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EIGENPOLYTOPES OF DISTANCE REGULAR GRAPHS

C. D. GODSIL

ABSTRACT. Let X be a graph with vertex set V and let A be its adjacency matrix.
If E is the matrix representing orthogonal projection onto an eigenspace of A with di-
mension m, then E is positive semi-definite. Hence it is the Gram matrix of a set of jVj
vectors in Rm. We call the convex hull of a such a set of vectors an eigenpolytope of
X. The connection between the properties of this polytope and the graph is strongest
when X is distance regular and, in this case, it is most natural to consider the eigenpoly-
tope associated to the second largest eigenvalue of A. The main result of this paper is
the characterisation of those distance regular graphs X for which the 1-skeleton of this
eigenpolytope is isomorphic to X.

1. Introduction. Let X be a graph with vertex set V and adjacency matrix A. Let í
be an eigenvalue of A with multiplicity m and let Uí be a matrix whose columns form
an orthonormal basis for the eigenspace of A belonging to í. If u 2 V, define u(í) to be
the row of Uí indexed by u. The eigenpolytope of X belonging to í is defined to be the
convex hull of the vectors u(í), where u ranges over the vertices of X. This definition
is dependent on the orthonormal basis chosen for the eigenspace but the inner product
hu(í), v(í)i is independent of this choice, and this is all that matters for us.

If Eí denotes the matrix representing orthogonal projection onto the eigenspace be-
longing to í then Eí ≥ UíUT

í
, hence

hu(í), v(í)i ≥ (Eí)u,v

If u 2 V, let eu be the vector in RV which is 1 on u and 0 elsewhere. We have

hu(í), v(í)i ≥ eT
uET

í
Eíev ≥ eT

uE2
í
v(í) ≥ u(í)Eív(í) ≥ (Eí)u,v.

Since Eí is a polynomial in A, this implies that hu(í), v(í)i is determined by í and the
numbers (Ar)u,v for r ½ 0. In other words, it is determined by the number of walks in X
from u to v with length r, for all non-negative integers r. Therefore the geometry of an
eigenpolytope of X is related to the structure of X.

An eigenpolytope has at least one property not shared by polytopes in general. If u
and v are vertices of X then we write u ¾ v to denote that u and v are adjacent. Because
A is a 01-matrix and íUí ≥ AUí, we easily derive the following condition.
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LEMMA 1.1. Let X be a graph and let í be an eigenvalue of its adjacency matrix.
Then, for each vertex u of X,

íu(í) ≥ X
v¾u

v(í).

Powers and Licata [11] call a polytope self-reproducing if it has the property expressed
by this lemma.

In this paper we will only consider eigenpolytopes of distance regular graphs. For
the basic notation and theory of the latter, see [3] (or even [7]). We do recall that if X is
distance-regular with diameter d then for i ≥ 0, . . . , d there are constants ci, ai and bi

such that if u and v are vertices in X at distance i then the number of neighbours of v at
distances i � 1, i and i + 1 from u is ci, ai and bi respectively. This implies that if X is
distance-regular then it is regular with valency b0. Following tradition we will usually
denote b0 by k. We observe also that a0 ≥ bd ≥ 0 and c1 ≥ 1. (In practice we will be
most concerned with a1, b1 and c2.)

If X is distance-regular with vertex set V and diameter d, let Xi be the graph with
vertex set V, with two vertices adjacent if and only if there are at distance i in X. Thus
X1 ≥ X and the edge sets of the graphs Xi partition the edge set of the complete graph
on V. If we define A0 to be the identity matrix I and Ai :≥ A(Xi) then

X
i

Ai ≥ J.

(Here, as usual, J is the matrix with all entries equal to one.) It can be shown that Ai can
be written as a polynomial of degree i in A, and that every polynomial in A is a linear
combination of the matrices A0, . . . , Ad. Consequently, if í is an eigenvalue of A and u
and v are vertices of X then (Eí)u,v is determined by the distance between u and v in X.
For eigenpolytopes, this has the following consequence.

LEMMA 1.2. Let X be a distance-regular graph with vertex set V and adjacency
matrix A, and let í be an eigenvalue of A. If u and v are vertices of X then hu(í), v(í)i is
determined by the distance between u and v in X.

This implies that the length of u(í) is independent of the choice of the vertex u, and
hence that its length is mÛjVj, where m is the multiplicity of í. Thus the vertices of an
eigenpolytope of a distance regular graph all lie on a sphere in Rm centred at the origin.

