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Abstract

We show that every orbispace satisfying certain mild hypotheses has ‘enough’ vector
bundles. It follows that the K-theory of finite rank vector bundles on such orbispaces
is a cohomology theory. Global presentation results for smooth orbifolds and derived
smooth orbifolds also follow.

1. Introduction

A (separated) orbispace [Hae90, Beh14] is a topological stack X which admits a cover by open
substacks of the form Y/Γ (where Γ � Y is a continuous action of a finite group on a topological
space) and whose diagonal X → X ×X is proper (see § 3 for background on topological stacks).
Familiar examples of orbispaces include orbifolds, graphs of groups, complexes of groups, and
(the analytifications of) separated Deligne–Mumford algebraic stacks over C.

An interesting question to ask about a given orbispace X is whether there exists a global
presentation X = Y/G for G a compact Lie group; let us call such an orbispace a global
quotient. There are a number of known conditions which imply an orbispace is a global quotient. If
X = Y/Γ for a (possibly infinite) discrete group Γ, thenX is a global quotient by Lück and Oliver
[LO01, Corollary 2.7]. Every (paracompact) smooth effective n-dimensional orbifold is a global
quotient (of its orthonormal frame bundle by O(n)), and it is an old question whether every (not
necessarily effective) smooth orbifold is a global quotient. A sufficient criterion for an orbifold to
be a global quotient was given by Henriques and Metzler [HM04]. Henriques [Hen05] conjectured
that every compact orbispace is a global quotient, however other experts have expressed skepti-
cism that such a general result would be true [Sie98, § 6.4]. The analogous question for algebraic
stacks has been studied by Edidin et al. [EHKV01] and Totaro [Tot04]. It is a result of Kresch
and Vistoli [KV04, Theorem 2], [Kre09, Theorem 4.4] (using a result of Gabber [dJ03], [CTS21,
Chapter 4]) that smooth separated Deligne–Mumford stacks over C with quasi-projective coarse
moduli space are global quotients.

Our main result implies that all orbispaces satisfying very mild hypotheses are global
quotients. In particular, all compact orbispaces are global quotients.
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Enough vector bundles on orbispaces

Theorem 1.1. Let X be an orbispace, with isotropy groups of bounded order, whose coarse
space |X| is coarsely finite-dimensional (every open cover has a locally finite refinement with
finite-dimensional nerve). Then there exists a complex vector bundle V of rank n > 0 over X,
whose fiber over every x ∈ X is isomorphic to a direct sum of copies of the regular representation
of the isotropy group Gx. We may take n = n(d,m) if |X| is d-dimensional (every open cover has
a locally finite refinement with nerve of dimension � d) and has isotropy groups of order � m.

(Note that the ‘real’ and ‘complex’ versions of Theorem 1.1 are equivalent, by tensoring from
R to C and by forgetting from C to R.)

The proof of Theorem 1.1 is split into two parts. In § 2, we prove Theorem 1.1 for any
orbispace presented by a simplicial complex of groups; this special case carries the essential
topological content of the result. Due to one particular step in this proof, we have no explicit
bound on the rank n(d,m) of the vector bundles proven to exist. In § 4, we deduce Theorem 1.1 in
general by showing that every paracompact orbispace admits a representable map to a simplicial
complex of groups. This result (Proposition 4.9) is likely of independent interest; it is the analogue
of mapping a paracompact Hausdorff space to the nerve of an open covering using a partition of
unity (it is, thus, worthy of note that its proof is not trivial).

The following immediate corollaries of Theorem 1.1 are derived in § 5.

Corollary 1.2. For X as in Theorem 1.1, we have X = P/U(n) for a space P .

Corollary 1.3. Every paracompact smooth orbifold X of dimension � d with isotropy groups
of order � m is the quotient X = P/U(n) of a smooth manifold P by a smooth action of the
compact Lie group U(n), where n = n(d,m).

It seems that Theorem 1.1 does not help resolve the question of whether every separated
Deligne–Mumford stack of finite type over C is a global quotient; the question of whether the
vector bundles produced by Theorem 1.1 on its analytification are algebraic (or even analytic)
seems difficult.

In § 6, we prove the following corollary of Theorem 1.1, to which the titular phrase ‘having
enough vector bundles’ refers.

Corollary 1.4. Let X → Y be a representable map of orbispaces satisfying the hypothesis of
Theorem 1.1. Every vector bundle on X of bounded rank embeds into the pullback of a vector
bundle of bounded rank on Y .

It is well known that Corollary 1.4 is the key statement needed to show that the K-theory of
finite rank vector bundles on orbispaces satisfies excision and exactness and is, thus, a cohomology
theory (see [LO01, § 3] and [Hen05, § 6.3]). We elaborate on this assertion in § 6, using the
suggestive reformulation of Corollary 1.4 as the statement that pullback of vector bundles is
cofinal. The K-theory of finite-rank vector bundles should agree (for reasonable orbispaces)
with the other standard models of K-theory for orbispaces, such as using bundles of Fredholm
operators [Seg70, Mat71, Ati69, AS69] or using orthogonal spectra [Sch18, §§ 6.3–6.4] (compare
with Remark 1.6).

Remark 1.5. Another known (to experts) consequence of Corollary 1.4 (which we do not explain
in detail) is that every paracompact quasi-smooth derived smooth orbifold with tangent and
obstruction spaces of dimension � d and isotropy groups of order � m is the derived zero set of a
smooth section of a vector bundle of rank � n over a smooth orbifold of dimension � n = n(d,m).
(‘Quasi-smooth’ means locally isomorphic to the derived zero set of a smooth section of a smooth
vector bundle over a smooth orbifold.)
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Remark 1.6. Combined work of Schwede [Sch20] and Gepner and Henriques [HG07] established
an equivalence between orthogonal spaces up to global equivalence (with respect to the ‘global
family’ of all finite groups) and certain categories of ‘cellular’ topological stacks (which include,
but are more general than, what we call orbispaces here). The vector bundles produced by
Theorem 1.1 allow for a concrete description of the functor from orbispaces to orthogonal spaces
(compare [Sch18, Definition 1.1.27]). Let X be an orbispace, and let E be any faithful vector
bundle over X (meaning the fibers of E are faithful representations of the isotropy groups of X).
The orthogonal space corresponding to X is given by

V �→ EmbX(E, V ),

where EmbX(E, V ) denotes the total space of the bundle of embeddings of E into V (note that
EmbX(E, V ) is a space because E is faithful).

Schwede [Sch18] also associates to every orthogonal spectrum a cohomology theory on orthog-
onal spaces, hence on orbispaces. Given an orthogonal spectrum A and an orbispace X which
admits faithful vector bundles, the degree-zero A-cohomology of X is (in view of the above)
given by the direct limit over vector bundles E over X of the set of homotopy classes of sections
of the fibration ΩEA(E)→ X. More generally, we may consider the mapping spectrum F (X,A)
defined by

n �→ lim−→
E/X

Γ(X,ΩEA(E ⊕ Rn))

whose stable homotopy groups are the A-cohomology groups of X. If A is a global Ω-spectrum
[Sch18, Definition 4.3.8], then this direct limit is achieved at any faithful E, and the above
definition of F (X,A) is an Ω-spectrum. Let us also propose a possible definition of the
A-homology groups of X as the stable homotopy groups of the spectrum

n �→ lim−→
E/X

∣∣ΩEA(E ⊕ Rn)
∣∣

where | · | indicates taking the coarse space of the total space of ΩEA(E ⊕ Rn) over X.

Remark 1.7. It is natural to ask to what extent Theorem 1.1 may be generalized to the case
of ‘Lie orbispaces’ (topological stacks locally modelled on Y/G for G a compact Lie group).
The naive generalization is simply false: there are purely ineffective Lie orbispaces with isotropy
group S1 and coarse space S3 which have no finite rank faithful vector bundles [Tot04, § 2].
It is, however, reasonable to conjecture that the proof of Theorem 1.1 could be generalized to
prove that the existence of enough vector bundles on a Lie orbispace is a purely cohomological
question.

2. The main construction

This section is devoted to proving Theorem 1.1 for orbispaces which are presented by a simplicial
complex of groups. This special case (stated as Theorem 2.13) carries the essential topological
content of Theorem 1.1. For general background on orbispaces and topological stacks, we refer
the reader to § 3.

We begin by describing the basic idea of the proof, which we then implement in detail. Our
orbispace X comes with a filtration by skeleta

∅ = X−1 ⊆ X0 ⊆ X1 ⊆ · · · ,
whereXk is obtained fromXk−1 by attaching cells of the form (Dk, ∂Dk)× BG for finite groupsG
(here BG = ∗/G is the orbispace quotient). We construct the desired vector bundle by induction
on skeleta.
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Enough vector bundles on orbispaces

A direct implementation of this strategy runs immediately into the following obstruction.
A (complex) vector bundle V on ∂Dk × BG decomposes canonically as V =

⊕
ρ∈Ĝ Vρ ⊗ ρ for

vector bundles Vρ on ∂Dk indexed by the complex irreducible representations ρ of G. Thus, V
is classified by an element of

∏
ρ∈Ĝ πk−1(

∐
nBU(n)), which vanishes if and only if V extends

to Dk × BG. We seek to detect these obstructions using Chern characters. According to Bott
periodicity, the homotopy groups of BU are given by

πi(BU) =

{
Z i even,
0 i odd,

and the Chern character of a generator of π2i(BU) is nonzero. Now the Chern character of
V =

⊕
ρ∈Ĝ Vρ ⊗ ρ is given by ch(V ) =

∑
ρ∈Ĝ ch(Vρ) dim ρ, so triviality of ch(V ) does not imply

triviality of each ch(Vρ) or of the aforementioned obstructions to extending V .
To capture the information we need about V , we consider the more refined characteristic class

which we call the inertial Chern character1 chI (studied previously by Adem and Ruan [AR03]),
which is a cohomology class on the inertia stack

IX := Eq
(
X →→ X

)
= X ×X×X X.

In local coordinates X = Y/G, we have IX =
(⊔

g∈G Y
g
)
/G. In such coordinates, the inertial

Chern character is defined by recalling the Chern–Weil description of the usual Chern character
ch(V ) = tr exp(Ω/(−2πi)), for Ω the curvature of a hermitian connection on V , and writing

chI(V ) = tr
[
g exp

(
Ω
−2πi

)]
.

Now the inertia stack of ∂Dk × BG is ∂Dk ×G/G (quotient by the conjugation action), and
the inertial Chern character of V =

⊕
ρ∈Ĝ Vρ ⊗ ρ is given by chI(V ) =

∑
ρ∈Ĝ ch(Vρ)χρ. Thus,

if chI(V ) is trivial, then so is each ch(Vρ) by linear independence of characters, and hence V
extends to Dk × BG as desired.

We are thus led to consider the modified problem of constructing a vector bundle on X
with the desired fibers and with trivial inertial Chern character. It suffices to show that if Xk−1

admits such a vector bundle, then so does Xk. The vanishing of chI(V ) ∈ H∗(IXk−1) guarantees
that the obstructions to extending V to Xk vanish, by the above discussion. It thus remains
to show that this extension can be taken to have trivial inertial Chern character. The inertial
Chern character of any extension is an element of ker(H∗(IXk)→ H∗(IXk−1)). By the long
exact sequence

· · · → H∗(IXk, IXk−1)→ H∗(IXk)→ H∗(IXk−1)→ · · ·
it is thus in the image of H∗(IXk, IXk−1). The inertial Chern character is an even degree class,
so we may assume that k is even. By modifying how we extend V from Xk−1 to Xk by an
element of

∏
ρ∈Ĝ πk(BU) over a given k-simplex, we can shift its inertial Chern character by

any integral linear combination of characters in Hom(G/G,C) ⊆ H∗(IXk, IXk−1) (for G the
isotropy group of that given k-simplex). By replacing V with V ⊕a, we can multiply its inertial
Chern character by any positive integer a. A combination of these two operations suffice to kill
the inertial Chern character, provided that it is χ-rational (rational with respect to a certain
Q-structure on H∗(IX) differing from the usual one). This rationality is not at all obvious given
the transcendental definition we give of the inertial Chern character, but it is true, and thus the
proof is complete.

1 It is tempting to call it the ‘Chern character character’.
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The remainder of this section is devoted to making the above outline precise. We begin
by recalling the definition of a simplicial complex of groups (see also Haefliger [Hae91],
Corson [Cor92], or Bridson and Haefliger [BH99]).

Definition 2.1. A simplicial complex of groups is a pair (Z,G) consisting of a simplicial
complex Z together with the following data.

• For every simplex σ ⊆ Z, a group Gσ.
• For every pair of simplices σ ⊆ τ , an injective group homomorphism Gτ ↪→ Gσ.
• For every triple of simplices ρ ⊆ σ ⊆ τ , an element of Gρ conjugating the inclusion Gτ ↪→ Gρ

to the composition of inclusions Gτ ↪→ Gσ ↪→ Gρ.
• For every quadruple of simplices π ⊆ ρ ⊆ σ ⊆ τ , the resulting product of elements of Gπ

conjugating Gτ ↪→ Gπ to Gτ ↪→ Gρ ↪→ Gπ to Gτ ↪→ Gσ ↪→ Gρ ↪→ Gπ to Gτ ↪→ Gσ ↪→ Gπ and
back to Gτ ↪→ Gπ must be the identity element of Gπ.

Injectivity of each map Gτ ↪→ Gσ will ensure that the geometric realization of (Z,G) is an
orbispace, rather than some sort of more exotic topological stack.

A simplicial complex of groups (Z,G) presents an orbispace ‖(Z,G)‖ called its geometric
realization. A precise definition of this geometric realization is given in § 4. For now, it will
suffice to know that the coarse space of ‖(Z,G)‖ is (the geometric realization of) Z itself, and
that over the open star st(σ) ⊆ Z of a simplex σ ⊆ Z, the geometric realization ‖(Z,G)‖ is given
by the orbispace quotient ( ⊔

τ⊇σ

τ × (Gτ \Gσ)
) /

Gσ,

where the pieces for τ ⊇ τ ′ ⊇ σ are glued together via the map Gτ \Gσ → Gτ ′ \Gσ induced by
the map Gτ → Gτ ′ and the element of Gσ conjugating the composition Gτ → Gτ ′ → Gσ to the
map Gτ → Gσ.

We often abuse terminology and say ‘simplicial complex of groups’ when we really mean
its geometric realization. Thus, we refer to X = ‖(Z,G)‖ as a simplicial complex of groups. Its
coarse space |X| is the geometric realization of Z.

To apply the methods of differential topology to a given simplicial complex of groups, we
fix a family of (germs of) smooth retractions τ → σ for every pair of simplices σ ⊆ τ such that
the maps τ → σ → ρ and τ → ρ agree for ρ ⊆ σ ⊆ τ (such a family of smooth retractions may
be constructed by induction). Given this data, objects of differential topology on τ (functions,
differential forms, bundles, connections, etc.) are required to be pulled back under τ → σ in a(n
unspecified) neighborhood of every σ ⊆ τ . For bundles, this requirement consists of the data of
a compatible family of isomorphisms with the pullback bundles (one could equivalently consider
only vector bundles built out of transition functions which satisfy the given pullback conditions).

In particular, the de Rham complex Ω∗(X) of a simplicial complex of groups X is defined,
and it coincides with the de Rham complex of its coarse space Ω∗(|X|). There is a natural map
Ω∗(|X|)→ C∗(|X|; R) = C∗(X; R) from the de Rham complex to the simplicial cochain complex
over R, given by integrating differential forms over oriented simplices. It is a standard fact that
this map is a quasi-isomorphism (proof: filter X by skeleta and invoke the five lemma to reduce
to showing that Ω∗(Δk, ∂Δk)→ C∗(Δk, ∂Δk; R) is a quasi-isomorphism, which follows from the
Poincaré lemma).

