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EIGENPOLY TOPES OF DISTANCE REGULAR GRAPHS

C.D. GODSIL

ABSTRACT.  Let X be a graph with vertex set V and let A be its adjacency matrix.
If E isthe matrix representing orthogonal projection onto an eigenspace of A with di-
mension m, then E is positive semi-definite. Hence it is the Gram matrix of a set of |V
vectors in R™. We call the convex hull of a such a set of vectors an eigenpolytope of
X. The connection between the properties of this polytope and the graph is strongest
when X isdistance regular and, in this case, it ismost natural to consider the eigenpoly-
tope associated to the second largest eigenvalue of A. The main result of this paper is
the characterisation of those distance regular graphs X for which the 1-skeleton of this
eigenpolytope isisomorphic to X.

1. Introduction. Let X beagraph with vertex set V and adjacency matrix A. Let 0
be an eigenvalue of A with multiplicity m and let U, be a matrix whose columns form
an orthonormal basis for the eigenspace of A belonging to 6. If u € V, define u(f) to be
the row of U, indexed by u. The eigenpolytope of X belonging to 6 is defined to be the
convex hull of the vectors u(f), where u ranges over the vertices of X. This definition
is dependent on the orthonormal basis chosen for the eigenspace but the inner product
(u(#), v(h)) is independent of this choice, and thisis all that matters for us.

If Ey denotes the matrix representing orthogonal projection onto the eigenspace be-
longing to # then Ey = UyU]}, hence

(u®),v(0)) = (Eg)uy

If ueV, let e, bethevector in RY which is 1 on u and 0 elsewhere. We have
(u(6), v(0)) = e EjEge, = eJEZV(0) = U(B)EoV(0) = (Eg)uy-

Since Ey is a polynomial in A, this implies that (u(6), v(d)) is determined by 6 and the
numbers (A", for r > 0. In other words, it is determined by the number of walksin X
from u to v with length r, for all non-negative integers r. Therefore the geometry of an
eigenpolytope of X is related to the structure of X.

An eigenpolytope has at least one property not shared by polytopesin general. If u
and v are vertices of X then we write u ~ v to denote that u and v are adjacent. Because
Aisa01-matrix and AU, = AUy, we easily derive the following condition.
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LEMMA 1.1. Let X be a graph and let 6 be an eigenvalue of its adjacency matrix.
Then, for each vertex u of X,

fu(®) = > v(6h). "

v~u

Powersand Licata[11] call apolytopeself-reproducingif it hasthe property expressed
by this lemma.

In this paper we will only consider eigenpolytopes of distance regular graphs. For
the basic notation and theory of the latter, see[3] (or even [7]). We do recall that if X is
distance-regular with diameter d then for i = O,...,d there are constants ¢;, a; and b;
such that if uand v are verticesin X at distancei then the number of neighbours of v at
distancesi — 1,i andi + 1 fromuisc, a and b; respectively. Thisimplies that if X is
distance-regular then it is regular with valency bg. Following tradition we will usualy
denote by by k. We observe also that ag = by = 0 and ¢; = 1. (In practice we will be
most concerned with a;, by and ¢;.)

If X is distance-regular with vertex set V and diameter d, let X; be the graph with
vertex set V, with two vertices adjacent if and only if there are at distance i in X. Thus
X1 = X and the edge sets of the graphs X; partition the edge set of the complete graph
on V. If we define Ag to be the identity matrix | and A; := A(X) then

ZAi:J.

(Here, asusual, J isthe matrix with all entries equal to one.) It can be shown that A; can
be written as a polynomial of degreei in A, and that every polynomial in A is alinear
combination of the matrices Ay, ..., Aq. Consequently, if 6 is an eigenvalue of Aand u
and v are vertices of X then (Ey).y is determined by the distance between u and v in X.
For eigenpolytopes, this has the following conseguence.

LEMmMA 1.2. Let X be a distance-regular graph with vertex set V and adjacency
matrix A, and let § be an eigenvalue of A. If u and v are vertices of X then (u(6), v(6)) is
determined by the distance betweenu and vin X. ]

Thisimplies that the length of u(6) is independent of the choice of the vertex u, and
hence that its length is m/|V/|, where mis the multiplicity of 6. Thus the vertices of an
eigenpolytope of a distanceregular graph all lie on aspherein R™ centred at the origin.

If X is distance regular with diameter d then it has exactly d + 1 distinct eigenvalues,
which we will denote by 6y, ..., 604, in decreasing order. If X has valency k then 6y =
k and 6 is simple (because X is connected). For reasons which we present later, the
eigenpolytope belonging to 6 is particularly interesting. One of the main results of this
paper is acharacterisation of the distanceregular graphs X such that the 1-skeleton of the
#1-eigenpolytope is isomorphic to X. Before we can do this we need to establish some
of the basic theory of convex polytopes (and explain words such as ‘ 1-skeleton’). This
is the task of the next section.
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2. Polytopes. Brgndsted'sbook [2] isaconvenient reference for most of our poly-
topal needs. We do assume some familiarity with the elements of the theory of convex
sets.

A convex polytope is defined to be the convex hull of afinite set of points. The di-
mension of a polytopeisthe dimension of the smallest affine spacewhich containsall its
points; we will often refer to a polytope of dimension mas an m-polytope. A 0-polytope
is acomplicated name for a point.