If X is distance regular with diameter d then it has exactly d + 1 distinct eigenvalues,
which we will denote by í0, . . . , íd , in decreasing order. If X has valency k then í0 ≥
k and í0 is simple (because X is connected). For reasons which we present later, the
eigenpolytope belonging to í1 is particularly interesting. One of the main results of this
paper is a characterisation of the distance regular graphs X such that the 1-skeleton of the
í1-eigenpolytope is isomorphic to X. Before we can do this we need to establish some
of the basic theory of convex polytopes (and explain words such as ‘1-skeleton’). This
is the task of the next section.
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2. Polytopes. Brøndsted’s book [2] is a convenient reference for most of our poly-
topal needs. We do assume some familiarity with the elements of the theory of convex
sets.

A convex polytope is defined to be the convex hull of a finite set of points. The di-
mension of a polytope is the dimension of the smallest affine space which contains all its
points; we will often refer to a polytope of dimension m as an m-polytope. A 0-polytope
is a complicated name for a point.

An affine hyperplane H is a supporting hyperplane for a polytope P if it contains at
least one point of P and all points of P not on H lie on the same side of H. A face of
P is any set of points P \ H, where H is a supporting hyperplane. Any face is itself a
convex polytope, and a face of a face of P is a face of P . (These facts may seem entirely
obvious, but they require proof.) There is an alternative definition of faces which will
be useful. Suppose that P is a polytope in Rm. The set of points in P at which a linear
functional on Rm takes its maximum value is a face, and all faces can be obtained in this
way. Less formally, if h 2 Rm then the points x in P such that hTx is maximal form a
face of P . It is not too hard to see that these two definitions of faces are equivalent. An
r-face is a face which has dimension r. A 0-face is usually called a vertex and a 1-face is
called an edge. An (m� 1)-face of an m-polytope is a facet. The vertices and edges of a
polytope form a graph, which is the 1-skeleton of the polytope.

THEOREM 2.1. If X is the 1-skeleton of an m-polytope P and C is a cutset in X then
the vertices in C span an affine hyperplane, and hence jCj ½ m.

PROOF. Let C be a subset of the vertices of X which does not span Rm. If C is con-
tained in a face of P then X n C is connected by [2: Theorem 15.5]. Otherwise there is a
hyperplane containing C and at least one other vertex of P. The proof of Theorem 15.6
from [2] now yields that X n C is connected.

Balinski [1] proved that the 1-skeleton of an m-polytope is m-connected; this is proved
in [2] as Theorem 15.6. Thus Theorem 2.1 is essentially a reformulation of this result,
and we will also make use of it in this form. In either form this result implies that the
1-skeleton of an m-polytope has minimum valency at least m. We note one simple con-
sequence of this.

LEMMA 2.2. Suppose X is distance regular with valency k, let í is an eigenvalue
with multiplicity m and let P be the associated eigenpolytope. If k Ú m then X is not
isomorphic to the 1-skeleton of P .

PROOF. Theorem 2.1 implies that the 1-skeleton of P is m-connected, and therefore
its minimum valency is at least m.

A polytope is simplicial if every face is a simplex. An m-polytope is simple if every
k-face lies in exactly m � k facets. There is a more intuitive characterisation, given as
Theorem 12.12 in [2].
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THEOREM 2.3. An m-polytope is simple if and only if its 1-skeleton is regular of
valency m.

THEOREM 2.4. Let P be a simple polytope. Then:
(a) Every face of P is simple.
(b) Suppose u and v1, . . . , vk are vertices of P such that uvi is an edge of P for

i ≥ 1, . . . , k, and let F be the smallest face of P containing u and the vertices vi. Then F
has dimension k and the edges uvi are the only edges in F on u.

PROOF. See Theorem 12.15 and 12.17 respectively from [2].
Suppose that A is the adjacency matrix of the graph X and í is an eigenvalue of A

with multiplicity m. Let P be the eigenpolytope of X belonging to í and let h be a vector
in Rm. Then the function which maps u in V onto hh, u(í)i is an eigenvector of A with
eigenvalue í and each eigenvector of A with eigenvalue í can be obtained in this way.
As noted by Powers [14], the vertices on which an eigenvector assumes its maximum
value form a face of P . In particular if there is an eigenvector equal to 1 on u and v and
less than one on all other vertices of X then uv is an edge in P . We will make use of this
later.