Definition 2.2 (Chern character). Let X be a simplicial complex of groups, and let V → X
be a complex vector bundle. Given a hermitian metric μ and hermitian connection θ on V , the
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curvature of θ is a 2-form Ω(V, θ) valued in u(V, μ) ⊆ gl(V ) = End(V ), and the Chern character
form

ch(V, θ) := tr exp
(

Ω(V, θ)
−2πi

)
∈ Ωeven(X)

is closed. Its class in cohomology ch(V ) ∈ Heven(X; R) is called the Chern character of V . This
class is independent of μ and θ by an interpolation argument (interpolate on X × [0, 1] between
any two metric/connection pairs on X × 0 and X × 1, and use the fact that H∗(X × [0, 1]) =
H∗(X)).

For any stack X, its inertia stack is the stack

IX := Eq
(
X →→ X

)
= X ×X×X X.

When X = Y/G, we have IX =
(⊔

g∈G Y
g
)
/G. In particular, the local description of the geomet-

ric realization of a simplicial complex of groups provides a local description of its inertia stack
as well. In fact, if X is a simplicial complex of groups then so is IX: a simplex of IX is a pair
(σ, [g]) where σ ⊆ X is a simplex and [g] ⊆ Gσ is a conjugacy class, and G(σ,[g]) is the centralizer
of any element of the conjugacy class [g] ⊆ Gσ, etc.

Definition 2.3 (Inertial Chern character). Let X be a simplicial complex of groups, and let
V → X be a complex vector bundle. The inertial Chern character chI(V ) ∈ Heven(IX; C) is
represented by the closed form

chI(V, θ) := tr
[
g exp

(
Ω
−2πi

)]
∈ Ωeven(IX; C)

for any choice of hermitian metric and connection θ on V . Closedness can be seen by splitting
the pullback of V to IX into isotypic pieces for the action of the cyclic group generated by
g and observing that the contribution of each such piece is a (usual) Chern character form.
Independence of the metric and connection follows from the same interpolation argument as
before.

Example 2.4. IfX = BG, a vector bundle overX is simply a representation ofG, the inertia stack
IX = G/G is the stack quotient of the conjugation action of G on itself, and the inertial Chern
character chI(V ) : G/G→ C is the character g �→ tr(g|V ) of V regarded as a representation of G.

Example 2.5. If X = Y × BG for a smooth manifold Y and V =
⊕

ρ∈Ĝ Vρ ⊗ ρ, then IX =
Y × (G/G) and the inertial Chern character chI(V ) : G/G→ H∗(Y ; C) is given by chI(V ) =∑

ρ ch(Vρ)χρ. As the characters χρ of the irreducible representations ρ of G form a basis for the
space of maps G/G→ C, we see that for X = Y × BG, the inertial Chern character determines
(and is determined by) the Chern characters of each of the associated bundles Vρ.

Example 2.6. The degree-zero part of the inertial Chern character chI
0(V ) ∈ H0(IX; C) records

the characters of the fibers of V , regarded as representations of the isotropy groups Gx of the
points of X.

Despite admitting the aforementioned transcendental definition in terms of differential forms,
the (usual) Chern character ch(V ) ∈ H∗(X; R) is well known be rational, i.e. it lies in the sub-
space H∗(X; Q) ⊆ H∗(X; R). The inertial Chern character does not always lie in the subspace
H∗(IX; Q) ⊆ H∗(IX; C), rather it is rational with respect to a different Q-structure, which we
now introduce.
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Definition 2.7 (χ-integral cohomology of IX). Regard the simplicial cochain group C∗(IX; C)
as the group of simplicial cochains on X with coefficients in Hom(Gx/Gx,C). In this descrip-
tion, let us replace Hom(Gx/Gx,C) with its subspace of integral (respectively, rational) linear
combinations of characters of Gx. Equivalently, we consider the complex of simplicial cochains
on IX which act on σ × (Gσ/Gσ) ⊆ IX (for any simplex σ ⊆ X) by an integral (respectively,
rational) linear combination of characters of Gσ. We denote the resulting cohomology groups
by H∗(IX; Zχ) (respectively, H∗(IX; Qχ)), which are evidently functorial in X. We say that an
element of H∗(IX; C) is χ-integral (respectively, χ-rational) to mean that it lies in the image of
H∗(IX; Zχ) (respectively, in the subspace H∗(IX; Qχ)).

Example 2.8. If X = Y × BG, then IX = Y × (G/G) and H∗(IX; Zχ) = H∗(X; Z[Ĝ]). Thus,
chI(V ) =

∑
ρ ch(Vρ)χρ is χ-rational because each ch(Vρ) is rational.

As the coefficient systems on X appearing in Definition 2.7 are finite free modules over Z,
we may dualize to define homology groups H∗(IX; Zχ) as well.

Lemma 2.9. There are canonical isomorphisms

H∗(IX; C) = Hom(H∗(IX; Zχ),C),

H∗(IX; Qχ) = Hom(H∗(IX; Zχ),Q),

and a canonical short exact sequence

0→ Ext1(H∗−1(IX; Zχ),Z)→ H∗(IX; Zχ)→ Hom(H∗(IX; Zχ),Z)→ 0.

Proof. The complex C∗(IX; Zχ) is degreewise free, and the complexes C∗(IX; Zχ), C∗(IX; Qχ),
and C∗(IX; C) are obtained from it by applying the functors Hom(−,Z), Hom(−,Q), and
Hom(−,C), respectively. �

Proposition 2.10 (χ-rationality of chI). LetX be a simplicial complex of groups of order � m.
The inertial Chern character of any vector bundle V/X is χ-rational. In fact, there exists a
positive integer N = N(m, d, dimV ) such that N · chI

d(V ) is χ-integral.

It is worth remarking that the proof we give does not provide an explicit expression for
N(m, d, n) other than for n = 1.

Proof. We first show that the inertial Chern character of any line bundle L/X is χ-rational. We
have tr(ab) = tr(a) tr(b) for endomorphisms a, b of C, so the inertial Chern character of a line
bundle L splits as the product

chI(L) = chI
0(L) exp(ch1(L)),

where chI
0(L) ∈ H0(IX; Zχ) is the fiberwise character of L and ch1(L) ∈ H2(X; C) is the Chern

character in degree one. It thus suffices to show that ch1(L) is rational. We have k ch1(L) =
ch1(L⊗k), so it suffices to show that ch1(L⊗k) is integral for some positive integer k. As all
isotropy groups of X have order � m, the tensor power L⊗m! descends to a line bundle M on
the coarse space. As M is an ordinary line bundle over a space (rather than an orbispace), its
first Chern class c1(M) = ch1(M) is integral. We have thus shown that chI(L) is χ-rational (in
fact, we have shown that d!(m!)d chI

d(L) is χ-integral).
To treat the case of vector bundles of dimension greater than one, we use the splitting

principle. Given a vector bundle V/X with hermitian metric, let F(V )→ X denote the fibra-
tion whose fiber over x ∈ X is the space of decompositions of Vx into ordered orthogonal
one-dimensional subspaces. In other words, F(V ) = P/U(1)n where P → X is the principal
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U(n)-bundle associated to V/X with its chosen metric. We claim that the pullback map

H∗(IX; C)→ H∗(IF(V ); C)

is injective. The fiber of IF(V )→ IX over a given point (x, g) ∈ IX is the space of g-invariant
ordered decompositions of Vx into one-dimensional subspaces. As the group generated by g
is abelian, its irreducible representations are one-dimensional, and hence there are plenty of
such decompositions which are g-invariant, namely when each one-dimensional subspace is
contained in some g-isotypic piece of Vx. Thus, IF(V )→ IX is a disjoint union of iterated
projective space bundles, from which the desired injectivity statement follows (for any projective
space bundle P(W )→ Z over an orbispace Z, the pullback map H∗(Z)→ H∗(P(W )) is split
by the map α �→ ∫

(c1(L)dim W−1 ∪ α) where L/P(W ) denotes the tautological line bundle and∫
: H∗+2(dim W−1)(P(W ))→ H∗(Z) denotes fiberwise integration).

As H∗(IX; C)→ H∗(IF(V ); C) is injective and HomZ(−,C) is exact, we conclude
from Lemma 2.9 that Hom(H∗(IX; Zχ)/H∗(IF(V ); Zχ),C) = 0, and hence that the domain
is torsion. From this and Lemma 2.9 again, it follows that a class in H∗(IX; C) is χ-rational if
and only if its pullback to H∗(IF(V ); C) is χ-rational. Now consider the pullback of V to F(V ).
This pullback splits as a direct sum of line bundles, so because the inertial Chern character is
additive under direct sum, we conclude that the pullback of chI(V ) to IF(V ) is χ-rational, and
hence that chI(V ) is itself χ-rational.

It remains to produce an integer N = N(m, d, n) such that N · chI
d(V ) is χ-integral for

dimV = n. We claim that there exists a finite orbi-complex Bm,dU(n) carrying a principal
U(n)-bundle

Em,dU(n)→ Bm,dU(n)

with the property that every principal U(n)-bundle over a simplicial complex of groups X of
dimension � d and isotropy � m is a pullback of Em,dU(n)→ Bm,dU(n). As the inertial Chern
character of Em,dU(n)→ Bm,dU(n) is χ-rational and Bm,dU(n) is finite, there exists an integer
N = N(m, d, n) such that N times this inertial Chern character is χ-integral in cohomological
degree d. By pullback, the same integer N works for any vector bundle of rank n over a sim-
plicial complex of groups of order � m. Note that this argument gives no explicit bound on the
integer N .

It remains to construct Em,dU(n)→ Bm,dU(n). We seek U(n)-spaces Em,dU(n) such that

Em,−1U(n) = ∅,

Em,dU(n) = Em,d−1U(n) ∪
(

finitely many cells of the
form (Dd, ∂Dd)× U(n)/G

)
,

πr((Em,dU(n))G) = 0 for r < d,

where G ⊆ U(n) ranges over all finite subgroups of U(n) of order � m. Note that there are finitely
many conjugacy classes of such subgroups, and it suffices to consider just one representative
of each conjugacy class. To show that Em,dU(n) exists given Em,d−1U(n), argue as follows. We
have πd−1((Em,d−1U(n))G) = Hd−1((Em,d−1U(n))G) by Hurewicz, and the latter group is finitely
generated because Em,d−1U(n) is made up of finitely many cells. We define Em,dU(n) by attaching
cells (Dd, ∂Dd)× U(n)/G along a choice of finitely many generators of πd−1((Em,d−1U(n))G),
for each of the finitely many subgroups G ⊆ U(n) on our fixed set of representatives. Note that
(Dd × U(n)/H)G = Dd × {a ∈ U(n) | a−1Ga ⊆ H}, so any map Sr → (Em,dU(n))G for r < d can
be homotoped to land inside (Em,d−1U(n))G. It follows that the homotopy groups of (Em,dU(n))G

satisfy the desired vanishing property.
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Let us show that any principal U(n)-bundle P → X is pulled back from Em,dU(n)→
Bm,dU(n) when dimX � d with isotropy groups of order � m. That is, we should construct
an equivariant map P → Em,dU(n) (note that since the target is a space, this is the same as an
equivariant map from the coarse space |P |). By induction on the cells of X, it suffices to solve
the extension problem for equivariant maps from (Dr, ∂Dr)× U(n)/G to Em,dU(n) for r � d
and |G| � m. This is equivalent to the extension problem for maps (Dr, ∂Dr)→ (Em,dU(n))G,
whose positive solution for r � d is one of the defining properties of Em,dU(n). �

Example 2.11. A previous version of this text claimed a version of Proposition 2.10 with N
independent ofm. This stronger result is false; here is a counterexample. Begin with B(Z/m) with
a line bundle given by multiplication by e2πi/m on C. Glue on a disk D2 using an attaching map
∂D2 = S1 → B(Z/m) to a generator of Z/m. The line bundle extends because all complex line
bundles on a circle are trivial. The inertial Chern character of this line bundle has denominatorm.

Lemma 2.12 (Bott). The image of the Chern character map

chn : π2n(BU)→ H2n(S2n; Q)

is precisely H2n(S2n; Z).

Proof. This is an immediate corollary of Bott periodicity; for completeness, we include the
proof from [Mat11]. Let η/S2 denote the line bundle with c1(η) = 1, and let 1 denote the
trivial line bundle. According to Bott periodicity, multiplication with η − 1 ∈ K̃0(S2) defines
an isomorphism K̃0(X)→ K̃0(Σ2X). In particular, (η − 1)⊗n ∈ K̃0(S2n) is a free generator.
Multiplicativity of the Chern character gives chn((η − 1)⊗n) = ch1(η − 1)n = 1n = 1. �

We now have all the ingredients we need to prove the main result of this section, namely
Theorem 1.1 for simplicial complexes of groups.

Theorem 2.13. Let X be a d-dimensional simplicial complex of groups of order � m. There
exists a complex vector bundle V of rank n = n(d,m) > 0 over X, whose fiber over x ∈ X is
isomorphic to a direct sum of copies of the regular representation of Gx.

Proof. The condition on the fibers of V amounts to the assertion that chI
0(V ) = nχ1 where

χ1 ∈ H0(IX; Qχ) denotes ‘the characteristic function of the identity’ as a function Gx/Gx → C.
We construct V satisfying

chI(V ) = nχ1

(meaning all higher inertial Chern characters vanish). Certainly such a vector bundle exists over
the 0-skeleton X0 of X, with rank m!, because all isotropy groups have order � m. It therefore
suffices to show that any such vector bundle on Xk−1 extends to Xk.

To extend V as a vector bundle from Xk−1 to Xk amounts to doing an extension from ∂Dk ×
BG to Dk × BG for each k-simplex. The obstruction to doing this lies in

∏
ρ∈Ĝ πk−1(BU(nρ)),

where nρ = (dimV )(dim ρ)/|G|. The map BU(nρ)→ BU is an isomorphism on πk−1 provided
k − 1 < 2nρ + 2, which is guaranteed by taking say dimV > dm. The Chern character detects
π∗(BU) by Lemma 2.12, so vanishing of the inertial Chern character and linear independence of
characters means that these obstructions all vanish. Thus, V extends to Xk.

It remains to show that the extension of V to Xk can be taken to have trivial inertial Chern
character. The space of extensions over a given k-simplex is a torsor for

∏
ρ∈Ĝ πk(BU(nρ)), which

is again
∏

ρ∈Ĝ πk(BU) once we take dimV > dm. We use this freedom to ensure that the inertial
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Chern character of V on Xk vanishes. Consider the long exact sequence

· · · → H∗(IXk, IXk−1; Qχ)→ H∗(IXk; Qχ)→ H∗(IXk−1; Qχ)→ · · · .
As the inertial Chern character in H∗(IXk; Qχ) maps to zero in H∗(IXk−1; Qχ), it is in the image
of H∗(IXk, IXk−1; Qχ). In particular, it may be nonzero only in degree k. Let us now replace
V with V ⊕a (which multiplies its inertial Chern character by a) for an appropriate positive
integer a so that by Proposition 2.10 its inertial Chern character is χ-integral. Modifying our
bundle by an element of (the product over the k-simplices of)

∏
ρ∈Ĝ πk(BU) shifts its inertial

Chern character by anything in Hk(IXk, IXk−1; Zχ) by Lemma 2.12. We are done because
Hk(IXk, IXk−1; Zχ)→ Hk(IXk; Zχ) is surjective by the long exact sequence. �

Remark 2.14. One may interpret the proof of Theorem 2.13 in homotopy theoretic terms as
follows. Vector bundles are classified by maps to a classifying space BU(n), and because BU(n)
is not contractible, the extension problem for vector bundles has nontrivial obstructions. Vector
bundles with rationally trivialized inertial Chern character are classified by maps to the total
space of a fibration over BU(n) whose fiber classifies odd-dimensional rational cohomology classes
on the inertia stack. Our observation that the obstructions to this new problem are torsion is
essentially the observation that this total space is rationally contractible. The definition of this
fibration over BU(n) depends on the additivity of the Chern character (note that EU(n)→ BU(n)
is not suitable for this argument because EU(n) is a space, hence every bundle pulled back from
EU(n) has trivial isotropy representations). It may prove interesting to interpret this argument
within Schwede’s framework of global homotopy theory [Sch18].

