(t), vi−1(t)} dt, (A.1)

or, equivalently,

vk(x)

pk(x)
= p

k∑
i=1

1

(q + px)i

∫ 1

x

max{pi−1(t), vi−1(t)} dt,

showing that vk(x)/pk(x) has the desired properties as each term of the sum on the right-hand
side is nonnegative and decreasing in x. To obtain the threshold (5), suppose that the (n − k)th
applicant is a candidate and has value Xn−k = x. If we choose this candidate, the success
probability is pk(x). If instead we continue and choose the next candidate, if any, we can
expect, from (A.1), the corresponding probability to be

qk(x) = p

k∑
i=1

pk−i (x)

∫ 1

x

pi−1(t) dt = (q + px)k
k∑

i=1

1

i
[(q + px)−i − 1].

Since bk(q) is nondecreasing in k, bk(q) must be the value of x which equates pk(x) and qk(x),
i.e. satisfies the equation

k∑
i=1

1

i
[(q + px)−i − 1] = 1 (A.2)

if pk(0) < qk(0) and bk(q) must be 0 otherwise. Comparing (A.2) with (1) (the definition
of bk) yields (5).

(b) A stopping rule d = {dj , 1 ≤ j ≤ n} is called a monotone thresholds rule if it chooses
the first candidate Xj if Xj ≥ dj for a nonincreasing sequence dj , i.e. d1 ≥ d2 ≥ · · · ≥ dn with
0 ≤ dj ≤ 1. We first give an explicit expression for Pn(d), the success probability achieved by
monotone thresholds rule d.
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Lemma 1. Let P(j | d) be the probability of success by stopping on the j th applicant using
rule d . Then Pn(d) = ∑n

j=1 P(j | d), where

P(1 | d) = 1

n
[1 − (pd1 + q)n],

P(r + 1 | d) = 1

r(n − r)

r∑
i=1

(pdi + q)r − 1

n(n − r)

r∑
i=1

(pdi + q)n

− 1

n
(pdr+1 + q)n, 1 ≤ r < n.

Proof. Of many possible proofs, the shortest one is to recognize that the argument of Gilbert
and Mosteller (1966) can apply to our problem by simply replacing di by pdi + q, 1 ≤ i ≤ n,
in their Theorem 4 (3c-1).

Since the optimal rule is a monotone thresholds rule, to show (6), it suffices to show that
Pn(d) can be written as (6) if we set dj = bn−j (q), 1 ≤ j ≤ n for n > m (recall that the index
of bn−j (q) represents the number of observations remaining). If we write pdi + q = vn−i for
convenience, Lemma 1 yields

Pn(d) − 1

n
(1 − vn

n−1) =
n−1∑
r=1

r∑
i=1

1

n − r

(
1

r
vr
n−i − 1

n
vn
n−i

)
− 1

n

n−2∑
i=0

vn
i

=
n−1∑
j=1

j∑
k=1

1

k

(
1

n − k
vn−k
j − 1

n
vn
j

)
− 1

n

n−2∑
i=0

vn
i

= 1

n

n−1∑
j=1

j∑
k=1

[(
1

n − k
+ 1

k

)
vn−k
j − 1

k
vn
j

]
− 1

n

(n−1∑
j=1

vn
j + vn

0 − vn
n−1

)

= 1

n

n−1∑
j=1

Aj − 1

n
(vn

0 − vn
n−1), (A.3)

where

Aj =
j∑

k=1

[(
1

n − k
+ 1

k

)
vn−k
j − 1

k
vn
j

]
− vn

j , 1 ≤ j < n.

From now on, we consider the optimal success probability by setting dj = bn−j (q), or, from (5),

vj =
{

bj if m ≤ j < n,

q if 0 ≤ j < m.

We then have, for j ≥ m,

Aj =
j∑

k=1

[(
1

n − k
+ 1

k

)
bn−k
j − 1

k
bn
j

]
− bn

j

=
j∑

k=1

1

n − k
bn−k
j + bn

j

[ j∑
k=1

1

k
(b−k

j − 1) − 1

]

=
j∑

k=1

1

n − k
bn−k
j , (A.4)
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where the last equality follows from the definition of bj , (1). On the other hand, for j < m,

Aj =
j∑

k=1

[(
1

n − k
+ 1

k

)
qn−k − 1

k
qn

]
− qn

= nqn

[ j∑
k=1

1

k(n − k)
q−k − 1

n

(
1 +

j∑
k=1

1

k

)]
,

and, hence,
m−1∑
j=1

Aj = nqn

[m−1∑
j=1

j∑
k=1

1

k(n − k)
q−k − 1

n

m−1∑
j=1

(
1 +

j∑
k=1

1

k

)]

= nqn

[m−1∑
k=1

m − k

k(n − k)
q−k − m

n

m−1∑
k=1

1

k

]

= nqn
m−1∑
k=1

1

k

[(
m − k

n − k

)
q−k −

(
m

n

)]

= nqn
m∑

k=1

1

k

[(
m − k

n − k

)
q−k −

(
m

n

)]
+ qn. (A.5)

Substituting (A.4) and (A.5) into (A.3), combined with vn
0 = qn, yields (6). For n ≤ m, the

result is immediate from (A.3) by letting vj = q.
(c) Let ck = k(1 − bk). Then ck → c as k → ∞ (see (2)) and (6) is now written as

P∗
n(q) = 1

n

[
1 +

n−1∑
i=m

i∑
r=1

1

n − r

(
1 − ci

i

)n−r]
+ qn

m∑
r=1

1

r

[(
m − r

n − r

)
q−r −

(
m

n

)]
.

Since m is finite for a given q < 1, and so the second term vanishes as n → ∞, we have

P∗
n(q) → P∗(q) =

∫ 1

0

∫ u

0

1

1 − v
(e−c)(1−v)/u dv du.

To evaluate the double integral, make the change of variables s = 1/u and t = (1 − v)/u.
Since this transformation has Jacobian J (s, t) = ∂(u, v)/∂(s, t) = 1/s3, it follows that

P∗(q) =
∫ 1

0

(∫ t+1

1

ds

s2

)
1

t
e−ct dt +

∫ ∞

1

(∫ t+1

t

ds

s2

)
1

t
e−ct dt

=
∫ 1

0

e−ct

1 + t
dt +

∫ ∞

1

(
1

t2 − 1

t
+ 1

1 + t

)
e−ct dt

=
∫ ∞

0

e−ct

1 + t
dt +

∫ ∞

1

e−ct

t2 dt −
∫ ∞

1

e−ct

t
dt

= ec

∫ ∞

1

e−ct

t
dt +

(
e−c − c

∫ ∞

1

e−ct

t
dt

)
−

∫ ∞

1

e−ct

t
dt

= e−c + (ec − c − 1)

∫ ∞

1

e−ct

t
dt,

which proves (7).
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