An affine hyperplane H is a supporting hyperplane for a polytope P if it contains at
least one point of P and all points of P not on H lie on the same side of H. A face of
P isany set of points P N H, where H is a supporting hyperplane. Any faceisitself a
convex polytope, and aface of aface of P isafaceof P. (Thesefacts may seem entirely
obvious, but they require proof.) There is an alternative definition of faces which will
be useful. Supposethat P is a polytope in R™. The set of pointsin P at which alinear
functional on R™ takesits maximum valueis aface, and all faces can be obtained in this
way. Less formaly, if h € R™ then the points x in P such that hx is maximal form a
face of P. It is not too hard to see that these two definitions of faces are equivalent. An
r-faceis afacewhich hasdimensionr. A O-faceisusually called avertex and a 1-faceis
called an edge. An (m — 1)-face of an m-polytope is afacet. The vertices and edges of a
polytope form a graph, which is the 1-skeleton of the polytope.

THEOREM 2.1.  If X isthe 1-skeleton of an m-polytope P and Cisa cutset in X then
the verticesin C span an affine hyperplane, and hence |C| > m.

PrOOF. Let C beasubset of the vertices of X which does not span R™. If Cis con-
tained in aface of P then X\ C is connected by [2: Theorem 15.5]. Otherwise thereisa
hyperplane containing C and at least one other vertex of P. The proof of Theorem 15.6
from [2] now yieldsthat X \ C is connected. n

Balinski [1] proved that the 1-skel eton of an m-polytopeis m-connected; thisisproved
in [2] as Theorem 15.6. Thus Theorem 2.1 is essentially a reformulation of this result,
and we will also make use of it in this form. In either form this result implies that the
1-skeleton of an m-polytope has minimum valency at least m. We note one simple con-
sequence of this.

LEMMA 2.2. Suppose X is distance regular with valency k, let 6 is an eigenvalue
with multiplicity m and let P be the associated eigenpolytope. If k < m then X is not
isomor phic to the 1-skeleton of P.

ProOF. Theorem 2.1 impliesthat the 1-skeleton of P is m-connected, and therefore
its minimum valency is at least m. ]

A polytopeis simplicial if every faceis asimplex. An m-polytopeis simpleif every
k-face lies in exactly m — k facets. There is a more intuitive characterisation, given as
Theorem 12.12in [2].
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THEOREM 2.3.  An mpolytope is simple if and only if its 1-skeleton is regular of
valency m. ]

THEOREM 2.4. Let P bea simple polytope. Then:

(a) Everyfaceof P issimple.

(o) Suppose u and vy, ...,V are vertices of P such that uy; is an edge of P for
i =1,...,k andlet F bethe smallest face of P containing u and the verticesv;. Then F
has dimension k and the edges uv; are the only edgesin F on u.

PROOF. See Theorem 12.15 and 12.17 respectively from [2]. ]

Suppose that A is the adjacency matrix of the graph X and 6 is an eigenvalue of A
with multiplicity m. Let P be the eigenpolytope of X belonging to # and let h be avector
in R™. Then the function which maps u in V onto (h, u(9)) is an eigenvector of A with
eigenvalue 6 and each eigenvector of A with eigenvalue 6 can be obtained in this way.
As noted by Powers [14], the vertices on which an eigenvector assumes its maximum
valueform aface of P. In particular if there is an eigenvector equal to 1 on u and v and
lessthan one on all other vertices of X then uvisan edgein P. We will make use of this
later.

As also noted by Powers[14], equitable partitions can be used to derive information
about the faces of eigenpolytopes. We explain this. If V isthe vertex set of X and risa
partition of V, let F(7) denote the vector space of all functions on V which are constant
on the cells of 7. Call 7 equitable if F(r) is A-invariant. If 7 is an equitable partition of
X then F(r) contains eigenvectors for A, each of which must be constant on the cells of
7. Therefore at least two cells of 7 are faces of some eigenpolytope of X. (This will of
course still be true if we assume only that F(r) contains an eigenvector of A, but | have
found no use for this generality yet.) If S C V then the distance partition of X relative
to Sisthe partition with cellsCj, i = 0,...,r say, where C; is the set of vertices of X at
distancei from S. (So Cyp = S) A subsetis completely regular if its distance partition is
equitable. Any vertex in adistance regular graph is a completely regular subset.

For an introduction to equitable partitions see[7: Section 5.1] and [8, 9]. Completely
regular subsetsare discussedin [3: Section 11.1] and [7: Section 11.7].

3. Cosines. Let X beadistanceregular graph with diameter d and let # be an eigen-
value of its adjacency matrix. If u and v are vertices of X at distance i, let w; be the
cosine of the angle between the vectors u(f) and v(#). The existence of the cosines w;
fori =0,...,disaconsequence of Lemma 1.2. In this section we summarise some of
the properties of these cosines, and their geometric consequences. Not surprisingly, the
treatment in this section follows [7: Chapter 13], and most of what we discusswill also
befound in [3: Chapters 3 and 4].

First, however, there is apoint that we have glossed over. The mapping

uevVve— u@)

need not beinjective, even when X is distance regular. Note that this mappingisinjective
if and only w; = 1 impliesi = 0. An extreme example arises if we take 0 to be the
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valency, k say, of X. Then 6 is simple, the all-ones vector 1 isan eigenvectorandw; = 1
for al i. If X is bipartite then —k is an eigenvalue and, in this case, w. = (—1)'. These
difficulties can be avoided by not using the eigenpolytopes belonging to the eigenvalues
k and —k, but this is not enough. However it can be shown that if || # kandw, = 1
then i must be the diameter of X, and X must be antipodal. A distance regular graph X
which is antipodal of diameter two is a complete multipartite graph. Here 8; = 0, the
corresponding el genvectorsare constant on the col our-classesof X and the eigenpolytope
isasimplex.