3. Topological stacks

We review some basic facts about stacks (on the category of topological spaces), we give a
precise definition of what we mean by an ‘orbispace’, and we establish some of their basic
properties. For further background, the reader may wish to consult Noohi [Noo05], Gepner
and Henriques [HG07], Behrend [Beh14], Metzler [Met03], Behrend and Noohi [BN06],
Heinloth [Hei05], or Laumon and Moret-Bailly [LMB00].

Let Top denote the category of topological spaces and continuous maps, and let Grpd denote
the 2-category of (essentially) small groupoids. A stack is a functor F : Topop → Grpd which
satisfies descent, i.e. such that for every topological space U and every open cover {Ui → U}i,
the natural functor

F (U)→ Eq
[∏

i

F (Ui)→→
∏
i,j

F (Ui ∩ Uj)→→→
∏
i,j,k

F (Ui ∩ Uj ∩ Uk)
]

is an equivalence. Stacks form a 2-category, with morphisms given by natural transformations
of functors. The 2-category of stacks is complete, meaning all (small) limits exist; furthermore,
these limits may be calculated pointwise in the sense that (limα Fα)(U) = limα(Fα(U)). Note
that, as we are working in a 2-categorical context, all functors are 2-functors, all diagrams are
2-diagrams, all limits are 2-limits, etc. (though we usually omit the prefix ‘2-’).

The Yoneda lemma implies that the Yoneda functor X �→ Hom(−, X) embeds the category
of topological spaces fully faithfully into the 2-category of stacks, and moreover that the natural
map from F (X) to the groupoid of maps of stacks Hom(−, X)→ F (−) is an equivalence. The
category of topological spaces is complete, and the Yoneda embedding is continuous (commutes
with limits). Hence, we make no distinction between a topological space X and the associated
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stack Hom(−, X) of maps to X, nor between objects of F (X) and maps Hom(−, X)→ F (−)
(which we simply write as X → F ).

Every stack X has a coarse space |X| (a topological space) which is initial in the category of
maps from X to topological spaces. Concretely, the points of |X| are the isomorphism classes of
maps ∗ → X, and a subset U ⊆ |X| is open if and only if for every map Y → X from a topological
space Y , the inverse image of U is an open subset of Y .

A stack is called representable if and only if it is in the essential image of the Yoneda
embedding (i.e. it is isomorphic to a topological space). A morphism of stacks F → G is called
representable if and only if for every map X → G from a topological space X, the fiber product
F ×G X is representable.

For any property P of morphisms of topological spaces which is preserved under pullback,
a representable morphism of stacks F → G is said to have property P if and only if the pull-
back F ×G X → X has P for every map X → G from a topological space X. The following are
examples of properties P of morphisms f : X → Y which are preserved under pullback:

• f is injective;
• f is surjective;
• f is open, meaning that the image of any open set is open. In contrast, the property of being

closed, meaning that the image of any closed set is closed, is not preserved under pullback;
• f is an embedding, meaning that it is a homeomorphism onto its image;
• f is a closed embedding ;
• f is étale, meaning that for every x ∈ X there exists an open neighborhood x ∈ U ⊆ X such

that f |U : U → Y is an open embedding;
• f is separated, meaning that for every distinct pair x1, x2 ∈ X with f(x1) = f(x2), there exist

open neighborhoods xi ∈ Ui ⊆ X which are disjoint U1 ∩ U2 = ∅ (this is equivalent to the
relative diagonal X → X ×Y X being a closed embedding);

• f is universally closed, meaning thatX ×Y Z → Z is closed for every Z → Y ; this is equivalent
to the assertion that for every y ∈ Y and every collection of open sets {Ui ⊆ X}i covering
f−1(y), there exists a finite subcollection which covers f−1(V ) for some open neighborhood
y ∈ V ⊆ Y (one proof of this equivalence goes via yet a third equivalent condition, namely
that every net {xα ∈ X}α with f(xα)→ y has a subnet converging to some x ∈ f−1(y));

• f is proper, meaning that it is separated and universally closed;
• fadmits local sections, meaning that there is an open cover {Ui ⊆ Y }i such that every

restriction f |f−1(Ui) : f−1(Ui)→ Ui admits a section;
• f is a finite covering space, meaning that there is an open cover {Ui ⊆ Y }i such that every

restriction f |f−1(Ui) : f−1(Ui)→ Ui is isomorphic to U�ni
i → Ui for some integer ni � 0.

Each of these properties P is also closed under composition, and thus also under fiber products,
meaning that for maps X → X ′ and Y → Y ′ over Z, if both X → X ′ and Y → Y ′ have P, then
X ×Z Y → X ′ ×Z Y

′ also has P (indeed, X ×Z Y → X ×Z Y
′ is a pullback of Y → Y ′).

For any stack X, open (respectively, closed) embeddings Y ↪→ X are in natural bijection
with open (respectively, closed) subsets of |X|.

To check that a given map of spaces satisfies one of the properties P above, it is often helpful
to make use of the fact that these P are all local on the target, meaning that for every open
cover {Ui ⊆ Y }i, if X ×Y Ui → Ui has P for every i, then so does X → Y . This leads to the
following generalization for maps of stacks: if F → G is a representable morphism of stacks and
G′ → G is a representable morphism of stacks admitting local sections, then F → G has P if
and only if F ×G G

′ → G′ has P. In fact, in this statement we need not assume that G′ → G is
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representable, just that it admit local sections in the generalized sense that for every map X → G
from a topological space X, there exists an open cover {Ui ⊆ X}i such that each G′ ×G Ui → Ui

admits a section. We thus say that ‘P descends along maps admitting local sections’. The same
descent property holds for representability itself.

Lemma 3.1 (Representability descends under maps admitting local sections). Let F → G be a
map of stacks, and let G′ → G be a map of stacks admitting local sections. If F ×G G

′ → G′ is
representable, then so is F → G.

Proof. By replacing F → G and G′ → G with their pullbacks under U → G for a topological
space U , we may assume without loss of generality that G is representable. As G′ → G admits
local sections, we may replace G′ → G with the composition

⊔
i Ui → G′ → G where {Ui ⊆ G}i

is an open cover. Now each F ×G Ui is representable by assumption, and gluing these spaces
together on their common overlaps F ×G (Ui ∩ Uj) gives a topological space representing F . �

A complex vector bundle over a stack X is a representable map V → X together with maps
V ×X V → V and C× V → V (both over X) such that for every map U → X from a topological
space U , there exists an open cover {Ui ⊆ U}i and integers ni � 0 such that V ×X Ui → Ui is
isomorphic to Cni × Ui → Ui equipped with its fiberwise addition and scaling maps. A pullback
of a complex vector bundle is naturally a complex vector bundle.

The class of so called topological stacks (those which admit a presentation via a topological
groupoid) are somewhat better behaved than general stacks. A topological groupoid M →→ O
consists of a pair of topological spaces O (‘objects’) and M (‘morphisms’), two maps M →→ O
(‘source’ and ‘target’), a map O →M (‘identity’), an involution M →M (‘inverse’), and a
map M ×O M →M (‘composition’) satisfying the axioms of a groupoid. A topological groupoid
M →→ O presents a stack [M →→ O] defined as follows. An object of [M →→ O](X) is an open cover
{Ui ⊆ X}i together with maps Ui → O and Ui ∩ Uj →M satisfying a compatibility condition,
and an isomorphism in [M →→ O](X) consists of maps Ui ∩ U ′

i′ →M satisfying a compatibility
condition. There is a natural map O → [M →→ O] (take the trivial open cover {X ⊆ X}) and the
fiber product O ×[M→→O] O is naturally identified with M . The morphism O → [M →→ O] admits
local sections (by definition), so because O ×[M→→O] O → O is representable, it follows by descent
that O → [M →→ O] is representable. Conversely, a representable map U → X admitting local
sections from a topological space U to a stack X determines a topological groupoid U ×X U →→ U
presenting X. Indeed, the fiber product U ×X U is representable (because U and U → X are),
it admits two maps to U (the two projections), an involution (exchanging the two factors), and
a composition map (U ×X U)×U (U ×X U) = U ×X U ×X U → U ×X U (forgetting the middle
factor), and one can check using the stack property that the natural map [U ×X U →→ U ]→ X
is an equivalence. A stack X for which there exists a representable map U → X admitting local
sections from a space U is called topological, and such U → X is called an atlas for X.

For a topological stack X with atlas U → X, for any property P which descends along maps
admitting local sections, the map U → X has P if and only if both maps U ×X U → U have
P, and the diagonal X → X ×X has P if and only if the map U ×X U → U × U has P. In
particular, for any topological stack X, the diagonal X → X ×X is representable, and thus
every map Z → X from a topological space Z is representable. More generally, for any map
of topological stacks X → Y , the relative diagonal X → X ×Y X is representable (by descent
from its pullback V ×X V → V ×Y V for an atlas V → X). If X → Y is representable and Y
is topological, then so is X (if U → Y is an atlas for Y , then its pullback V = U ×Y X → X
is an atlas for X), and the relative diagonal X → X ×Y X has P if and only if the relative
diagonal V → V ×U V of atlases has P (the latter is the pullback of the former under the map
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V ×U V → X ×Y X, which is representable and admits local sections because it is a pullback of
U → Y ).

For a topological space V , a topological group G, and a continuous group action G � V ,
we may consider the action groupoid G× V →→ V with source and target maps (g, x) �→ x and
(g, x) �→ gx. The stack associated to this groupoid is denoted V/G and is called the stack quotient
of the action G � V . If G is discrete, the two maps G× V → V are étale, so V → V/G is étale.
If G is compact and V is Hausdorff, the map G× V → V × V is universally closed (factor
as G× V → G× V × V which is a closed embedding because V is Hausdorff and G× V × V →
V × V which is universally closed because G is compact), so V/G has universally closed diagonal.
If G is Hausdorff, then the map G× V → V × V is separated, so V/G has separated diagonal.
Thus, if G is compact Hausdorff and V is Hausdorff, then V/G has proper diagonal.

A groupoid presentation of a topological stack X also gives a description of its coarse space
|X| as follows. For an atlas U → X, consider the equivalence relation ∼X on U given by the image
of U ×X U → U × U . There is a map X → U/∼X (which is tautological once we regard X as
[U ×X U →→ U ]), inducing a map |X| → U/∼X , which is a bijection, essentially by definition. As
an open substack of X pulls back to an open subset of U invariant under ∼X , it follows that
|X| ∼−→ U/∼X is open and is, thus, a homeomorphism. In particular, it follows that the coarse
space

∣∣V/G∣∣ of the stack quotient V/G is the usual topological quotient of V by G.
An action G � V is called locally trivial if and only if V admits a cover by G-invariant open

sets {G× Zi ⊆ V }i where G � G× Zi acts by left multiplication on G and trivially on Zi. If
G � V is locally trivial, then the natural map from the stack quotient to the topological quotient
V/G→ |V/G| is an equivalence. Indeed, this assertion is local on |V/G|, so it suffices to consider
the case of G � G× Z, where it holds by inspection.

Definition 3.2. A (separated) orbispace is a stack X for which there exists a representable étale
surjection U → X from a topological space U (an ‘étale atlas’), and the diagonal X → X ×X
is proper.

Proposition 3.3. A stack X is an orbispace if and only if |X| is Hausdorff and there exists an
open cover {Vi/Gi ⊆ X}i where Gi are finite discrete groups acting on Hausdorff spaces Vi.

(Similar results include [Beh14, Theorem 1.108] and [Noo05, Proposition 14.10].)

Proof. Let X be an orbispace, and let us show that there is an open cover {Vi/Gi ⊆ X}i. Fix
an étale atlas U → X, and let u ∈ U . The automorphism group Gu := {u} ×X {u} ⊆ U ×X U
is finite and discrete because X → X ×X is proper. As the two projections U ×X U →→ U
are étale, for every g ∈ G there exists an open neighborhood g ∈ Ug ⊆ U ×X U such that
each projection restricted to Ug is an open embedding (this gives another proof that G
has the discrete topology). As G is finite and U ×X U → U × U is separated, we may take
these Ug to be disjoint. Now the complement of

⊔
g Ug is closed and disjoint from G, so

it projects to a closed (by properness) subset of U × U disjoint from (u, u). Hence, there
is an open neighborhood u ∈ V ⊆ U such that V ×X V ⊆ ⊔

g Ug. Thus, V ×X V is a dis-
joint union of pieces indexed by G, and each piece maps homeomorphically to V under each
projection. By further shrinking V , we may assume that the map V ×X V → G respects com-
position (this is possible because composition is continuous). It follows that V ×X V →→ V is
an action groupoid G× V →→ V for an action G � V . As V = {1} × V ↪→ G× V = V ×X V →
V × V expresses the diagonal of V as a composition of proper maps, we conclude that V is
Hausdorff. Now the map of groupoids (G× V →→ V ) = (V ×X V →→ V )→ (U ×X U →→ U)
induces a map of stacks V/G→ X. To see that this is an open embedding, let V + ⊆ U denote
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the orbit of V under the morphisms U ×X U →→ U . As the projections U ×X U →→ U are étale,
it follows that V + ⊆ U is open, and hence [V + ×X V + →→ V +]→ [U ×X U →→ U ] is an open
embedding of stacks; denote this open substack by Z ⊆ X, so V → Z is an étale atlas. Thus, the
topological groupoid V ×X V = V ×Z V →→ V presents Z, so V/G→ X is an open embedding as
desired.

Let us now show that for any orbispace X, its coarse space |X| is Hausdorff. We saw earlier
that |X| is the quotient of U by the image of U ×X U → U × U (which is an equivalence relation).
This equivalence relation is closed because U ×X U → U × U is proper, so |X| is Hausdorff
provided the quotient map U → |X| is open. Now openness of U → |X| does not depend on
which atlas U → X we take: there are étale maps U ← U ×X U ′ → U ′ over |X|, which means
that U → |X| is open if and only if U ′ → |X| is open. Moreover, openness of U → |X| can be
checked locally on |X|, so we may assume without loss of generality that X = V/G. Hence,
it is enough to note that the quotient map V → |V/G| (induced by the canonical étale atlas
V → V/G) is open. Thus, |X| is Hausdorff.

Finally, let us show that if |X| is Hausdorff and there is an open cover {Vi/Gi ⊆ X}i, then
X is an orbispace. The maps Vi → Vi/Gi are representable étale, so U :=

⊔
i Vi → X is an étale

atlas. To show that the diagonal X → X ×X is proper, it is equivalent to show that U ×X

U → U × U is proper. This reduces to showing that V ×X V ′ → V × V ′ is proper for any pair
V/G ↪→ X ←↩ V ′/G′. As |X| is Hausdorff, the map V ×|X| V ′ → V × V ′ a closed embedding
(as it is a pullback of the diagonal of |X|), so it follows that V ×X V ′ → V × V ′ is proper if
and only if V ×X V ′ → V ×|X| V ′ is proper. Now for the purposes of studying the latter map
V ×X V ′ → V ×|X| V ′, we may as well shrink V , V ′, and X so that V/G = X = V ′/G′. Now the
diagonal of V/G = V ′/G′ = X is proper, hence so is V ×X V ′ → V × V ′. �

Corollary 3.4. Every orbispace X has an étale atlas U → X with U Hausdorff; equivalently,
every étale atlas U → X has U locally Hausdorff.