As also noted by Powers [14], equitable partitions can be used to derive information
about the faces of eigenpolytopes. We explain this. If V is the vertex set of X and ô is a
partition of V, let F(ô) denote the vector space of all functions on V which are constant
on the cells of ô. Call ô equitable if F(ô) is A-invariant. If ô is an equitable partition of
X then F(ô) contains eigenvectors for A, each of which must be constant on the cells of
ô. Therefore at least two cells of ô are faces of some eigenpolytope of X. (This will of
course still be true if we assume only that F(ô) contains an eigenvector of A, but I have
found no use for this generality yet.) If S � V then the distance partition of X relative
to S is the partition with cells Ci, i ≥ 0, . . . , r say, where Ci is the set of vertices of X at
distance i from S. (So C0 ≥ S.) A subset is completely regular if its distance partition is
equitable. Any vertex in a distance regular graph is a completely regular subset.

For an introduction to equitable partitions see [7: Section 5.1] and [8, 9]. Completely
regular subsets are discussed in [3: Section 11.1] and [7: Section 11.7].

3. Cosines. Let X be a distance regular graph with diameter d and let í be an eigen-
value of its adjacency matrix. If u and v are vertices of X at distance i, let wi be the
cosine of the angle between the vectors u(í) and v(í). The existence of the cosines wi

for i ≥ 0, . . . , d is a consequence of Lemma 1.2. In this section we summarise some of
the properties of these cosines, and their geometric consequences. Not surprisingly, the
treatment in this section follows [7: Chapter 13], and most of what we discuss will also
be found in [3: Chapters 3 and 4].

First, however, there is a point that we have glossed over. The mapping

u 2 V 7! u(í)
need not be injective, even when X is distance regular. Note that this mapping is injective
if and only wi ≥ 1 implies i ≥ 0. An extreme example arises if we take í to be the
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valency, k say, of X. Then í is simple, the all-ones vector 1 is an eigenvector and wi ≥ 1
for all i. If X is bipartite then �k is an eigenvalue and, in this case, wi ≥ (�1)i. These
difficulties can be avoided by not using the eigenpolytopes belonging to the eigenvalues
k and �k, but this is not enough. However it can be shown that if jíj Â≥ k and wi ≥ 1
then i must be the diameter of X, and X must be antipodal. A distance regular graph X
which is antipodal of diameter two is a complete multipartite graph. Here í1 ≥ 0, the
corresponding eigenvectors are constant on the colour-classes of X and the eigenpolytope
is a simplex.

In this paper we will concentrate on the eigenpolytopes associated to the second-
largest eigenvalue í1 of a distance regular graph. For this eigenvalue there are no diffi-
culties with injectivity. To see this, define a sign-change in a sequence w0, . . . , wd of non-
zero real numbers to be an index i such that wi�1wi Ú 0. The number of sign-changes in
a sequence with terms equal to 0 will be defined to be the number of sign-changes in the
sequence obtained by deleting all terms that are 0. For one proof of the next result, see
[7: Lemma 13.2.1].

LEMMA 3.1. Let X be a distance regular graph with eigenvalues í0, . . . , íd. Then
the sequence of cosines w0, . . . , wd for íi has exactly i sign-changes and, if i Ù 0, the
sequence of differences w0 � w1, . . . , wd�1 � wd has exactly i � 1 sign-changes.

COROLLARY 3.2. Let X be a distance regular graph with eigenvalues í0, . . . , íd.
Then the cosine sequence for í1 is non-increasing.

This shows that the Euclidean distance between two vertices of the í1-eigenpolytope
is a non-decreasing function of the graphical distance between the corresponding vertices
of X.

Suppose now that u and y are vertices at distance i in X. Taking the inner product with
u(í) of the equation

íy(í) ≥X
z¾y

z(í)

and dividing by ku(í)k2, we obtain

(3. 1) íwi ≥ ciwi�1 + aiwi + biwi+1.

We set w�1 ≥ wd+1 ≥ 0, so this identity holds for i ≥ 0, . . . , d. One consequence of this
is a three-term recurrence for wi:

(3. 2) wi+1 ≥ 1
bi

[(í � ai)wi � ciwi�1].

This implies that if wi ≥ 0 then wi�1wi+1 Ú 0, and that wd Â≥ 0.
Our next task is to present some more specific information about the cosines w1 and

w2. The recurrence (3.2) yields immediately that

(3. 3) w1 ≥ í
k

, w2 ≥ 1
kb1

(í2 � a1í � k).
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As w1 is a cosine, jw1j � 1 and hence we deduce from the above expression for w1 that
jíj � k. (This is, of course, well known.) Recalling that b1 ≥ k� a1 � 1, we obtain from
these identities that

(3. 4) 1� w2 ≥ (1 � w1)
b1 + í + 1

b1
.