In this paper we will concentrate on the eigenpolytopes associated to the second-
largest eigenvalue 6, of a distance regular graph. For this eigenvalue there are no diffi-
cultieswith injectivity. To seethis, defineasign-changein asequencew, . .. , Wq of non-
zero real numbersto be an index i such that w_;w; < 0. The number of sign-changesin
aseguence with terms equal to O will be defined to be the number of sign-changesin the
sequence obtained by deleting all terms that are 0. For one proof of the next result, see
[7: Lemma13.2.1].

LEMMA 3.1. Let X be a distance regular graph with eigenvalues 6y, . .., 04. Then
the sequence of cosines wy, . .., Wy for 6; has exactly i sign-changes and, if i > 0, the
sequence of differenceswy — wi, ..., Wy_1 — Wy hasexactly i — 1 sign-changes. n

COROLLARY 3.2. Let X be a distance regular graph with eigenvalues 6y, ..., 0.
Then the cosine sequencefor 6; isnon-increasing. ]

This shows that the Euclidean distance between two vertices of the 6;-eigenpolytope
isanon-decreasingfunction of thegraphical distance between the corresponding vertices
of X.

Suppose now that u andy are vertices at distancei in X. Taking theinner product with
u(p) of the equation

oy(0) = > 2(6)

vy

and dividing by ||u(6)/|?, we obtain
(3.1 OW = CiWi—1 + Wi + biWi+1.

Wesetw_; = wg+1 = 0, so thisidentity holdsfori = 0, ..., d. One consequenceof this
is athree-term recurrence for w;:

(3.2 Wi+ = %[(0 — &)W — GWi—g].

Thisimpliesthat if wi = 0 then wi_i1wi+1 < 0, and that wy # 0.
Our next task is to present some more specific information about the cosines w; and
ws. Therecurrence (3.2) yieldsimmediately that
0

1
(3 3) Wi = E, Wy = E(Gz — a0 — k)
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Asw; isacosine, |w;| < 1 and hence we deduce from the above expression for w; that
|6] < k. (Thisis, of course, well known.) Recalling that b; = k— a; — 1, we obtain from
these identities that

bi+60+1
by

Asw; isacosine, |w;| < 1, and therefore (3.4) impliesthat # > a — k. (Although we
will not need this bound.) We also find that

(34) 1—-w, = (l—W]_)

0+1
(35) Wl—WZZ(l—Wl)b—,
1
with the consequencethat wy; > w, when 6 > —1. Together the last two equationsimply
that
(3.6) 1—2w1+w2:(1—wl)b1_b—0_1.
1

To completethis section, we derive some information about the 1-skel etons of eigen-
polytopes. Let 6 be an eigenvalue of the distance regular graph X with diameter d and let
Wo, . .., Wy be its sequence of cosines. If u € V(X) we define the standard eigenvector
for 0 relative to u to be the vector with v-entry equal to the cosine of the angle between
u(f) and v(6). Part (a) of the next result is taken from [3: Theorem 4.4.9]. If u € V(X)
then X(u) denotesthe set of verticesin X adjacent to u.

THEOREM 3.3. Let X bea distanceregular graph with diameter d, let 6 bean eigen-
value of X with cosine sequencew, ..., Wy and assumethat w; > w; ifi > 1. Let P be
the eigenpolytope for 6.

(a) If X containsan induced C4 then 1 — 2wy +w, > 0.

(o) If uand v are adjacent verticesin X then uvis an edge of P..

(c) 1f1—2w; +w, > 0anduandvareat distancetwo in X then uvisan edgeof P.

(d) If1—2w; +w, = Oand u and v are at distance two in X then each vertex in

X(u)MX(v) is not adjacent to at most one other vertexin X(u) N X(v). Further, uv
isan edge of P if and only if X(u) N X(v) isa clique.

PROOF. Suppose u, a, v and b induce a copy of C4, with u not adjacent to v and
a not adjacent to b. Then the squared length of the vector u(f) + v(6) — a(f) — b(6) is
4(u(d), u(9))(1 — 2wy + wy), whence (a) follows.

Notethat, if equality holds, then u(f) +v(6) = a(#) +b(6) and so the line through u and
v has a point in common with the line through a and b. Hence these lines are coplanar
and therefore any supporting hyperplane of P that contains u and v must contain a and
b. Accordingly uv cannot be an edge of P. We will usethisin proving (d).

Let z, and z, be the standard eigenvectorsfor 6 relative to u and v respectively.

If u~ vthentheuandv entries of z, + z, are both equal to 1 +ws, and any other entry
isat most 2wy. Therefore {u, v} isthe set of vertices on which z, + z, takesits maximum
value, and so uvisan edgein P.
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If uandv areat distancetwoin X, theu and v entries of z,+z, are equal to 1+w,, while
any other entry isat most 2w,. It follows that uv is an edge of P when 1 — 2wy +w, > 0.
Assume now that 1 — 2wy + w, = 0 and u and v are at distance two. Then

{u, v, X(u) N X(V)}

isthe set of vertices on which z, + z, takes its maximum value, hencethis set is aface of
P. If aand b are common neighbours of u and v which are not adjacent then u, a, v and
b induce a copy of C, and from the proof of (a) it follows that uv is not an edge of P and
that b(#) = u(f) + v(6) — a(f). The latter shows that there can be at most one vertex in
X(u) N X(v) not adjacent to a.