Proof. By Proposition 3.3 there is an open cover {Vi/Gi ⊆ X}i with Vi Hausdorff, so U :=⊔
i Vi → X is an étale atlas with U Hausdorff. Now for any two étale atlases U,U ′ → X, consid-

eration of the surjective étale maps U ← U ×X U ′ → U ′ shows that U is locally Hausdorff if and
only if U ′ is locally Hausdorff. Given any étale atlas U → X with U locally Hausdorff and any
open cover {Ui ⊆ U}i with Ui Hausdorff, the disjoint union U ′ :=

⊔
i Ui → X is an étale atlas

with U ′ Hausdorff. �

Corollary 3.5. For any étale atlas U → X on an orbispace, there exists an open cover
{Vi/Gi ⊆ X}i as in Proposition 3.3 such that each map Vi → X factors through an open
embedding Vi → U .

Proof. Let U → X be given and fix any open cover {Vi/Gi ⊆ X}i as in Proposition 3.3. As
U ×X Vi → Vi is étale, it admits local sections, and hence by replacing each Vi with an open
cover of itself, we may assume that each projection U ×X Vi → Vi admits a section (which is
thus an open embedding). Now the resulting maps Vi → U are étale by the factorization Vi →
U ×X Vi → U , so by again replacing each Vi with an open cover, we may assume they are open
embeddings.

Alternatively, we could note that the open cover {Vi/Gi ⊆ X}i produced by the proof of
Proposition 3.3 is in fact of the desired form. �

Corollary 3.6. A map of orbispaces X → Y is representable if and only if it is injective on
isotropy groups. In particular, an orbispace X is a space if and only if it has trivial isotropy.
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Proof. Any representable morphism of stacks is injective on isotropy groups (just test against
points). Thus, we are left with showing that a map of orbispaces X → Y which is injective on
isotropy groups is representable.

As representability descends under maps admitting local sections, it suffices to show that
the fiber product X ′ = X ×Y Y ′ is representable for some étale atlas Y ′ → Y . Note that X ′ has
trivial isotropy because Y ′ has trivial isotropy and X ′ → Y ′ is injective on isotropy groups (being
a pullback of X → Y ).

We claim that X ′ is an orbispace, provided we take Y ′ to be Hausdorff (which we can
by Corollary 3.4). The pullback of an étale atlas U → X is an étale atlas U ′ → X ′ (because
X ′ → X is representable, being a pullback of Y ′ → Y ). The diagonal of X ′ is the composition
X ′ → X ′ ×X X ′ → X ′ ×X ′. The second mapX ′ ×X X ′ → X ′ ×X ′ is proper as it is a pullback of
X → X ×X. To analyze the first map X ′ → X ′ ×X X ′, note that it pulls back to U ′ → U ′ ×U U

′

under the map U ′ ×U U
′ → X ′ ×X X ′ which admits local sections (being a pullback of U → X).

As Y → Y × Y is separated, its pullback Y ′ ×Y Y ′ → Y ′ × Y ′ is also separated, which implies
each projection Y ′ ×Y Y ′ →→ Y ′ is separated because Y ′ is Hausdorff, which implies Y ′ → Y is
separated. Hence, its pullback U ′ → U is separated, so U ′ → U ′ ×U U

′ is a closed embedding,
hence proper. Thus, X ′ → X ′ ×X X ′ is proper, and we conclude that X ′ is an orbispace.

We are thus reduced to showing that an orbispace Z with trivial isotropy is a space. By
Proposition 3.3, we know that Z is given locally by V/G for V Hausdorff and G finite discrete
acting freely (because Z has trivial isotropy). Free actions G � V with V Hausdorff and G finite
are locally trivial, so we conclude that the map Z → |Z| is an equivalence. Alternatively, we
could note that the chart V/G near a given x ∈ X constructed in the proof of Proposition 3.3
in fact satisfies G = Gx by definition. �

4. Coverings and nerves

We show how Theorem 2.13 implies Theorem 1.1. It is enough to show that a given orbispace
admits a representable map to a simplicial complex of groups; this is Proposition 4.9. This
simplicial complex of groups is basically just the nerve of a suitable open cover, however its
construction is somewhat more delicate than one might initially expect.

A sieve on a topological space X is a subset S ⊆ 2X consisting of open sets such that
U ′ ⊆ U ∈ S implies U ′ ∈ S. A covering sieve on X is a sieve S such that

⋃
U∈S U = X. An open

cover {Ui ⊆ X}i is said to generate the covering sieve on X consisting of those open sets which
are contained in some Ui.

Definition 4.1. A connection sieve on a map of spaces f : X → Y is a covering sieve S on
X such that (1) for U ∈ S, the composition U → X → Y is an open embedding, and (2) for
U, V ∈ S with f(U) = f(V ), either U = V or U ∩ V = ∅.

Note that for sieves satisfying condition (1), condition (2) is equivalent to condition (2′)
for U, V ∈ S either U ∩ V = ∅ or f(U ∩ V ) = f(U) ∩ f(V ). If S′ ⊆ S is an inclusion of covering
sieves and S is a connection sieve on X → Y , then so is S′. In particular, if S and S′ are
connection sieves on X → Y , then so is S ∩ S′. To check that an open cover {Ui ⊆ X}i generates
a connection sieve, it is enough to check axioms (1) and (2′) for the open sets Ui.

Definition 4.2. A map X → Y is called strongly étale if and only if it admits a connection
sieve.

Open embeddings are strongly étale, and strongly étale maps are separated and étale (how-
ever, the converse is false by Example 4.3). Being strongly étale is preserved under pullback
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(take the connection sieve generated by the pullback of the original connection sieve), and the
class of strongly étale maps is closed under composition (a connection sieve SX/Z for a com-
position X → Y → Z is given by those elements of a fixed connection sieve SX/Y for X → Y
whose image lies in a fixed connection sieve SY/Z for Y → Z). A disjoint union

⊔
iXi →

⊔
i Yi

of strongly étale maps Xi → Yi is strongly étale (take disjoint union of connection sieves), and
the projection A× Y → Y is strongly étale for any discrete space A. Being strongly étale is not
local on the target, as shown by the following example.

Example 4.3. Let us construct a finite covering space which is not strongly étale. Let Z =
{1, 1

2 ,
1
4 ,

1
8 , . . .} ∪ {0} ⊆ R with the subspace topology. Every double cover of Z or Z \ 0 is trivial.

A given double cover of Z \ 0 has, however, many distinct extensions to Z, indexed by functions
Z \ 0→ Z/2 modulo those functions which extend continuously to zero.

Now suppose given a double cover of Z together with a connection sieve on it. The restriction
of this data to Z \ 0 remembers the extension of the double cover to Z (use the elements of the
connection sieve projecting to open sets of the form Z ∩ (0, ε)).

Let Z̃+
α → Z+ denote the double cover obtained by gluing two copies of Z � Z → Z over Z \ 0

via some map α : Z \ 0→ Z/2. If Z̃+
α → Z+ is strongly étale, then we can take any connection

sieve on it, restrict to the common Z \ 0 ⊆ Z+, and deduce that the two extensions of the double
cover of Z \ 0 to Z coincide, in other words that α extends continuously to zero. Hence, the double
cover Z̃+

α → Z+ is strongly étale if and only if α extends continuously to zero.

Recall that a topological space is called paracompact if and only if every open cover admits a
locally finite refinement [Die44]. If X is paracompact and Hausdorff, then there exists a partition
of unity subordinate to any given locally finite open cover {Ui ⊆ X}i, namely functions fi :
X → R�0 with supp fi ⊆ Ui such that

∑
i fi ≡ 1 (recall that the support supp f of a function

f : X → R�0 is, by definition, the complement of the largest open set over which f vanishes
identically).

Lemma 4.4. If Y is paracompact Hausdorff, then a map X → Y is strongly étale if and only if
there exists an open cover {Ui ⊆ Y }i such that each map X ×Y Ui → Ui is strongly étale.

Proof. Fix an open cover {Ui ⊆ Y }i and connection sieves Si on X ×Y Ui → Ui. As Y is
paracompact, we may assume that our open cover {Ui ⊆ Y }i is locally finite. Using a par-
tition of unity subordinate to this open cover, we may find another open cover {VI ⊆ Y }I
indexed by nonempty finite subsets I of the original index set, such that VI ⊆

⋂
i∈I Ui and

VI ∩ VJ = ∅ unless I ⊆ J or J ⊆ I (explicitly, we may take VI to be the locus where mini∈I fi >
maxi/∈I fi). We may now define a connection sieve on X → Y as the union over I of 2X×Y VI ∩⋂

i∈I Si. �
An orbispace will be called paracompact (respectively, coarsely finite-dimensional,

d-dimensional) if and only if its coarse space is.

Proposition 4.5. Every paracompact orbispace X has an étale atlas U → X for which the
projections U ×X U →→ U are strongly étale. In fact, there exists such U of the form U =

⊔
i Vi

for an open cover {Vi/Gi ⊆ X}i as in Proposition 3.3.

Proof. Fix an open cover {Vi/Gi ↪→ X}i as in Proposition 3.3. As |X| is paracompact, we may
shrink the spaces Vi (Gi-equivariantly) so as to ensure that the associated open cover {∣∣Vi/Gi

∣∣ ⊆
|X|}i of coarse spaces is locally finite. Choose a partition of unity {fi : |X| → R�0}i subordinate
to the open cover {∣∣Vi/Gi

∣∣ ⊆ |X|}i. Let V 0
i ⊆ Vi denote the open subset where fi > 0. We show

that the étale atlas U :=
⊔

i V
0
i has the desired property.
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It suffices to show that for any pair of open embeddings V/G ↪→ X ←↩ W/H and pair of
functions fV , fW : |X| → R�0 supported inside |V/G| and |W/H|, respectively, the projection
W 0 ×X V 0 → V 0 is strongly étale. We begin by considering the map W ×X V → V , which is
a finite covering space over its open image W/H ×X V ⊆ V (by pullback from W →W/H,
which is a finite covering space by descent from its pullback H ×W →W ). Thus, every point
of W/H ×X V has a neighborhood over which W ×X V → V is strongly étale. Even better,
because V is Hausdorff and G is finite, each G-orbit inside W/H ×X V has a neighborhood over
which W ×X V → V is strongly étale. In other words, each point of |W/H| ∩ |V/G| ⊆ |X| has a
neighborhood over which W ×X V → V is strongly étale.

Now because |X| is paracompact, there exists a locally finite open cover of |X| by |X| \
(supp fV ∪ supp fW ) together with open subsets {Ai ⊆ |W/H| ∩ |V/G|}i over which W ×X V →
V is strongly étale. Fix a partition of unity g : |X| → R�0 supported inside |X| \ (supp fV ∪
supp fW ) and {gi : |X| → R�0} supported inside Ai, that is g +

∑
i gi ≡ 1. Now the patching

procedure for connection sieves from the proof of Lemma 4.4 shows thatW ×X V → V is strongly
étale over the complement of supp g. In particular, it follows by restriction that W 0 ×X V 0 → V 0

is strongly étale. �

A simplicial complex is a pair X = (V, S) consisting of a set V (‘vertices’) and a set S ⊆ 2V \
{∅} (‘simplices’) of finite subsets of V such that S contains all singletons and ∅ �= A ⊆ B ∈ S
implies A ∈ S. The star st(X,σ) ⊆ X of a simplex σ in a simplicial complex X is the subcomplex
consisting of all simplices τ ⊆ X with σ ∪ τ ∈ S(X).

A map of simplicial complexes X → Y is a map of vertex sets V (X)→ V (Y ) which maps
simplices to simplices (the image of an element of S(X) is an element of S(Y )). A map of
simplicial complexes is called injective if and only if the map on vertex sets (hence, also the map
on simplices) is injective. A map of simplicial complexes f : X → Y is called étale (respectively,
locally injective) if and only if the induced maps on stars st(X,σ)→ st(Y, f(σ)) are isomorphisms
(respectively, injective). We call a map of simplicial complexes X → Y sufficiently étale if and
only if every simplex σ ⊆ Y (equivalently, every vertex) is the image of a simplex τ ⊆ X at which
X → Y is étale (this is a useful weakening of the condition of being surjective and étale, which
in the context of simplicial complexes is too strong).

The geometric realization ‖X‖ of a simplicial complex X is the set of tuples t ∈ R
V (X)
�0 with∑

v tv = 1 such that {v : tv > 0} ∈ S(X), topologized by declaring that the realization of the
complete simplex on k + 1 vertices has the usual topology and that a realization ‖X‖ is given
the strongest topology for which (the realization of) every map from a complete simplex to X
is continuous. The geometric realization of an étale map of simplicial complexes is an étale map
of spaces.

A locally injective simplicial complex groupoid M →→ O consists of simplicial complexes O
and M together with structure maps satisfying the axioms of a groupoid, where both maps
M →→ O are locally injective. Local injectivity of the two maps M →→ O implies that the natural
map

∥∥M ×O M
∥∥ ∼−→ ‖M‖ ×‖O‖ ‖M‖ is a homeomorphism, and thus the geometric realization

‖M‖ →→ ‖O‖ is a topological groupoid. If ∂O ⊆ O denotes the subcomplex consisting of those
simplices σ ⊆ O for which it is not the case that the first projection M → O is étale at every
simplex τ ⊆M mapped to σ under the second projection, then the natural map ‖O‖ \ ‖∂O‖ →
[‖M‖ →→ ‖O‖] is étale. A locally injective simplicial complex groupoidM →→ O is called sufficiently
étale if and only if this map is surjective (equivalently, every vertex of O is M -isomorphic to one
not in ∂O).

The abstract simplex category Simp has objects finite totally ordered sets and has morphisms
weakly order-preserving maps; every object of Simp is isomorphic to [n] := {0 < · · · < n} for

2062

https://doi.org/10.1112/S0010437X22007783 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007783


Enough vector bundles on orbispaces

a unique integer n � 0. A simplicial object in a category C is a functor Simpop → C, and the
category of simplicial objects in C is denoted sC. If C is complete (respectively, cocomplete), then
so is sC, and limits (respectively, colimits) are calculated pointwise.

We consider only simplicial sets (objects of the category sSet) and simplicial groupoids
(objects of the category sGrpd). A simplicial set (or groupoid) will be denoted X•, where Xn is
its set (or groupoid) of n-simplices. We denote by Δn• ∈ sSet the standard n-simplex, given by
[m] �→ Hom([m], [n]). The Yoneda lemma implies that Xn = Hom(Δn• , X•).

A map of simplicial sets X• → Y• is called injective if and only if it is so levelwise (i.e. every
Xn → Yn is injective). A map X• → Y• is called étale (respectively, locally injective) if and only if
for every map [n]→ [m] in Simp, the induced map Xm

∼−→ Ym ×Yn Xn is a bijection (respectively,
injective) (it is equivalent to impose this condition only for n = 0). A map X• → Y• is called étale
(respectively, locally injective) at a given n-simplex σ of X• if and only if Xm

∼−→ Ym ×Yn {σ} is
a bijection (respectively, injective) (this condition at a given σ implies the same at any preimage
of σ under any structure map of X•). A map X• → Y• is called sufficiently étale if and only if the
n-simplices of X• at which the map is étale surject onto the n-simplices of Y• (it is equivalent to
impose this condition only for n = 0). These notions generalize to maps of simplicial groupoids
by replacing ‘injectivity’ and ‘surjectivity’ for maps of sets with ‘full faithfulness’ and ‘essential
surjectivity’ for functors of groupoids. These properties are all preserved under pullback and
closed under composition.

The geometric realization ‖X•‖ of a simplicial set X• is the colimit of Δn over all maps Δn• →
X•. Geometric realization is cocontinuous, and the natural map ‖ limα(X•)α‖ → limα ‖(X•)α‖
is bijective, however it need not be a homeomorphism even for finite limits (for example, the
case of binary products is discussed in [May67, Theorem 14.3, Remark 14.4] and [Whi49, Mil56,
BT17]). The map ‖X• ×Y• Z•‖ → ‖X•‖ ×‖Y•‖ ‖Z•‖ is a homeomorphism if at least one of the
maps X• → Y• and Z• → Y• is locally injective. Thus, a locally injective simplicial set groupoid
M• →→ O• determines a topological groupoid ‖M•‖ →→ ‖O•‖.

Let us now introduce the geometric realization ‖X•‖ of any simplicial groupoid X• which is
étale, meaning that it admits a locally injective sufficiently étale map U• → X• from a simplicial
set U•. For any simplicial groupoid X• and any locally injective map U• → X•, the pair of
simplicial sets U• ×X• U• →→ U• forms a locally injective simplicial set groupoid, whose geometric
realization ‖U• ×X• U•‖ →→ ‖U•‖ thus defines a topological stack. The geometric realization of
X• is defined as this topological stack [‖U• ×X• U•‖ →→ ‖U•‖] associated to any locally injective
sufficiently étale map U• → X•.

Lemma 4.6. The geometric realization of an étale simplicial groupoid X• is well defined.

Proof. Let U•, U ′• → X• be locally injective and sufficiently étale. Let U ′′• := U• ×X• U
′• → X•,

and consider the map of simplicial set groupoids (U ′′• ×X• U
′′• →→ U ′′• )→ (U• ×X• U• →→ U•). As

U ′′• → U• is locally injective and sufficiently étale, it follows that this map induces an isomorphism
of topological stacks, and the same applies to U ′• in place of U•. �

Lemma 4.7. The geometric realization ‖X•‖ of an étale simplicial groupoid X• with finite
isotropy is an orbispace.

Proof. All geometric realizations are Hausdorff, so ‖U• ×X• U•‖ → ‖U•‖ × ‖U•‖ is separated,
hence ‖X•‖ has separated diagonal. As X• has finite isotropy, the map U• ×X• U• → U• × U•
has finite fibers, which combined with local injectivity of U• ×X• U• →→ U• implies that ‖U• ×X•
U•‖ → ‖U•‖ × ‖U•‖ is universally closed, hence ‖X•‖ has universally closed diagonal. We have
thus shown that ‖X•‖ has proper diagonal.
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To construct an étale atlas for ‖X•‖, let ∂U• ⊆ U• denote the simplicial subset consisting of
those simplices of U• at which U• → X• is not étale. Then ‖U•‖ \ ‖∂U•‖ → ‖X•‖ is étale. To see
that it is surjective, it suffices to show that ‖U• ×X• U•‖ \ ‖U• ×X• ∂U•‖ → ‖U•‖ is surjective
(note that surjectivity descends under surjective maps such as ‖U•‖ → ‖X•‖), and this follows
because U• → X• is sufficiently étale. �

A simplicial complex X gives rise to a simplicial set b•X (its barycentric subdivision) whose
n-simplices are chains of simplices σ0 ⊆ · · · ⊆ σn ⊆ X (in other words, b•X is the nerve of
S(X)). Barycentric subdivision preserves injectivity, local injectivity, étale, and sufficiently étale.
There is a natural identification of geometric realizations ‖X‖ = ‖b•X‖. Moreover, for a locally
injective sufficiently étale simplicial complex groupoid M →→ O, there is a natural identification
[‖M‖ →→ ‖O‖] = ‖[b•M →→ b•O]‖ (the simplicial groupoid [b•M →→ b•O] is étale because M →→ O
is sufficiently étale).

A simplicial complex of groups (Z,G) also admits a barycentric subdivision b•(Z,G) which
is a simplicial groupoid. In fact, we define b•(Z,G) for any simplicial complex Z equipped with
a functor G : S(Z)op → Grpd from the face poset to groupoids (a simplicial complex of groups
(Z,G) determines such a functor which sends σ to BGσ). The groupoid of n-simplices in the
barycentric subdivision b•(Z,G) is now defined as the groupoid of functors from the category
0→ · · · → n to the category whose objects are pairs σ ∈ S(Z) and o ∈ Gσ and whose morphisms
are inclusions σ1 ⊆ σ2 covered by maps o1 → o2|σ1 . The barycentric subdivision of a simplicial
complex of groups is étale, as can be seen as follows. For any σ ⊆ Z and o ∈ Gσ, we consider
the functor S(st(Z, σ))op → Grpd given by τ �→ Gσ∪τ ×Gσ {o}. Applying the nerve construction
from just above to this functor, we obtain a simplicial set mapping to b•(Z,G), which is the
required locally injective map which is étale over (σ, o) ∈ b0(Z,G). An essentially equivalent dis-
cussion (albeit without barycentrically subdividing) appears in [BH99, 12.24–12.25]. As b•(Z,G)
is étale, it has a geometric realization ‖b•(Z,G)‖ which we also write as ‖(Z,G)‖. When G are
finite groups (or, more generally, groupoids with finite isotropy), then the geometric realization
‖(Z,G)‖ is an orbispace by Lemma 4.7, and this is what we have been calling the orbispace
presented by the simplicial complex of finite groups (Z,G).

Lemma 4.8. Let M →→ O be a locally injective simplicial complex groupoid with the following
properties.

• The vertices of every simplex of O are pairwise non-isomorphic via M .
• If simplices σ and σ′ of O have vertex sets which are isomorphic via M , then σ and σ′ are

themselves isomorphic via M .

Then there is a simplicial complex of groups giving rise to the same simplicial groupoid as
M →→ O.

Proof. The hypotheses imply that there is a simplicial complex Z whose vertices are the iso-
morphism classes in the vertex groupoid V (M)→→ O(M), and whose simplices are the
M -isomorphism classes of simplices of O. Now M →→ O defines a functor G : S(Z)op → Grpd, and
there is a natural isomorphism between b•(Z,G) and the simplicial groupoid [b•M →→ b•O]. By
definition, all the groupoids Gσ have a single isomorphism class, and all the functors Gτ → Gσ

are faithful (this follows from local injectivity of M →→ O). Choosing (independently) a base
object of each Gσ shows (Z,G) comes from a simplicial complex of groups. �

The nerve N(X, {Ui}i) of a collection of open sets {Ui ⊆ X}i is the simplicial complex
whose vertices V are the indices i with Ui �= ∅, and in which a collection I of indices spans a
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simplex (i.e. I ∈ S) if and only if
⋂

i∈I Ui �= ∅. A partition of unity {fi : X → R�0}i subordinate
to a locally finite open cover {Ui ⊆ X}i defines a map from X to the geometric realization
‖N(X, {Ui}i)‖ of the nerve of the open cover.

Proposition 4.9. For any paracompact orbispaceX, there exists a simplicial complex of groups
(Z,G) and a map X → ‖(Z,G)‖ which is injective on isotropy groups. Moreover, we may take
Z to be locally finite, and we may take the groups Gz for vertices z ∈ Z to be isotropy groups
of points of X. If X is coarsely finite-dimensional (respectively, d-dimensional), then Z may be
taken to be finite-dimensional (respectively, d-dimensional).

Proof. We begin with an open cover {Vi/Gi ⊆ X}i with the properties guaranteed by
Proposition 4.5, and we set U :=

⊔
i Vi. As |X| is paracompact, by Gi-equivariantly shrinking

the spaces Vi, we may assume that the associated open cover {|Vi/Gi| ⊆ |X|}i of coarse spaces
is locally finite. We fix a covering sieve S on U ×X U which is invariant under the ‘exchange’
(i.e. ‘inverse’) involution of U ×X U and is a connection sieve for both projections U ×X U →→ U .
We also fix a partition of unity {fi : |X| → R�0}i subordinate to the open cover {|Vi/Gi| ⊆ |X|}i.

Denote by o(x) ⊆ U and oi(x) ⊆ Vi the fibers over x ∈ |X|, so o(x) =
⊔

i oi(x); similarly
define m(x) ⊆ U ×X U and mij(x) ⊆ Vi ×X Vj with m(x) =

⊔
i,j mij(x). These sets are finite

because theGi are finite and {|Vi/Gi| ⊆ |X|}i is locally finite. Furthermore, they have the discrete
topology, because U is Hausdorff and U ×X U is Hausdorff (because U is Hausdorff and X →
X ×X is separated).

The Hausdorff property implies that the inclusions oi(x) ⊆ Vi and mij(x) ⊆ Vi ×X Vj admit
retractions defined in some open neighborhood. Now the inverse images of small open neigh-
borhoods x ∈ |Zx| ⊆ |X| (i.e. open substacks Zx ⊆ X) form a basis of neighborhoods of oi(x)
and mij(x), so for sufficiently small Zx, these inverse images are naturally disjoint unions
Ux =

⊔
o∈o(x) Uo and Ux ×X Ux =

⊔
m∈m(x) Um. Note that this applies only inside Vi and Vi ×X Vj

for which oi(x) and mij(x) are nonempty: the full inverse image of Zx inside U may intersect
other Vi nontrivially. By shrinking Zx further, we may ensure that the retraction (Ux ×X Ux

→→
Ux)→ (m(x)→→ o(x)) is a map of groupoids. For later purposes, let us also take Zx small enough
so that:

• if x ∈ |Vi/Gi|, then |Zx| ⊆ |Vi/Gi|;
• if x /∈ supp fi, then |Zx| ∩ supp fi = ∅;
• if fi(x) > 0, then fi > 0 over all of |Zx|.
Each of these conditions can be ensured on its own, and because the open cover {|Vi/Gi| ⊆ |X|}i
is locally finite, we can ensure all at once.

We also shrink Zx so as to ensure that each Um ∈ S (our chosen connection sieve), which
has the following implication: given o, o′ ∈ U with Uo ∩ Uo′ �= ∅, the relation Um ∩ Um′ �= ∅ is
a partial bijection between lifts m,m′ ∈ U ×X U of o and o′. Furthermore, the domain of this
bijection is as large as possible: for Uo ∩ Uo′ �= ∅ (so o ∈ oi(x) and o′ ∈ oi(x′) for some i) with
x, x′ ∈ |Vj/Gj |, we get a full bijection between the inverse images of o and o′ inside mij(x) and
mij(x′) (this follows because the projection Vi ×X Vj → Vi is a finite covering space of degree
|Gj | over Uo ∪ Uo′).

We now consider the nerves N(U, {Uo}o∈U ) and N(U ×X U, {Um}m∈U×XU ). Note that
for simplices in these nerves, namely subsets O ⊆ U or M ⊆ U ×X U with

⋂
o∈O Uo �= ∅ or⋂

m∈M Um �= ∅, the maps O → |X| or M → |X| are injective. The natural maps on index sets
U ×X U →→ U determine maps of nerves

N(U ×X U, {Um}m∈U×XU )→→ N(U, {Uo}o∈U ).
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These maps are locally injective; indeed, local injectivity means that for every o, o′ ∈ U with
Uo ∩ Uo′ �= ∅ and every m ∈ U ×X U projecting to o, there is at most one lift m′ ∈ U ×X U of
o′ with Um ∩ Um′ �= ∅, and this is a direct consequence of our assumption that every Um ∈ S.
Let us now argue that there is a natural composition map

N(U ×X U, {Um}m∈U×XU )×N(U,{Uo}o∈U ) N(U ×X U, {Um}m∈U×XU )

−→ N(U ×X U, {Um}m∈U×XU ).

More precisely, we claim that for nonempty finite subsets M ⊆ U ×X U with
⋂

m∈M Um �= ∅

and M ′ ⊆ U ×X U with
⋂

m∈M ′ Um �= ∅ projecting to O ⊆ U (under the first and second pro-
jections, respectively), the subset M ′′ ⊆ U ×X U defined by applying the composition map
(U ×X U)×U (U ×X U)→ U ×X U to M and M ′ also satisfies

⋂
m∈M ′′ Um �= ∅. This claim fol-

lows from the property that every Um ∈ S (indeed, this property implies that
⋂

m∈M Um
∼−→⋂

o∈O Uo
∼←− ⋂

m∈M ′ Um). We have thus defined a locally injective simplicial complex groupoid

M := N(U ×X U, {Um}m∈U×XU )→→ N(U, {Uo}o∈U ) =: O.

We now show that this locally injective simplicial complex groupoid is sufficiently étale. Every
isomorphism class of vertex (equivalently, every x ∈ |X| with |Zx| �= ∅) has a representative
o ∈ Vi ⊆ U with fi(o) = fi(x) > 0. To show that these representatives are étale, let m ∈ U ×X U
be a morphism with source o and target o′, and let Uo′ ∩ Uo′′ �= ∅. We must show that there
is a bijection between morphisms o→ o′ and o→ o′′. The morphisms in question all have
source inside Vi, so we really can consider just Vi × U for the present purpose. Now the bul-
leted conditions on |Zx| from above imply that because Uo′ ∩ Uo′′ �= ∅ and fi(o′) > 0, we have
Uo′ ∪ Uo′′ ⊆ |Vi/Gi| ⊆ |X|. Thus, over Uo′ ∩ Uo′′ the map Vi ×X U → U is a finite covering space
of degree |Gi|. Thus, all points have the same number of lifts, so it follows that the connection
sieve property gives us a bijection between lifts.

We have already seen above that our sufficiently étale locally injective simplicial complex
groupoid satisfies the first hypothesis of Lemma 4.8, and the second hypothesis follows from the
partial bijection property derived above from the connection sieve. Thus, by Lemma 4.8, there
is a simplicial complex of groups (Z,G) giving rise to the same simplicial groupoid b•(Z,G) =
[b•M →→ b•O] and thus (because M →→ O is sufficiently étale) to the same geometric realization
‖(Z,G)‖ = [‖M‖ →→ ‖O‖]. The groups Gz associated to vertices z ∈ Z are, by definition, isotropy
groups of the vertex groupoid V (M)→→ V (O), which are, by definition, isotropy groups of points
of X.

To conclude, it remains to define a map X → ‖(Z,G)‖ which is injective on isotropy groups.
To define this map, we shrink the Zx so that the open cover {|Zx| ⊆ |X|}x∈|X| is locally finite,
and choose a partition of unity {gx : |X| → R�0}x∈|X| subordinate to the open cover {|Zx| ⊆
|X|}x∈|X|. These maps gx lift to maps go : U → R�0 supported inside Uo and gm : U ×X U → R�0

supported inside Um. The collection of these lifts defines a map of topological groupoids

(U0 ×X U0 →→ U0)→ (∥∥N(U ×X U, {Um}m∈U×XU )
∥∥→→ ∥∥N(U, {Uo}o∈U )

∥∥)
,

where U0 is the disjoint union of the open loci V 0
i ⊆ Vi where fi > 0 (the maps go and gm do

not define a map over all of U ×X U →→ U due to the fact that Ux =
⊔

o∈o(x) Uo and Ux ×X Ux =⊔
m∈m(x) Um may not be the full inverse images of Zx inside U and U ×X U). It remains to check

that this map is injective on isotropy groups; in other words, for o, o′ ∈ U0 we must show that the
map {o} ×X {o′} → ‖N(U ×X U, {Um}m∈U×XU )‖ is injective. Distinct elements of {o} ×X {o′}
are, in particular, distinct lifts of o, which therefore cannot lie in any common Um because
Um → U is injective, so we see that the map is indeed injective on isotropy groups. �
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Proof of Theorem 1.1. Apply Proposition 4.9 to find a simplicial complex of finite groups (Z,G)
and a map X → ‖(Z,G)‖ which is injective on isotropy groups. Now Theorem 2.13 applies to
‖(Z,G)‖ to give a vector bundle V → ‖(Z,G)‖, and the pullback of this bundle to X satisfies
the desired property because X → ‖(Z,G)‖ is injective on isotropy groups. �

5. From vector bundles to principal bundles

We derive Corollaries 1.2 and 1.3 from Theorem 1.1.
A hermitian inner product on a complex vector bundle V → X is a map h : V ×X V → C

satisfying h(v, w) = h(w, v), h(v, αw) = αh(v, w) for α ∈ C, and h(v, v) > 0 for v �= 0 (meaning,
these conditions are imposed on the fiber hx : Vx × Vx → C over each map ∗ x−→ X).