Finally, suppose that X(u) N X(v) isaclique and let o be defined by

a= Y  X@).
XeX(u)NX(v)

If x € X(u) N X(v) then

(a,x(0)) = (1+ (2 — Lwr ) (x(6), X(6))

while
(o, u(6)) = (o, V(6)) = cown (U(B), u(®)).-

It follows that uv is a face of aface of P, henceit isan edgein P. ]

COROLLARY 3.4. Let X be a distance regular graph with diameter d, let § be an
eigenvalue of X with cosine sequencew, . .., Wy and assumethat w; > w; ifi > 1. Then
X is a spanning subgraph of the 1-skeleton of the eigenpolytope belonging to 6. ]

The reader might object that Theorem 3.3 is not needed to prove this corollary. If
wi > W, wheni > 1and u ~ v then no vertex of P is closer to u(f) than v(¢) is. Hence
it seems obvious that uv is an edge of P . Even in the plane this is false—any rhombus
which is not a square provides a counterexample. As noted in [6], Corollary 3.4 implies
that X is planar when 6, has multiplicity three.

4, Polytopal distance-regular graphs. We wish to determine the distance regular
graphs X which areisomorphic to the 1-skeleton of the eigenpolytope associated to their
second-largest eigenvalue. Our first tool is aversion of aresult from Terwilliger [16].

LEMMA 4.1. Let X be a distance regular graph of diameter d with an eigenvalue 0
and let wy, ..., wy be the corresponding cosine sequence. Let u be a vertexin X, let N be
the adjacency matrix of X(u) and let 7 bean eigenvalueof N. Then (1—ws) +(wy —Ws)7T >
0. If 8 # 0 then equality holds if and only the vectors v() with v € X(u) forma linearly
dependent set.

PrROCF. Definethe matrix M by

M = I +wWiN +wo(J — | — N).
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Then IV(—n;OIM is the principal submatrix of E, with rows and columns indexed by the
neighbours of u, consequently M is positive semi-definite and therefore its eigenvalues
are non-negative. Asthe neighbourhood of uis regular (with valency a;) the vector 1is

an eigenvector of N, and henceis eigenvector of M with eigenvalue
1+awy + (k —a; — l)W2 =1+ a;wy + byws.

Using (3.3), we find that this equals 62/ k.
Suppose that z is an eigenvector for N that is orthogonal to 1 and has eigenvalue 7.
Then zis an eigenvector for M with eigenvalue (1 — w) + (w; — Wo)7, and therefore

(1 —wp) + (W — w2)r > 0.

Equality will hold if and only if there is an eigenvector of M that is orthogonal to 1 and
has eigenvalue 0. This provesthe last claim. ]
If k > m then the vectors v(6) for vin X(u) will be linearly dependent; this will be
very helpful when we come to prove our main result, Theorem 4.3.
The following is a combination of important results from Brouwer, Cohen and Neu-
maier [3], that are based in part on earlier work of Neumaier [13] and Terwilliger [17].

THEOREM 4.2. Let X bea distanceregular graph with diameter d and valency k, let
Wo, - - ., Wy be the cosine sequence for 61 and let m be the multiplicity of 1. If c; > 1,
1—2w;+w, =0andk > mthen Xis:

(a) aJohnsongraph J(v, k),

(b) a Hamming graph H(n, ) or a Doob graph,

(c) ahalved n-cube,

(d) the Schiafli graph or one of the three Chang graphs,

(e) the Gosset graph.

PrROCOF. If 1 — 2wy +w, = 0 then (3.6) impliesthat by = 0; + 1. Graphs satisfying
this condition are classified by Theorem 4.4.11 and Theorem 3.12.4 of [3], asfollows.

If X has diameter two then, by [3: Theorem 4.4.11(i)], its least eigenvalue is —2,
whence[3: Theorem 3.12.4] yieldsthat X is J(v, 2), H(2, n), the Shrikande graph (which
isaDoob graph) or one of the graphslisted in (d).

If the diameter of X is greater than two then, since we have ¢, > 2, Theorem 4.4.11
of [3] yields that ¢, € {2,4, 6,10} and determines the graphs that can arise for each of
the four possible values of ¢,. We consider thesein turn.

If c; = 2then XisaHamming graph, a Doob graph or is one of two locally Petersen
graphsdescribedin [3: Theorem 1.16.5(ii) and (iii)]. Fromthe tables at the end of [3] we
seethat k < mfor both of these graphs.

If ¢, = 4 or 6 then X must be aJohnson graph or ahalved-cuberespectively. If ¢, = 10
then X is the Gosset graph. ]

A Doob graph is the Cartesian product of H(n,4) with some number of copies of
the Shrikande graph. The latter is a strongly regular graph on 16 vertices with the same
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parameters as H(2, 4). The Schléfli graph is a strongly regular graph on 27 vertices with
valency 16; the Chang graphs are strongly regular graphs on 28 vertices with the same
parameters as J(8, 2). The halved 5-cubeis also known as the Clebsch graph, and occurs
in this guise in [3: Theorem 3.12.4]. The Gosset graph is an antipodal distance-regular
graph with diameter 3 on 56 vertices with valency 7, it is locally a Schl&fli graph. For
further information about these graphs, we refer the reader to [3].

We now come to our main result.