Lemma 5.1. A complex vector bundle over a paracompact orbispace X admits a hermitian inner
product.

Proof. Begin with an étale atlas
⊔

i Ui → X such that the pullback of V to every Ui is trivial.
By Corollary 3.5, we may refine this cover further so that each map Ui → X is the composition
of Ui → Ui/Gi with an open embedding Ui/Gi ↪→ X. The pullback of V to each Ui is trivial,
hence admits a hermitian inner product; by averaging, we may make it Gi-invariant thus giving
a hermitian inner product hi on the restriction of V to each Ui/Gi ⊆ X. As |X| is paracompact,
there is a partition of unity ϕi subordinate to this open cover of |X|, and hence

∑
i ϕihi is the

desired hermitian inner product on V . �

Corollary 5.2. Every short exact sequence of vector bundles over a paracompact orbispace
splits.

Given a rank n complex vector bundle V → X with hermitian inner product, the associated
frame bundle P → X is defined by declaring that a map U → P (U a topological space) is a map
U → X together with an isomorphism Cn × U → V ×X U under which the pullback of h is the
standard hermitian inner product on Cn. There is an action of U(n) on P (by precomposition
with automorphisms of Cn respecting its hermitian inner product), giving P the structure of a
principal bundle over X, meaning that for every map U → X from a topological space, there is
an open cover {Ui ⊆ U}i such that P ×X Ui → Ui is isomorphic to U(n)× Ui → Ui with U(n)
acting by left multiplication on the first factor.

Proof of Corollary 1.2. Let V → X be the rank n complex vector bundle produced by
Theorem 1.1. By Lemma 5.1, there exists a hermitian inner product on V . The total space
P of the associated principal bundle P → X has trivial isotropy because the isotropy groups of
X act faithfully on the fibers of V .

We claim that P is a Hausdorff topological space. By Corollary 3.6, it is enough to show that
P is an orbispace. As P → X is representable, the pullback of an étale atlas for X is an étale
atlas for P . The diagonal of P may be expressed as the composition P → P ×X P → P × P . The
second map P ×X P → P × P is proper, being a pullback of the diagonal of X. To check that
the first map P → P ×X P is proper, it suffices by descent to show that its pullback under an
étale atlas U → X is proper. This pullback is proper because P ×X U → U is a principal U(n)
bundle (of topological spaces). We have thus shown that P is a topological space.

The map P → X is representable and admits local sections (by definition), so the topological
groupoid P ×X P →→ P presents the stack X. It can be seen by inspection that P ×X P →→ P is
the action groupoid of the U(n) action on P . �
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Let Sm denote the category of topological spaces equipped with a maximal atlas of charts
from open sets of

⊔
n�0 Rn with smooth transition maps (a smooth manifold an object of Sm

whose underlying topological space is Hausdorff). A smooth structure on a stack F : Topop →
Grpd is a substack F sm of the pullback of F under the forgetful functor Sm→ Top (meaning
that F sm(U) is a full subcategory of F (U) for U ∈ Sm); maps U → F lying in (the essential
image of) F sm are then called smooth. Given a map of stacks F → G and a smooth structure
on G, we may consider the pullback smooth structure on F , defined as those maps U → F
whose composition with F → G is smooth. A map of stacks equipped with smooth structures
(F, F sm)→ (G,Gsm) is called smooth if and only if the composition of any smooth map U → F
with F → G is a smooth map U → G (equivalently, F sm is contained inside the pullback of Gsm).
Stacks with smooth structures form a 2-category just like stacks. This category is complete, and
limits limα(Fα, F

sm
α ) are calculated by taking the limit of the underlying stacks limα Fα and

declaring a map U → limα Fα to be smooth if and only if every induced map U → Fα is smooth.
The category Sm embeds fully faithfully into the category of stacks with smooth structures, by
sending X ∈ Sm to the Yoneda functor of its underlying topological space, equipped with the
smooth structure consisting of those maps U → X which are morphisms in Sm.

Definition 5.3. A smooth orbifold X is an orbispace equipped with a smooth structure such
that for every (equivalently, some) étale atlas U → X, we have U ∈ Sm when U is equipped with
the pullback of the smooth structure on X.

By Proposition 3.3, a stack X with a smooth structure is a smooth orbifold if and only if |X|
is Hausdorff and there is an open cover of X by Vi/Gi for smooth manifolds Vi equipped with
smooth actions of finite groups Gi.

Proof of Corollary 1.3. Let V → X be the complex vector bundle produced by Theorem 1.1.
It suffices to define a smooth structure on V , because then we may follow the arguments of
Lemma 5.1 and Corollary 1.2 in the smooth category.

We begin by arguing that a complex vector bundle V over a smooth orbifold X has a smooth
structure in a neighborhood of any given point of |X|. We may thus assume that X = U/G for
a smooth manifold U acted on smoothly by a finite group G, and that the pullback of V to U is
trivial. By shrinking this chart further (and adjusting G), we may assume that our given point
of |X| corresponds to a point u ∈ U fixed by G. Choose any trivialization Vu × U → V ×X U
where Vu denotes the fiber over u. By averaging, we may make this map G equivariant, and it
remains an isomorphism in a neighborhood of u. We thus obtain a trivialization of V ×X U near
u in which the action of G is constant (independent of the U coordinate). The standard smooth
structure in this trivialization is thus, in particular, invariant under the action of G, giving the
desired smooth structure on V near our given point of |X|.

Having shown the existence of smooth structures locally, we now show how to patch them
together. To show that there exists a smooth structure on V over all of X, it suffices to show
that for open subsets A,B ⊆ |X| and smooth structures on V |A and V |B, there exists a smooth
structure on V |A∪B restricting to the given smooth structure on V |A (indeed, this allows us
to patch together smooth structures over arbitrary unions of open sets, by choosing a well
ordering and adding one open set at a time). To prove this pairwise patching statement, it
suffices to show that an isomorphism of smooth vector bundles may be approximated by a smooth
isomorphism (then apply this to the identity map on V |A∩B equipped with the restrictions of the
two given smooth structures). As |X| is locally the quotient of Euclidean space by a finite group
action, it is locally metrizable; because it is paracompact and Hausdorff, it is thus metrizable.
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Thus, every open subset of |X| is metrizable, hence paracompact. We may now conclude with a
smooth partition of unity argument. �

6. K-theory of orbispaces

We derive Corollary 1.4 from Theorem 1.1. We then derive from Corollary 1.4 some basic prop-
erties of the K-theory of finite-rank vector bundles on orbispaces (some of this derivation is
borrowed, with various technical differences, from [LO01, § 3] and [Seg68]). In what follows, ‘vec-
tor bundle’ can be taken to mean either real vector bundle or complex vector bundle (always of
finite rank).

Proof of Corollary 1.4. Denote our given map by f : X → Y , and let E be the given vector
bundle on X. Let F be any vector bundle on Y satisfying the conclusion of Theorem 1.1.

We first consider the local situation on X. Fix x ∈ X, and let U/G ↪→ X be an open embed-
ding sending u ∈ U fixed by G to x ∈ X and inducing an isomorphism G

∼−→ Gx (such an open
embedding exists by the proof of Proposition 3.3). By shrinking U , we may ensure that the
pullbacks of E and F to U are trivial. Choose any map on U from the pullback of E to the
pullback of F⊕N (some integer N <∞) which is injective and G-equivariant at u, and average
it to make it equivariant everywhere. This produces over U/G a map from E to f∗F⊕N which is
injective at x. Now because |X| is paracompact Hausdorff, hence normal, there exists a continu-
ous function ϕ : |X| → [0, 1] supported inside |U/G| with ϕ(x) = 1. Multiplying by this function
yields a map E → f∗F⊕N defined on all of X which is injective at x. Note that the integer N
may be taken independent of x because the rank of E is bounded.

We now combine the above maps to give an everywhere injective map E → f∗F⊕M as follows.
Fix an open cover |X| = ⋃

i Ui and maps fi : E → f∗F⊕N defined over all ofX which are injective
over Ui. As |X| is coarsely finite-dimensional, we may refine this open cover so that it is locally
finite and has nerve of dimension � d for some integer d <∞. As in the proof of Lemma 4.4,
there is yet another open cover of |X| by open sets VI indexed by the nonempty subsets I of
the index set of the Ui, such that VI ⊆

⋂
i∈I Ui and VI ∩ VJ = ∅ unless I ⊆ J or J ⊆ I. Note

that these conditions imply that VI = ∅ unless |I| � d+ 1 and that VI ∩ VJ = ∅ if |I| = |J | and
I �= J . Now let

∑
I ϕI ≡ 1 be a partition of unity subordinate to the open cover |X| = ⋃

I VI .
We may now define our desired everywhere injective map E → f∗F⊕(d+1)N (so M = (d+ 1)N)
by the formula

∑
I α|I|ϕIfi(I), where i(I) is any choice of index in the set I, and αr : F⊕N ↪→

(F⊕N )⊕(d+1) = F⊕(d+1)N is the inclusion of the rth direct summand.
We have thus constructed an injection E → f∗F⊕M over X. �

Definition 6.1. For any stack X, denote by Vect(X) the set of isomorphism classes of vector
bundles on X of bounded rank.

Direct sum of vector bundles equips Vect(X) with the structure of an abelian monoid. A map
of stacks X → Y induces a pullback map Vect(Y )→ Vect(X).

The reason we restrict attention to vector bundles of bounded rank is so that we may appeal
to Corollary 1.4. A counterexample of Lück and Oliver [LO01, Example 3.11] shows that the
K-theory of vector bundles of unbounded rank fails to be a cohomology theory on (possibly
infinite) simplicial complexes of groups, whereas we show that the K-theory of vector bundles
of bounded rank is a cohomology theory for such.

For an abelian monoid M , its group completion M [−M ] is the quotient of the free abelian
group on the underlying set of M by the subgroup generated by [a] + [b]− [a+ b] for a, b ∈M .
The map M →M [−M ] is universal (initial) among maps from M to an abelian group.
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Definition 6.2. We define K0(X) as the group completion of Vect(X) for any stack X.

A map of stacks X → Y induces a pullback map K0(Y )→ K0(X). The functor K0 is finitely
additive, in the sense that K0(∅) = 0 and the natural map K0(X � Y )→ K0(X)⊕K0(Y ) is
an isomorphism. In the present context of vector bundles of bounded rank, additivity does not
hold for general infinite disjoint unions.

Eventually, we will restrict attention to the K-theory of orbispaces satisfying the hypothesis
of Theorem 1.1. However, we impose such hypotheses gradually, as they become relevant.

To show that K-theory is homotopy invariant, the following is the key assertion.

Lemma 6.3. For any paracompact orbispace X, every vector bundle on X × [0, 1] is pulled back
from X.

Proof. Let a vector bundle V over X × [0, 1] be given.
We first discuss the local structure around a given point x ∈ X. Fix an open embedding

Y/G ↪→ X and a lift y ∈ Y of x fixed by G. We consider the pullback bundle V |Y ×[0,1] on Y ×
[0, 1], which is a G-equivariant vector bundle. For each t ∈ [0, 1], there exist open neighborhoods
t ∈ T ⊆ [0, 1] and y ∈ U ⊆ Y such that V |U×T is trivial. By the compactness of [0, 1], we may
assume U is independent of t. Replacing Y with U , we may assume that for each t ∈ [0, 1]
there exists an open neighborhood t ∈ T ⊆ [0, 1] such that V |Y ×T is trivial. A trivialization
induces a map V |Y ×T → p∗TV |{y}×T which is the identity over {y} × T . Averaging makes this
map G-equivariant, so it descends to a map V |Y/G×T → p∗TV |{y}/G×T which is still the identity
over {y} × T . It is thus an isomorphism over some U × T ′; another compactness argument and
shrinking of Y ensures that we have a collection of isomorphisms V |Y/G×T → p∗TV |{y}/G×T which
are the identity over {y} × T . Patching these together via a partition of unity on [0, 1] and further
shrinking Y produces an isomorphism

V |Y/G×[0,1]
∼−→ p∗[0,1]V |{y}/G×[0,1],

which is the identity over {y} × [0, 1]. Any vector bundle over BG× [0, 1] is pulled back from
BG, and hence we conclude that V |Y/G×[0,1] is pulled back from Y/G, for some neighborhood
Y/G of x ∈ X.

We now globalize. Begin with an open cover |X| = ⋃
i Ui and over each Ui an isomorphism

ξi : V |Ui×[0,1] → (p∗XV |X×{0})|Ui×[0,1] which is the identity over Ui × {0}. Note that for any x ∈ Ui

and any t, t′ ∈ [0, 1], the map ξi determines an isomorphism

V(x,t)

ξ−1
i ◦ξi−−−−→ V(x,t′),

which is the specialization of an isomorphism between the pullbacks of V under the two pro-
jections X × [0, 1]2 → X × [0, 1]. Using this observation, we may now patch together the ξi into
an isomorphism V → p∗XV |X×{0} as follows. Fix a partition of unity ϕi : |X| → R�0 subordinate
to the open cover |X| = ⋃

i Ui, and fix an arbitrary total ordering of the index set of the open
cover. For (x, t) ∈ X × [0, 1], let i = 1, . . . , k denote the indices of the open sets Ui containing x,
ordered as in the fixed total order, and consider the composition of isomorphisms

V(x,t)

ξ−1
1 ◦ξ1−−−−→ V(x,(1−ϕ1(x))·t)

ξ−1
2 ◦ξ2−−−−→ V(x,(1−ϕ1(x)−ϕ2(x))·t)

ξ−1
3 ◦ξ3−−−−→ · · · ξ−1

k ◦ξk−−−−→ V(x,0).

This fiberwise description now translates into the desired isomorphism of vector bundles V →
p∗X |X×{0}. �

Two maps X → Y will be called homotopic if and only if there exists a map X × [0, 1]→ Y
whose restrictions to X × {0} and X × {1} are the two given maps. A map X → Y is called
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a homotopy equivalence if and only if there exists a map Y → X such that the compositions
X → Y → X and Y → X → Y are homotopic to the respective identity maps.

Corollary 6.4 (Homotopy invariance). If X is a paracompact orbispace, then homotopic
maps X → Y induce the same map K0(Y )→ K0(X).

For any map of abelian monoids M ′ →M , the quotient M/M ′ is, as a set, the quotient of
M by the equivalence relation x ∼M ′ y if and only if there exist a, b ∈M ′ with x+ a = y + b,
equipped with the descent of the monoid operation from M . The map M →M/M ′ is initial
among maps from M to an abelian monoid sending M ′ to zero. If (the image inside M of) M ′ is
an abelian group, then the kernel of the quotient map M →M/M ′ is precisely M ′. The group
completion M [−M ] is the quotient of M ×M by the diagonal submonoid M .

Definition 6.5. For any map of stacks f : Y → X, the relative K-theory K0(X,Y ) is defined
as follows. We consider the set Tri(X,Y ) of isomorphism classes of triples (E0, E1, i) where E0, E1

are vector bundles on X of bounded rank and i : f∗E0 → f∗E1 is an isomorphism between their
pullbacks to Y . Now Tri(X,Y ) is an abelian monoid under direct sum, and it contains Vect(X)
as the submonoid of triples of the form (E,E, f∗ idE). The relative K-theory is the quotient

K0(X,Y ) := Tri(X,Y )/Vect(X).

Note that a priori K0(X,Y ) is merely an abelian monoid, not an abelian group.