THEOREM 4.3. Let X bedistanceregular and let P be the eigenpolytope associated
to the second-largest eigenvalue of X. Then X is the 1-skeleton of P if and only if it is
one of the following:

(a) aJohnsongraph J(v, k),

(b) aHamming graph H(n, q),

(c) ahalved n-cube,

(d) the <chlafli graph,

(e) the Gosset graph,

(e) theicosahedron,

(f) the dodecahedron,
(g) the complement of r copies of Ky, or
(h) acycle.

ProOF. Assume X is distanceregular with diameter d and valency k, let § denoteits
second-largest eigenvalue and let P be the corresponding eigenpolytope. Let m be the
multiplicity of 6. We assumethat X isthe 1-skeleton of P, whencek > m. We prove that
X is either a Chang graph, a Doob graph, or one of the graphslisted in the statement of
the theorem. We may assumek > 3.

If § < 0 then X has least eigenvalue greater than —1, and therefore X is complete. If
9 = O'then X has|least eigenvalue —1. It follows that each component of X is acomplete
graph, and hencethat X isaregular complete multipartite graph. Assumethat X consists
of r digoint copies of Ky,,. Because§ = 0 we havew; = 0 and, from (3.5), we find that
Wy = —1/by = —1/(m— 1). Consequently 1 — 2w; + w, > 0 unlessm = 2. When
m= 2, verticesof P corresponding to vertices at distancetwo in X are antipodal and so
X isisomorphic to the 1-skeleton of P . Consequently we may assumethat 6 > 0.

Let u be avertex of X and let N be the adjacency matrix of X(u). Assume henceforth
that  denotes the least eigenvalue of N. We have

1—2wi +Wo — [1—Wa + (W1 — Wo)1] = —(W1 — Wo)(7 +2).

By Lemmad4.1, thisimplies that 1 — 2w + w, > Owhen 7 < —2. Thereforer > —2. If
7= —2then Lemma4.1vyieldsthat 1 — 2w; + wp > 0, therefore 1 — 2w; +w, = 0. If
Cz > 1we appeal to Theorem 4.2, if ¢, = 1 then X(u) cannot contain an induced path of
length two, thereforeit is adisjoint union of complete graphsandr > —1.

Thuswe may assumethat 7 > —2, and hence that each component of X(u) isaclique
or an odd cycle.
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Supposec; > 1. By Theorem4.2 we may assumethat 1—2w; +w, < 0, whence Theo-
rem 3.3 impliesthat X containsno induced 4-cycle, and therefore the common neighbours
of any two verticesat distancetwo must beaclique. Supposea and b are neighboursof u
that are distance at least three in X(u). The common neighbours of a and b form a clique
containing u, implying that u is the only common neighbour of a and b. Asc, > 1, this
isimpossible. Consequently the neighbourhood of each vertex in X is a pentagon; given
this, it is not hard to show that X is the icosahedron.

If k > mthen equality holdsin the bound of Lemma 4.1; together with the identities

from Section 3 thisyields

T=-—-1— 9+ 1
If a; = Othenr = 0, but then b; < Owhichisimpossible. If a; = 1thenT = —1 but
then wefind that by = 0 and X is complete. Supposer < —1. Thena; > 2 and, asthe
least eigenvalue of an even cycleis —2, this means that X(u) is a digoint union of odd
cyclesand at least one of these cycles has length at least five. Thisimplies that ¢, > 1.

Hencewe are |eft with the casewherec, = 1 and k = m. As X isthe 1-skeleton of P,
Theorem 2.3 implies that P is simple and Theorem 2.4(b) that every path of length two
in X liesin a 2-face, necessarily unique. Since c, = 1, no faceisa4-gon.

If every 2-face is atriangle then there is no induced copy of P3 and X is complete.
Suppose then that a, b and ¢ induce a copy of P3, and that the 2-face which contains
thisis an n-gon. The angle between the vectors a(f) — b(#) and c(f) — b(6) ist — % A
straightforward computation yields that

cos(n—ﬁ) _1-2wmtwe by —1-9

2(1 — Wl) B 2b;
and therefore
2 _ 0+1—Dby
4.1 cos(F) = p,

Thus each 2-face of P isatriangle or an n-gon, where n is determined by 6 and by, and
isat least five.
Assume now that a; = 0. Asf < k, equation (4.1) implies that
2r 1
os( ) < =1

If kK > 5, thisimplies n > 6. However any 3-face of P is a cubic planar graph and,
from Euler’'s relation, it follows that such a graph must have a face of size at most five.
Thereforek < 4, andsom < 4. If k = 3 or 4then n = 5. Hence if k = 3 then
X is the dodecahedron. If k = 4 then Euler’'s formula yields that each 3-face of P is
a dodecahedron. Therefore P is a regular 4-polytope and the only regular 4-polytopes
with distance-regular 1-skeletons are the simplex, the 4-cube and its dual. (This follows
for example, from Zhu [18], where the distance-regular graphs with an eigenvalue of
multiplicity four are determined.)

https://doi.org/10.4153/CJM-1998-040-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-040-8

EIGENPOLY TOPES 749

Assumenow that a; > 0. Asc, = 1, theneighbourhood of avertexin X isthedisjoint
union of t cliquesof sizea; + 1, wheret = k/(a; + 1). Assumefirst that t > 3.

Let ube afixed vertex in X and let p, v and w be neighbours of u such that v ~ w but
neither v nor w is adjacent to p. Let F denote the smallest face of P that contains u and
these three neighbours. By Theorem 2.4(b), it followsthat F isasimple 3-polytope with
all facestrianglesor n-gons. The 1-skeleton of F iscubic, hencethereisavertex, V' say,
adjacent to p but not u and lying in an n-gon that contains u and v. Similarly there is a
vertex W adjacent to p but not u and lying in an n-gon that containsw. Thesetwo n-gons
lie in affine planes that intersect in the line through u and p. The configuration formed
by these two n-gons is symmetric about the plane through u, p and (v +w) /2. It follows
that

IV(0) =W @) = [[v©) —wO),

whichimplies that v/ and w' must be adjacent. From this we conclude, by atrivial induc-
tion argument, that each vertex in F liesin exactly onetriangle. Consequently n must be
even—every other edgein a 2-face of sizenliesin atriangle—and son > 6.

Now let F denotethe simple 3-polytopeformed by the smallest face of P that contains
u and three pairwise non-adjacent neighbours of u. (Such neighbours exist, becauset >
3.) Thenthe 1-skeleton of F isacubic graph that, by the argument of the last paragraph,
istriangle-free. Asit is aplanar graph, Euler’s formulaimplies that some face of F has
length at most five. Thisimplies that n = 5, acontradiction.

Thus we are left with the caseswhent < 2. If t = 1 then X is complete and no
more need be said. If t = 2 then X is the line graph of a triangle-free graph. By [3:
Theorem 4.2.16] it followsthat if X isnot listed in the statement of theorem then it isthe
line graph of either

(@ theincidencegraph of aregular generalised d-gon with d € {3,4, 6}, or

(b) aMoore graph (with diameter two and valency 3, 7 or 57).

Theincidence graph of aregular generalised d-gonis bipartite with girth 2d and therefore
the shortest cycle other than a triangle in its line graph has length at least 2d. Since X
contains pentagons, this case cannot arise. The eigenvalues and their multiplicities for
line graphs of Moore graphs appear in [3: p. 149]; in each case m > k.

We prove next that a Doob graph is never the 1-skeleton of its 6;1-eigenpolytope. A
Doob graphis defined to be the Cartesian product of H(n, 4) with some positive number
of copies of the Shrikande graph. We quote the information we need from [3: pp. 103—
104]. The Shrikande graph is a strongly regular graph on 16 vertices with the same pa-
rameters as H(2,4); henceit hasa; = ¢, = 2 and 6; = 2 with multiplicity six. The
neighbourhood of any vertex isisomorphic to Cg, whereasin H(2, 4) all neighbourhoods
areisomorphicto 2K3. Theleast eigenvaluer of Cg is —2, whenceLemmad4.1yieldsthat
theimagein P of the neighbourhood of avertex islinearly dependent, and therefore lies
in a4-dimensional affine space. Since P is 6-dimensional this contradicts Theorem 2.1.
Therefore the Shrikande graph is not the 1-skeleton of its #;-eigenpolytope.
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The same argument worksin general. The neighbourhood of avertex in aDoob graph
X must be adigjoint union of copies of K3 and Cg, with at least one Cg. Hencer = —2
and therefore the image of a Cg is linearly dependent.

For the Chang graphsc, = 4. A computer search carried out by M. Conder (using the
package CAYLEY) yielded that in each of these three graphsthereisapair of verticesat
distance two whose four common neighboursinduce a clique. Hence the Chang graphs
are not isomorphic to the 1-skeletons of their 6;1-eigenpolytopes.

Now we must show that the graphs listed in the statement of the theorem are iso-
morphic to the 1-skeletons of their 6;1-eigenpolytopes. For the cycle no proof should be
required. To treat the Hamming and Johnson graphswe provethat if 1 — 2wy +w, = 0
and every induced path of length two lies in an induced 4-cycle then X is the 1-skeleton
of P. If a € V(X), let C(a) denote the convex cone generated by the vectors u(d) — a(f)
as u ranges over the vertices of X and let C,(a) denote the cone generated by the vectors
u(f) — a(f) as u ranges over the neighbours of a. Clearly C(a) C C(a). We show that
every vector in C(a) is anon-negative linear combination of vectors u(d) — a(#), where
u ~ a. Thisimpliesthat X isthe 1-skeleton of P.

Let v be avertex at distancei from a, and let b be a neighbour of v at distancei — 1
from a. We prove by induction on i that there is a neighbour, u say, of a such that

4.2) u() — a(6) = v(8) — b(b).

Ifi = 1thereisnothingtoprove. Ifi > 2, let b’ beaneighbour of bat distancei—2 froma.
Thenb’, bandvliein aninduced 4-cyclewith afourth vertex v'. Because1—2w;+w, = 0
this implies that

V/(0) — b'(6) = v(6) — b(6)

and by induction on i there is a neighbour u of a such that
u(®) — a(@) = v'(9) — b'(9).

It follows that if v € V(X) then v(f) — a(f) is equal to a sum of vectors of the form
u(f) — a(6), where u € X(a), and hence C,(a) = C(a).

The common neighbours of two distinct non-adjacent vertices in the Schlafli graph
induce a subgraph isomorphic to Kg with a perfect matching deleted. (This follows, for
example, from the description of this graph as the complement of the point graph of the
generalised quadrangle of order (2, 4)—see page 103 of [3].) Hence Theorem 3.3 yields
that it isisomorphic to the 1-skeleton of its 61-eigenpolytope.