A map (Y → X)→ (Y ′ → X ′) (i.e. a commutative square) induces a map K0(X ′, Y ′)→
K0(X,Y ). There is a natural map K0(X,Y )→ K0(X) given by sending (E0, E1, i) to the for-
mal difference [E0]− [E1], and the composition K0(X,Y )→ K0(X)→ K0(Y ) is zero. The map
K0(X,∅)→ K0(X) is an isomorphism (because Tri(X,∅) is simply Vect(X)×Vect(X)).

A pair (X,A) shall mean that A is a closed substack of X. A map of pairs (X,A)→
(Y,B) means a map X → Y sending A inside B. Note that paracompactness, coarse finite-
dimensionality, being an orbispace, and the hypothesis of Theorem 1.1 all pass to closed
substacks.

Remark 6.6. Even for very nice orbispace pairs (X,A), we cannot in general form the quotient
X/A in a reasonable way. For example, for an orbispace X, if we could reasonably define (X ×
[0, 1])/(X × {0}) as an orbispace, it would follow thatX is (globally) the quotient of a topological
space by a finite group action (a very special property).

For any pair (X,A), let cyl(X,A) denote the pair ((X × {0}) ∪ (A× [0, 1]), A× {1}). Here
(X × {0}) ∪ (A× [0, 1]) denotes the union of closed substacks of X × [0, 1] (recall that closed
substacks of a stack Z are in bijective correspondence with closed subsets of |Z|, so by union of
closed substacks we mean union of subsets of |Z|). There is a natural map of pairs cyl(X,A)→
(X,A). A map of pairs f : (X,A)→ (X ′, A′) induces a map cyl(f) : cyl(X,A)→ cyl(X ′, A′).

Lemma 6.7. For any pair (X,A) where A is a paracompact orbispace, K0(cyl(X,A)) is an
abelian group.

Proof. Let (E0, E1, i : E0|A×{1} → E1|A×{1}) be a triple representing an arbitrary element of
K0(cyl(X,A)). We claim that the triple (E1, E0,−i) is an inverse to it. It suffices to show
that

(E0 ⊕ E1, E0 ⊕ E1, ( 0 −i
i 0 )) and (E0 ⊕ E1, E0 ⊕ E1, ( 1 0

0 1 ))

are isomorphic. In other words, it suffices to show that ( 0 −i
i 0 ) is the restriction to A× {1} of an

automorphism of E0 ⊕ E1. By Lemma 6.3, there exist isomorphisms Ei|A×[0,1] = p∗A(Ei|A×{1}).
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In such coordinates, the desired automorphism of E0 ⊕ E1 may be given by(
cos π

2 t −i sin π
2 t

i sin π
2 t cos π

2 t

)
on A× [0, 1] and the identity on X × {0} (note that to specify a map of vector bundles over a
stack, it suffices to specify its restriction to each member of a finite cover by closed substacks,
subject to the requirement that these restrictions agree on their pairwise overlaps). �

Lemma 6.8. For any pair (X,A) where A is a paracompact orbispace, the map K0(X,A)→
K0(cyl(X,A)) is surjective.

Proof. We claim that every vector bundle on (X × {0}) ∪ (A× [0, 1]) is pulled back from X.
Let E be a vector bundle on cyl(X,A), let F denote its restriction to X = X × {0}, and let us
show that E = p∗XF . The identity map is an identification of E and p∗XF over X × {0}, and
by Lemma 6.3 there is an identification of E and p∗XF over A× [0, 1] which agrees with the
identity over A× {0}. These isomorphisms E → p∗XF thus patch together to define the desired
isomorphism.

As every vector bundle on (X × {0}) ∪ (A× [0, 1]) is pulled back from X, it follows that
Tri(X,A)→ Tri(cyl(X,A)) is surjective, so we are done. �

Lemma 6.9. For every vector bundle E over an orbispace X, there exists an open cover X =⋃
i Zi/Gi such that the restriction of E to each Zi/Gi is pulled back from ∗/Gi (equivalently,

the pullback of E to Zi is Gi-equivariantly trivial).

Proof. Every point x ∈ X has an open neighborhood of the form Z/G by Proposition 3.3. Choose
a lift z ∈ Z of x, and by shrinking Z and replacing G with the stabilizer of z, assume that G
fixes z. Choose a map from E|Z to the trivial bundle Ez × Z which is the identity at z, average
this map to make it G-equivariant, and shrink Z so that this map is an isomorphism over all
of Z. �

Lemma 6.10. Let G � Z be a finite group action on a Hausdorff topological space. If Z/G is
paracompact, then so is Z.

Proof. Let an open covering Z =
⋃

α Vα be given. For every z ∈ Z, there exists an open neigh-
borhood U of z which is Gz-invariant and whose G/Gz-translates are disjoint and each contained
in some (possibly different) Vα. The images of such U in Z/G form an open covering of Z/G.
Refining this to a locally finite covering and taking inverse images in Z gives the desired locally
finite refinement of the original covering. �

Lemma 6.11. Let X be a paracompact orbispace, let E be a vector bundle over X, and let
Y ⊆ X be a closed substack. Every section of E|Y extends to a section of E.

Proof. Fix an open cover X =
⋃

i Zi/Gi such that the pullback of E to each Zi is trivialized
Gi-equivariantly (Lemma 6.9). Let ϕi : |X| → [0, 1] be a partition of unity subordinate to this
covering. Now suppϕi is a closed subset of a paracompact Hausdorff space, hence paracompact
Hausdorff; its inverse image inside Zi is, thus, paracompact Hausdorff by Lemma 6.10 (recall Zi

is Hausdorff). Thus, by the Tietze extension theorem, our given section on Zi ×X (Y ∩ suppϕi)
extends to Zi ×X suppϕi. We can make it Gi-equivariant by averaging, so our given section on
Y ∩ suppϕi extends to suppϕi. Now (suppϕi)◦ is an open cover of X, so pick another partition
of unity ψi subordinate to this cover, and use it to patch together the extended sections on each
suppϕi. �
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Lemma 6.12. For any paracompact orbispace pair (X,A), the map K0(X,A)→ K0(cyl(X,A))
is an isomorphism.

Proof. We know from the proof of Lemma 6.8 that every vector bundle on (X × {0}) ∪ (A×
[0, 1]) is pulled back from X. Given this fact, it suffices to show that the pullback map
Tri(X,A)→ Tri(cyl(X,A)) is injective. Thus, suppose that we are given two triples (E0, E1, i :
E0|A → E1|A) and (E′

0, E
′
1, i

′ : E′
0|A → E′

1|A) whose pullbacks to cyl(X,A) coincide, meaning
that there are isomorphisms αi : p∗XEi → p∗XE

′
i on (X × {0}) ∪ (A× [0, 1]) intertwining i and i′

over A× {1}. Now these maps αi extend to all of X × [0, 1] by Lemma 6.11, and these extended
maps are isomorphisms over open neighborhood of (X × {0}) ∪ (A× [0, 1]). As X × [0, 1]→ X is
universally closed (being a pullback of [0, 1]→ ∗), this neighborhood contains U × [0, 1] for some
open neighborhood U of A ⊆ X. Now a paracompact Hausdorff space is normal, so by Urysohn’s
lemma there exists a continuous function ϕ : |X| → [0, 1] supported inside U which is identically
1 on A. Pulling back αi under the graph of ϕ defines isomorphisms Ei → E′

i whose restrictions
to A intertwine i and i′, showing that the original triples on (X,A) are isomorphic. �
Proposition 6.13 (Relative homotopy invariance). For any map of paracompact orbispace
pairs (X,A)→ (X ′, A′) whose constituent maps X → X ′ and A→ A′ are individually homotopy
equivalences, the map K0(X ′, A′)→ K0(X,A) is an isomorphism.

Proof. We begin by showing that the two maps K0(X × [0, 1], A× [0, 1])→ K0(X,A) (pullback
under ×{0} and ×{1}) coincide (from which it follows that homotopic maps of pairs induce
the same map on relative K0). As vector bundles on X × [0, 1] are pulled back from X by
Proposition 6.3, this amounts to showing that triples (E0, E1, i), (E0, E1, j) ∈ Tri(X,A) represent
the same element of K0(X,A) if i and j are homotopic. The construction from the proof of
Lemma 6.7 shows that the homotopy between i−1 ◦ j and the identity gives rise to an isomorphism
between the pullbacks of these triples to cyl(X,A), which is enough by Lemma 6.12.

As homotopic maps of pairs induce the same map on relative K0, it follows that homotopy
equivalences of pairs induce isomorphisms on relative K0. In light of Lemma 6.12, it thus suffices
to show that a map of pairs (X,A)→ (X ′, A′) whose constituent maps X → X ′ and A→ A′

are individually homotopy equivalences induces a homotopy equivalence of pairs cyl(X,A)→
cyl(X ′, A′). This is well known: given (f, g) : (X,A)→ (X ′, A′), let p : X ′ → X and q : A′ →
A be homotopy inverses to f and g. To define a map cyl(X ′, A′)→ cyl(X,A) which is p on
X ′ × {0} and q on A′ × {1}, we need a homotopy between the two maps p|A′ , q : A′ → X. A
distinguished homotopy class of such homotopies is furnished by composing further with the
homotopy equivalence f : X → X ′ and fixing homotopies between f ◦ p and idX′ and between
f |A ◦ q = g ◦ q and idA′ . One then checks that this map cyl(X ′, A′)→ cyl(X,A) is a homotopy
inverse to the map cyl(X,A)→ cyl(X ′, A′). �
Lemma 6.14. Let X be a paracompact orbispace. Every vector bundle E over a closed substack
Y ⊆ X is the restriction of a vector bundle over some open substack U ⊆ X containing Y .

Proof. Fix a locally finite open cover X =
⋃

i Zi/Gi such that the pullback of E to each (Zi)Y :=
Zi ×X Y ⊆ Zi is trivialized Gi-equivariantly (Lemma 6.9). Such trivializations evidently extend
E|Y ∩(Zi/Gi) to Zi/Gi. We patch together these extensions Ei on Zi/Gi as follows.

Choose closed substacks Ki ⊆ X with Ki ⊆ Zi/Gi and whose interiors cover X. We thus
have a collection of transition functions αij : Ki ∩Kj ∩ Y → Hom(Ei, Ej) satisfying αii = id and
αijαjkαki = id over Ki ∩Kj ∩Kk ∩ Y . We now execute the following operation for every pair
(i, j) inductively according to an arbitrary well-ordering of such pairs. For i = j, do nothing. For
i �= j, choose an extension of αij from Ki ∩Kj ∩ Y to Ki ∩Kj using Lemma 6.11. This extension
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remains an isomorphism in a neighborhood of Ki ∩Kj ∩ Y . As (the coarse space of) Ki ∩Kj

is paracompact Hausdorff, hence normal, we may choose a closed substack A ⊆ Ki ∩Kj whose
interior contains Ki ∩Kj ∩ Y and over which the extension of αij is an isomorphism. Now this
new αij over A gives unique extensions of the remaining αk
 to Kk ∩K
 ∩ (Y ∪A) such that the
cocycle condition is satisfied. We now replace Y with Y ∪A and go on to the next pair of indices.
Note that because our cover X =

⋃
i Zi/Gi is locally finite, the set Y remains closed even after

possibly infinitely many steps.
After processing every pair (i, j), our extended transition functions define a vector bundle on

a closed substack Ȳ ⊆ X whose restriction to Y ⊆ Ȳ is E, and by construction Y is contained
in the interior of Ȳ . �

We now come to the exactness and excision properties of K-theory, where we finally make
use of Corollary 1.4.

For the proof of exactness, we make use of the following notion. Let us call a map of abelian
monoids f : M → N cofinal if and only if for every n ∈ N there exist m ∈M and n′ ∈ N with
f(m) = n+ n′. The quotient M/M ′ is an abelian group if and only if M ′ →M is cofinal. The
conclusion of Corollary 1.4 for a map Y → X is that the pullback map Vect(X)→ Vect(Y ) is
cofinal (recalling from Corollary 5.2 that every inclusion of vector bundles over a paracompact
orbispace is split).

Proposition 6.15 (Exactness). Let X be an orbispace satisfying the hypothesis of
Theorem 1.1, let A ⊆ X ⊇ Y be closed substacks, let B := A ∩ Y be their intersection, and
let A ∪B Y ⊆ X be their union. The following sequence is exact:

K0(X,A ∪B Y )→ K0(X,A)→ K0(Y,B).

Proof. The sequence

Tri(X,A ∪B Y )→ Tri(X,A)→ (Tri(Y,B),Vect(Y ))

is exact in the sense that the image of the first map coincides with the inverse image of Vect(Y )
under the second map. Indeed, given a triple (E0, E1, i) ∈ Tri(X,A) for which i|B extends to
Y , we may glue this extension to i over B to lift (E0, E1, i) from Tri(X,A) to Tri(X,A ∪B Y ).
Quotienting this sequence by Vect(X), we conclude that

K0(X,A ∪B Y )→ K0(X,A)→ (Tri(Y,B)/Vect(X),Vect(Y )/Vect(X))

is exact. Now Vect(X)→ Vect(Y ) is cofinal by Corollary 1.4, so Vect(Y )/Vect(X) is an abelian
group, so the kernel of the map from Tri(Y,B)/Vect(X) to its quotient by Vect(Y )/Vect(X) is
precisely Vect(Y )/Vect(X). This quotient is simply Tri(Y,B)/Vect(Y ) = K0(Y,B), so we are
done. �

For the proof of excision, we make use of the following alternative description of relative
K-theory in terms of direct limits. Let V̂ect(X) denote the category whose objects are vector
bundles on X of bounded rank and whose morphisms are homotopy classes of injective maps.
The category V̂ect(X) is filtered, meaning that (1) it is nonempty, (2) for every pair of objects
x, y, there exist morphisms x→ z ← y, and (3) for every pair of morphisms x→→ y there exists
a morphism y → z such that the two compositions x→ z coincide. Indeed, (1) we have the zero
vector bundle, (2) given vector bundles E and F , they both admit a morphism to E ⊕ F , and
(3) given two injections E ↪→ F , they become homotopic after composing with the inclusion
F ↪→ F ⊕ E.
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For any map of stacks f : Y → X and any vector bundle F on Y , let Vect(X,F ) denote
the set of isomorphism classes of pairs (V, i) consisting of a vector bundle V on X of bounded
rank and an isomorphism i : f∗V ∼−→ F . If X is a paracompact orbispace, Vect(X, f∗E) forms
a directed system over E ∈ V̂ect(X). Indeed, given an inclusion E ↪→ E′, there is a natural

map Vect(X, f∗E)
⊕(E′/E)−−−−−→ Vect(X, f∗E′) because the inclusion E ↪→ E′ has a(n automatically

unique up to homotopy) splitting by Corollary 5.2. For such X, we claim that K0(X,Y ) may be
expressed as the direct limit

K0(X,Y ) = lim−→
E∈V̂ect(X)

Vect(X, f∗E).

Elements of the direct limit above are, by definition, equivalence classes of triples (E, V, i) ∈
Tri(X,Y ). Two triples (E, V, i) and (E′, V ′, i′) are equivalent in the above direct limit if
and only if they become isomorphic after pushing both to a common E ↪→ E′′ ←↩ E′, which
is the same as saying (E, V, i) and (E′, V ′, i′) are isomorphic after adding elements of
Vect(X).

Recall that a functor F between filtered categories is called cofinal if and only if (1) for every
x in the target there exists a morphism x→ F (y), and (2) for every two morphisms x→→ F (y),
there exists a morphism y → z such that the compositions x→ F (z) coincide. The significance
of cofinality is that pulling back under a cofinal functor induces an isomorphism on direct limits:

lim−→
x∈C

A(F (x)) ∼−→ lim−→
x∈D

A(x)

is an isomorphism for any cofinal functor F : C→ D between filtered categories C and D and any
directed system of sets A over D.