The Gosset graph is locally a Schlafli graph and has c, = 10. Let u and v be two
verticesin it at distance two, and let a be one of their common neighbours. As X(a) isa
Schiafli graph, there are exactly eight common neighboursof uand v adjacent to a, hence
their tenth common neighbour is not adjacent to a and so X(u) N X(v) is isomorphic to
the complement of 5K,. Thus Theorem 3.3 yields that the Gosset graph isisomorphic to
the 1-skeleton of its 61-eigenpolytope.
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Thedodecahedronand icosahedronremain. Let ug, . .., Uy beaset of vectorsforming
the vertices of a regular dodecahedron in R2. By symmetry, the sum of the vectors u;
corresponding to the vertices adjacent to u; is equal to cu; for some real number ¢ and,
by symmetry, ¢ isindependent of i. Given thisit is not too hard to see that uy, ..., Ux
can be taken to be the vertices of the 6;-eigenpolytope of the dodecahedron. A similar
argument works for the icosahedron. ]

5. Faces. For the Johnson graphs, Hamming graphs and the halved cubes we can
describe all faces of the 0;-eigenpolytope.

First a definition. Let disty(u, v) denote the distance between verticesu and v in a
graph. A subgraph Y of agraph X is convex if, given any two verticesu and v from Y,
any vertex x of X such that

distx(u, X) + distx(x, v) = distx(u, v)

also liesin Y. (In other words, any vertex in X on a shortest path in X that joins u to v
must lieinY.)

LEMMA 5.1. Let X be a distance regular graph with diameter d and let 6 be an
eigenvalue of X with cosine sequencewy, . .., wy. If 1 —2w; +w, = 0 and everyinduced
path of length two lies in a 4-cycle then every face of the 8-eigenpolytope is a convex
subgraph of X.

PrOOF. Assume#f hasmultiplicity m, let P be the 6-eigenpolytope of X and let F be
afaceof P. Thenthereisavector hinR™ suchthat h'z= 1whenzc€ Fandh'z < 1
whenze P \ F.

Suppose the lemmais false for F. Then there are verticesu and v in F and a shortest
uv-path P such that

PNF = {u,v}.

If b is the neighbour of v on P then hTb(¢) < 1 and thus h" (v(@) - b(H)) > 0. From the
last part of the proof of Theorem 4.3, there is a neighbour, a say, of u such that

a(6) — u(9) = v(9) — b(6)

and therefore h™a(h) > 1. .

Let J(v, k) have as vertices all k-subsetsof thev-set V. Let Sand T be digoint subsets
of V. Then the k-subsets of VV which contain Sand intersect T in the empty set form a
convex subset, and Lambeck [10: Chapter 5] has shown that all convex subsets of J(v, k)
areof thisform. It iseasy to verify that all these subsetsare faces of the 6;-eigenpolytope
of J(v, k).

View H(n, g) as the Cartesian product of n copies of K. If ry,...,r, are integers
between 1 and g, the Cartesian product of the graphs K;, is a convex subgraph, and all
convex subgraphs have this form. (This is probably folklore, and an easy exercise. A
proof does appear in [10: Chapter 5].) Again, it is easy to verify that al these subsets are
faces of the 6;-eigenpolytope of H(n, g).
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For the halved cubes we can use the information we have obtained for Hamming
graphs. Let X be the n-cube H(n, 2) and let X, be the graph with the same vertex set as
X, but with two vertices adjacent if and only if they are at distance two in X. Then X;
has two connected components with vertex setsthe colour classes of X, each of whichis
isomorphic to ahalved n-cube. Let W denote one of the colour classesof X. Let 6; bethe
second-largest eigenvalue of X and let P beits eigenpolytope. Note that the multiplicity
of ;isn— 1. Let Q bethe convex hull of the vectors u(dy), for uin W. Then Q isthe
6,-eigenpolytope of the halved n-cube. We provethat aface of Q iseither:

(@) A setof verticesin W with a common neighbour not in W, or

(b) Theintersection of W with aface of X.

The subgraphs corresponding to the facesin (a) are cliques, those in (b) are halved m-
cubes. Wetakeit as given that these are faces, and show that there are no others. Assume
h € R™! and that the vectors x such that h™x is maximal form aface F of Q . We may
assumethat h"x = 1 for al xinF. If h"x < 1 for all xin P then F is the intersection of
Q with aface of P. Suppose then that there is a vertex y in P such that h"y > 1, and
choose y so that h'y is maximal. Theny lies in the face, F’ say, of P determined by h.
No vertex in F’ can be theimage of avertex in W, but the 1-skeleton of F’ is a connected
subgraph of X. Hence F’ must be the vertex y, and therefore F must be a subset of the
neighbours of y. The convex hull of the neighbours of y is asimplex—this follows from
[2: Theorem 12.13] and the fact that the n-cube is a simpl e polytope—and therefore any
subset of it isaface.

Meyerowitz [12] hasdetermined the completely regular designsof strength zerointhe
Johnson and Hamming graphs. As any such design must form afacein the 6;-polytope,
the results in this section provide another approach to his work.

6. Other eigenvalues, other graphs. We collect some observationsabout the poly-
topes of J(v, k) associated with eigenvalues other than 6;. Delsarte [4: Theorem 4.6] de-
termines the principal idempotents for the Johnson scheme, from which we find that if
a and 8 are k-setswith |« N G| = i then

2
/V_4>(E2) g = /I> _ k= 1)2i + (g) .
\k—2 V- v—2 (%Y
From this we find immediately that 1 — 2wy + w, > 0, and therefore the 1-skeleton

contains at least X; U Xo.
We also have

v—2k+1 Kk [V—K -
EkZiv_k_Flr;O(—l)\ " ) A,

from which it follows that the terms in the cosine sequence for 6y alternate in sign and

decrease strictly in absolute value. So in this case vertices at even distancein J(v, k) are
closer in the polytope than vertices at odd distance. Could the 1-skeleton be X,? The
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multiplicity of —k asan eigenvalueis

(V\\_ (v

\k/  \k—1
which, in general, is greater than (§)(*,*), the valency of X,. Hence X, cannot be the
1-skeleton of this polytope.

Our next result indicates that we should expect difficultiesin identifying the facets of
an eigenpolytope.

LEMMA 6.1. Theedgesinaregular subgraph of K, arethe verticesof a face of the
0,-polytope of J(v, 2). This faceisa facet if and only Y is connected and not bipartite.

PROCOF. Any regular subgraphY of Ky, with its complement, determines an equitable
partition of the vertices of J(v, 2) with two cells. By our remarks at the end of Section 2,
this givesriseto two parallel faces of J(v, 2). The face determined by Y will be afacet if
and only if the vertex-edge incidence matrix of Y has rank v, which happensif and only
Y is connected and not bipartite. ]

For J(v, 3) we note that any Steiner triple system on v points forms a completely
regular design of strength two, hence determines a face in the 63-polytope. This again
provides us with vast numbers of facesin general.

LEMMA 6.2. Let X be a distance regular graph with valency k and diameter d and
let # be an eigenvalue of X with cosine sequencewy, ..., Wq. Assumethatk > 6 > —1
andw, > w; wheni > 2. If by > 2(6 + 1) then each set of three vertices of X with any
two at distance at most two forms a 2-face of the 6-polytope of X.

ProOF. Theconditionk > # impliesthat w; < 1 and the condition # > —1 implies
that w; > ws (by (3.3)). Let a, b and ¢ be distinct vertices of X, and let z;, z, and z3 be
the corresponding standard eigenvectors. As 1 > wy, it followsthat if z;, z, and z3 form
atriangle, then z; + z, + z3 takesits maximum value on precisely the set {a, b, c}.

Suppose ais adjacent to b and ¢, and that b and ¢ are at distance two. Define

v = m 2:=Y11+2+7.
Wy — W,

Then ztakes the same value, ¥ + 2wy, on a, band c. As

1—2W1+W2_ 0+1
1—wy N b]_ '

we see that ¥ > 0O; consequently the value of z on any vertex other than a, b or cis at
most (Y + 2)w;. Because

Y+2w — (Y + 2w =v(1—wy) >0

it followsthat {a, b, c} isthe set of vertices on which zis maximal.
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Suppose next that a is at distance two from b and ¢, which are adjacent. If
Vi=(LAw —2wy) /(- W), z=7z+ 2+ 2,
then ztakesthe valuey + 2w, on a, band c. As
Y—1= (w1 —WwW)/(1—-wg) >0,

the value of z on any vertex other than a, b or c is at most (v + 2)w;. After some work,

we find that
Y+2wo — (Y + 2wy = V(1 — wy) — 2(wg — W)

= (1 —wp)® — 2wy — Wo)?,

whenceit follows that {a, b, c} is the set of vertices on which z is maximal when

1— 2
(Wl —v:iz) >2

Thisis equivalent to the condition by > v/2(6 + 1).
Now assumethat a, b and c are pairwise at distance two and

2=t + 273
Then zisequal to 1 + 2w, on a, b and ¢, and these three vertices form afaceif
0<1+2w, — 3w = (1 —wyp) — 2(Wg — Wo).

Thisholdsif and only if by > 2(6 + 1). "

If no three vertices pairwise at distance two in X have a common neighbour, the con-
dition of the lemma can be relaxed to by > +/2(f + 1). Combining this lemma with
Theorem 3.3(b) yields the following.

COROLLARY 6.3. Let X bea strongly regular graph, let 6 be an eigenvalue of X, not
the valency, and let P be the associated polytope. If by > 6 + 1 then the 1-skeleton of P
iscomplete. If by > 2(9 + 1), every triple of verticesin X forms a face of P. ]

A polytope is k-neighbourly if every set of k vertices forms aface. The above result
thus asserts that P is 3-neighbourly when b; > 2(6 + 1). For information about neigh-
bourly polytopes, see [2: Section 14].

We provide some examples where the conditions of the corollary hold. If X is the
complement of the line graph of K, thenb; = 2n—8and#; = 1. Here#; hasmultiplicity
n—1, andthe;-polytopeis3-neighbourly whenn > 7. If Xistheblock graph of aSteiner
triple system on v pointsthen 6, = (v —9)/2 and by = v— 5. The multiplicity of 61 is
v — 1, and the polytope is 3-neighbourly when v > 7. (The vertices of the block graph
are the triples of the Steiner triple system, two triples are adjacent if they have a vertex
in common.) A Paley graph on n vertices is self-complementary, with by = (n— 1)/4
and 6, = (—1++/n)/2. Themultiplicity of 6 is (n — 1)/2, which is also the valency.
The polytope is 3-neighbourly when n > 25; for the graph to exist n must be a prime
power congruent to 1, modulo 4.
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7. Questions. An m-polytope can be at most | m/2|-neighbourly (see [2: Corol-
lary 14.5]); can this bound can be realised by eigenpolytopesof distance-regular graphs
more than finitely often when m > 4?

It appearsthat the 1-skeleton of an eigenpolytope of a distance regular graph is often
complete; henceit would be interesting to find more examples where it is not.

Finally it would be good to have more examples of eigenpolytopesof distanceregular
graphs where we can explicitly describe the facets.
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