The conclusion of Corollary 1.4 for f : Y → X is equivalent to the assertion that the pullback
functor f∗ : V̂ect(X)→ V̂ect(Y ) is cofinal. Indeed, f∗ always satisfies condition (2) because any
two inclusions E ↪→ f∗F become homotopic upon postcomposing with f∗(F ↪→ F ⊕ F ), and
condition (1) is precisely the conclusion of Corollary 1.4.

Proposition 6.16 (Excision). Let X ′ → X be a representable map of orbispaces satisfying the
hypothesis of Theorem 1.1. Let Y → X be arbitrary, and let Y ′ → X ′ denote its pullback along
X ′ → X. If there is an open cover X = U ∪ V such that Y → X is an isomorphism over U
and X ′ → X is an isomorphism over V , then the natural map K0(X,Y )→ K0(X ′, Y ′) is an
isomorphism.

Proof. We may write the map in question in terms of direct limits as

lim−→
E∈V̂ect(X)

Vect(X, f∗E)→ lim−→
E′∈V̂ect(X′)

Vect(X ′, (f ′)∗E′).

By Corollary 1.4, we may replace the second direct limit with the corresponding direct limit
over V̂ect(X). It thus suffices to show that the pullback map Vect(X, f∗E)→ Vect(X ′, (f ′)∗E′)
is an isomorphism for every vector bundle E on X of bounded rank with E′ := E ×X X ′. Since
Y → X is an isomorphism over U andX = U ∪ V , this coincides with the map Vect(V, f∗E|V )→
Vect(V ×X X ′, (f ′)∗E|V ), which is a bijection since X ′ → X is an isomorphism over V . �

Given the significance of the hypothesis of Theorem 1.1, it is essential to show that this
property is preserved under various natural operations.

Lemma 6.17. For any topological stack X and any locally compact Hausdorff space R, the
natural map |X ×R| → |X| ×R is an isomorphism.
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Proof. For any atlas U → X, the induced map U → |X| is a topological quotient map, meaning
it is surjective and a subset of the target is open if and only if its inverse image in the source
is open. Topological quotient maps are preserved by taking product with a locally compact
Hausdorff space [Whi48, Lemma 4], so U ×R→ |X| ×R is also a topological quotient map. As
U ×R→ X ×R is also an atlas, the map U ×R→ |X ×R| is also a topological quotient map.
Now |X ×R| → |X| ×R is a bijection, so we are done. �
Lemma 6.18. If a topological space X is coarsely finite-dimensional, then so is X ×R for any
closed subset R ⊆ Rn.

Proof. We begin with the case R = [0, 1]. Let a cover X × [0, 1] =
⋃

α Uα be given. For every
x ∈ X and t ∈ [0, 1], there exists a pair of open neighborhoods x ∈ V ⊆ X and t ∈W ⊆ [0, 1]
such that V ×W is contained in some Uα. Fixing x ∈ X and using compactness of [0, 1], we
see that there are finitely many such Vi ×Wi covering {x} × [0, 1]. Hence, there exists an open
neighborhood x ∈ V ⊆ X and an ε > 0 such that V × ((t− ε, t+ ε) ∩ [0, 1]) is contained in some
Uα for every t ∈ [0, 1]. We consider the collection of all such pairs (V, ε). As X is coarsely finite-
dimensional, there is a collection of such pairs (Vα, εα) such that the nerve of the covering
X =

⋃
α Vα is finite-dimensional. Now cover X × [0, 1] by Vα × ([0, 1] ∩ εα · (k, k + 2)) for inte-

gers k.
Next, we consider the case R = R. Let a cover of X × R be given. The intersection of this

cover with X × [n, n+ 2] has a refinement with finite-dimensional nerve by the case R = [0, 1].
Consider this refinement intersected with X × (n, n+ 2), and take union over all integers n to
obtain a refinement of the original cover of X × R with finite-dimensional nerve.

Finally, by induction, we obtain the case R = Rn, and the general case follows because coarse
finite-dimensionality passes to closed subsets. �
Corollary 6.19. If X satisfies the hypothesis of Theorem 1.1, then so does X ×R for any
closed subset R ⊆ Rn.

Let us now recall the Puppe sequence, which produces from Propositions 6.15 and 6.16 a long
exact sequence. Let (X,A) be any pair of orbispaces satisfying the hypothesis of Theorem 1.1.
Let I := [0, 1]. We now have maps of pairs

(A,∅)→ (X,∅)→ (X,A)

(A× I, A× ∂I)→ (X × I,X × ∂I)→ (X × I, (X × ∂I) ∪ (A× I))
(A× I2, A× ∂I2)→ (X × I2, X × ∂I2)→ (X × I2, (X × ∂I2) ∪ (A× I2))

...

(note that these pairs satisfy the hypothesis of Theorem 1.1 by Corollary 6.19). We also have
maps (X × Ik, (X × ∂Ik) ∪ (A× Ik))→ (A× Ik+1, A× ∂Ik+1) up to inverting maps inducing
isomorphisms on K0. Namely, these ‘connecting maps’ are given by

(X × Ik × I, (X × ∂Ik × I) ∪ (A× Ik × {1}))
↓

(X × Ik × I, (X × ∂Ik × I) ∪ (A× Ik × {1}) ∪ (X × Ik × {0}))
where we note that the domain admits a natural map to (X × Ik, (X × ∂Ik) ∪ (A× Ik)) (which
induces an isomorphism on K0 by Proposition 6.13) and the target a natural map from
(A× Ik+1, A× ∂Ik+1). To see that this second map also induces an isomorphism on K0, factor
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it as

(A× Ik × I, (A× ∂Ik × I) ∪ (A× Ik × {1}) ∪ (A× Ik × {0}))
↓

((X × Ik × {0}) ∪ (A× Ik × I), (A× ∂Ik × I) ∪ (A× Ik × {1}) ∪ (X × Ik × {0}))
↓

((X × Ik × I), (X × ∂Ik × I) ∪ (A× Ik × {1}) ∪ (X × Ik × {0}))
and observe that the first map is an isomorphism by excision Proposition 6.16 (and some manip-
ulation involving adding A× Ik × [0, 1

2 ] to the second space of both pairs, which does not change
their homotopy type but makes it possibly to apply Proposition 6.16) and the second map is
an isomorphism by Proposition 6.13 (a homotopy inverse to (X × Ik × {0}) ∪ (A× Ik × I)→
X × Ik × I is given by projection to X × Ik × {0}, and the second terms are both homotopy
equivalent to (X ×Dk) ∪ (A× Sk)).

Definition 6.20. For any pair (X,A), we define2

K−n(X) : = K0(X × In, X × ∂In),

K−n(X,A) : = K0(X × In, (X × ∂In) ∪ (A× In)).

Given this definition, we can write the Puppe sequence above in a more familiar form. Namely,
for X an orbispace satisfying the hypothesis of Theorem 1.1, we have a sequence of the form

· · · → K−2(A)→ K−1(X,A)→ K−1(X)→ K−1(A)→ K0(X,A)→ K0(X)→ K0(A)

functorial in the pair (X,A).

Proposition 6.21 (Long exact sequence). The sequence above is exact.

Proof. Each of the following three triples satisfies the hypotheses of Proposition 6.15:

(A× Ik, A× ∂Ik)→ (X × Ik, X × ∂Ik)→ (X × Ik, (X × ∂Ik) ∪ (A× Ik)),

(X × Ik, X × ∂Ik)
×{0}−−−→ (X × Ik × I, (X × ∂Ik × I) ∪ (A× Ik × {1}))
→ (X × Ik × I, (X × ∂Ik × I) ∪ (A× Ik × {1}) ∪ (X × Ik × {0})),

(X × Ik × [12 , 1], (X × ∂Ik × [12 , 1]) ∪ (A× Ik × {1}))
→ (X × Ik × I, (X × ∂Ik × I) ∪ (X × Ik × {0}) ∪ (A× Ik × {1}))
→ (X × Ik × I, (X × ∂Ik × I) ∪ (X × Ik × {0}) ∪ (X × Ik × [12 , 1]))

and the last pair is homotopy equivalent to (X × Ik × [0, 1
2 ], (X × ∂Ik × [0, 1

2 ]) ∪ (X × Ik ×
{0}) ∪ (X × Ik × {1

2})). �
We now define a multiplicative structure on K-theory. There is a natural map K0(X)⊗

K0(Y )→ K0(X × Y ) sending [E]⊗ [F ] to [E � F ]. To define the tensor product map on relative
K-theory, we consider the following alternative model based on chain complexes.

Definition 6.22. Let (X,A) be a pair. Consider bounded complexes of vector bundles on X
which are exact over A. Let us call two such complexes homotopic if and only if they are the
restrictions to ×{0} and ×{1} of a complex on X × [0, 1] acyclic over A× [0, 1] (homotopy is

2 To keep track of signs, one should really write this as K−n(X) ⊗ Hn(In, ∂In) = K0(X × In, X × ∂In) etc.,
however for the purposes of our presentation here, we will not be so precise.
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an equivalence relation). Denote the set of homotopy classes of such complexes by Kom(X,A),
which is an abelian monoid under direct sum, and define

K0
kom(X,A) := Kom(X,A)/Kom(X,X).

This quotient is an abelian group: indeed, the sum of a complex and its shift is homotopic to
the mapping cone of the identity map.

Proposition 6.23. There is a natural isomorphism K0(X,A) = K0
kom(X,A) for paracompact

orbispace pairs (X,A).

Proof. There is a natural map K0(X,A)→ K0
kom(X,A) defined as follows. Given a triple

(E0, E1, i) ∈ Tri(X,A), extend the isomorphism i to a neighborhood of A using Lemma 6.11, and
multiply by a cutoff function supported inside this neighborhood to obtain a globally defined
map d : E0 → E1 which is an isomorphism over A. This complex is well defined up to homotopy,
so we have defined a map Tri(X,A)→ Kom(X,A). This map evidently sends Vect(X) to (the
image of) Kom(X,X), so it defines a map K0(X,A)→ K0

kom(X,A) as desired.
We may also define a natural map K0

kom(X,A)→ K0(X,A) as follows. Given a complex
(E•, d), choose a metric on each Ei using Lemma 5.1, and note that the map d+ d∗ : Eeven :=⊕

i evenEi →
⊕

i oddEi =: Eodd is an isomorphism wherever d is exact. As all metrics are homo-
topic and K0(X,A) is homotopy invariant by Proposition 6.13, sending (E•, d) to the triple
(Eeven, Eodd, (d+ d∗)|A) gives a well-defined map K0

kom(X,A)→ K0(X,A). The composition
K0(X,A)→ K0

kom(X,A)→ K0(X,A) is evidently the identity.
To finish, it suffices to show that K0(X,A)→ K0

kom(X,A) is surjective. Equivalently, we
are to show that every element of K0

kom(X,A) is represented by a complex concentrated in
degrees [0 1]. To do this, we use the following ‘folding’ operation. Given a complex concen-
trated in degrees [s r], the differential dr : Er → Er−1 is injective over A, hence over an open
neighborhood U of A inside X. If dr is, in fact, everywhere injective, then we may choose a
metric on Er−1 and split it as im(Er)⊕ im(Er)⊥, showing that the subcomplex Er → im(Er)
is a direct summand, so our complex represents the same class in K0

kom as one concentrated in
degrees [s r − 1]. Now consider the general case where dr is not assumed everywhere injective.
By replacing our given complex by its direct sum with the mapping cone of the identity map
Er → Er concentrated in degrees [r − 2 r − 1], we may assume that there exists an injection
i : Er → Er−1 which agrees with dr over a neighborhood U of A. Now multiply d by a cutoff
function ϕ supported inside U and positive on A (this is homotopic to the original differential),
and take the convex interpolation between ϕdr and i as a further homotopy. This ensures that the
differential Er → Er−1 is everywhere injective, so our complex represents the same class in K0

kom

as one concentrated in degrees [min(s, r − 2) r − 1]. The dual operation shows that any complex
concentrated in degrees [s r] represents the same class in K0

kom as one concentrated in degrees
[s+ 1 max(s+ 2, r)]. Combining these two operations, we can put anything in degrees [0 1]. �

Tensor product at the level of K0
kom evidently defines commutative and associative maps

K0(X,A)⊗K0(Y,B)→ K0(X × Y, (A× Y ) ∪ (X ×B))

for paracompact orbispace pairs (X,A) and (Y,B) for which X × Y is paracompact. These
induce, by inspection, associative and graded commutative maps

K−n(X,A)⊗K−m(Y,B)→ K−n−m(X × Y, (A× Y ) ∪ (X ×B))

under the same hypotheses (note that a paracompact space times a compact space is
paracompact).
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We conclude with a discussion of Bott periodicity. So far, our discussion has applied equally
to complex vector bundles as to real vector bundles, however we now restrict to complex vector
bundles. The Bott element β ∈ K−2(∗) = K0(D2, ∂D2) is represented by the complex of vector
bundles C

·z−→ C on C (which contains D2 as the unit disk).

Proposition 6.24. For any finite simplicial complex of groups X with subcomplex A,
multiplication by the Bott element K−k(X,A)→ K−k−2(X,A) is an isomorphism for all k � 0.

Proof. By the long exact sequence, excision, the five lemma, and finite additivity, we are reduced
to the case of (Di, ∂Di)× BG. By the definition of K−n, we are further reduced to the case of
K0, namely to showing that multiplication by the Bott element

K0((Dk, ∂Dk)× BG)→ K0((Dk+2, ∂Dk+2)× BG)

is an isomorphism for all k � 0, which is well known (see [AB64], [Ati68, Theorem 4.3], and
[Seg68, § 3]). �

In fact, this argument shows more generally that for any complex line bundle L over a finite
simplicial complex of groups X, pullback followed by multiplication with the relative Bott class
in K0(L,∞) (represented by the complex C

·p−→ L on L) defines an isomorphism K−k(X)→
K−k(L,∞) (and, yet more generally, that pullback and multiplication with the Koszul complex
defines an isomorphism K−k(X)→ K−k(E,∞) for any complex vector bundle E).

Definition 6.25. The periodic K-theory of a pair (X,A) is the direct limit

K∗
per(X,A) := lim−→

j

K∗−2j(X,A)

over multiplication by β. Whereas K∗ is defined only in nonpositive degrees, K∗
per is defined in

all degrees.

As direct limits are exact, K∗
per is, similarly to K∗, a cohomology theory for orbispace pairs

satisfying the hypothesis of Theorem 1.1. When the natural map K∗ → K∗
per is an isomorphism,

K∗
per provides a natural extension of K∗ from nonpositive degrees to all degrees.

Corollary 6.26. For any finite simplicial complex of groupsX with subcomplex A, the natural
map K∗(X,A)→ K∗

per(X,A) is an isomorphism in nonpositive degrees.
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Göttingen, 2005), 1–32; MR 2206877.

HG07 A. Henriques and D. Gepner, Homotopy theory of orbispaces, Preprint (2007),
arXiv:math/0701916.

HM04 A. Henriques and D. S. Metzler, Presentations of noneffective orbifolds, Trans. Amer. Math.
Soc. 356 (2004), 2481–2499; MR 2048526.

Hen05 A. G. Henriques, Orbispaces, PhD thesis, Massachusetts Institute of Technology (2005).
Kre09 A. Kresch, On the geometry of Deligne–Mumford stacks, in Algebraic geometry—Seattle 2005.

Part 1, Proceedings of Symposia in Pure Mathematics, vol. 80 (American Mathematical
Society, Providence, RI, 2009), 259–271; MR 2483938.

KV04 A. Kresch and A. Vistoli, On coverings of Deligne–Mumford stacks and surjectivity of the
Brauer map, Bull. Lond. Math. Soc. 36 (2004), 188–192; MR 2026412.

LO01 W. Lück and B. Oliver, The completion theorem in K-theory for proper actions of a discrete
group, Topology 40 (2001), 585–616; MR 1838997.

LMB00 G. Laumon and L. Moret-Bailly, Champs algébriques, in Ergebnisse der Mathematik und ihrer
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