As w2 is a cosine, jw2j � 1, and therefore (3.4) implies that í ½ a1 � k. (Although we
will not need this bound.) We also find that

(3. 5) w1 � w2 ≥ (1 � w1)
í + 1

b1
,

with the consequence that w1 Ù w2 when í Ù �1. Together the last two equations imply
that

(3. 6) 1� 2w1 + w2 ≥ (1 � w1)
b1 � í � 1

b1
.

To complete this section, we derive some information about the 1-skeletons of eigen-
polytopes. Let í be an eigenvalue of the distance regular graph X with diameter d and let
w0, . . . , wd be its sequence of cosines. If u 2 V(X) we define the standard eigenvector
for í relative to u to be the vector with v-entry equal to the cosine of the angle between
u(í) and v(í). Part (a) of the next result is taken from [3: Theorem 4.4.9]. If u 2 V(X)
then X(u) denotes the set of vertices in X adjacent to u.

THEOREM 3.3. Let X be a distance regular graph with diameter d, let í be an eigen-
value of X with cosine sequence w0, . . . , wd and assume that w1 ½ wi if i Ù 1. Let P be
the eigenpolytope for í.

(a) If X contains an induced C4 then 1 � 2w1 + w2 ½ 0.
(b) If u and v are adjacent vertices in X then uv is an edge of P .
(c) If 1� 2w1 + w2 Ù 0 and u and v are at distance two in X then uv is an edge of P .
(d) If 1 � 2w1 + w2 ≥ 0 and u and v are at distance two in X then each vertex in

X(u)\X(v) is not adjacent to at most one other vertex in X(u)\X(v). Further, uv
is an edge of P if and only if X(u) \ X(v) is a clique.

PROOF. Suppose u, a, v and b induce a copy of C4, with u not adjacent to v and
a not adjacent to b. Then the squared length of the vector u(í) + v(í) � a(í) � b(í) is
4hu(í), u(í)i(1 � 2w1 + w2), whence (a) follows.

Note that, if equality holds, then u(í)+v(í) ≥ a(í)+b(í) and so the line through u and
v has a point in common with the line through a and b. Hence these lines are coplanar
and therefore any supporting hyperplane of P that contains u and v must contain a and
b. Accordingly uv cannot be an edge of P . We will use this in proving (d).

Let zu and zv be the standard eigenvectors for í relative to u and v respectively.
If u ¾ v then the u and v entries of zu + zv are both equal to 1 + w1, and any other entry

is at most 2w1. Therefore fu, vg is the set of vertices on which zu + zv takes its maximum
value, and so uv is an edge in P .
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If u and v are at distance two in X, the u and v entries of zu +zv are equal to 1+w2, while
any other entry is at most 2w1. It follows that uv is an edge of P when 1�2w1 + w2 Ù 0.

Assume now that 1 � 2w1 + w2 ≥ 0 and u and v are at distance two. Then

fu, v, X(u) \ X(v)g
is the set of vertices on which zu + zv takes its maximum value, hence this set is a face of
P . If a and b are common neighbours of u and v which are not adjacent then u, a, v and
b induce a copy of C4 and from the proof of (a) it follows that uv is not an edge of P and
that b(í) ≥ u(í) + v(í) � a(í). The latter shows that there can be at most one vertex in
X(u) \ X(v) not adjacent to a.

Finally, suppose that X(u) \ X(v) is a clique and let ã be defined by

ã ≥ X
x2X(u)\X(v)

x(í).

If x 2 X(u) \ X(v) then

hã, x(í)i ≥ �
1 + (c2 � 1)w1

�hx(í), x(í)i
while

hã, u(í)i ≥ hã, v(í)i ≥ c2w1hu(í), u(í)i.
It follows that uv is a face of a face of P , hence it is an edge in P .

COROLLARY 3.4. Let X be a distance regular graph with diameter d, let í be an
eigenvalue of X with cosine sequence w0, . . . , wd and assume that w1 ½ wi if i Ù 1. Then
X is a spanning subgraph of the 1-skeleton of the eigenpolytope belonging to í.

The reader might object that Theorem 3.3 is not needed to prove this corollary. If
w1 ½ wi when i Ù 1 and u ¾ v then no vertex of P is closer to u(í) than v(í) is. Hence
it seems obvious that uv is an edge of P . Even in the plane this is false—any rhombus
which is not a square provides a counterexample. As noted in [6], Corollary 3.4 implies
that X is planar when í1 has multiplicity three.

4. Polytopal distance-regular graphs. We wish to determine the distance regular
graphs X which are isomorphic to the 1-skeleton of the eigenpolytope associated to their
second-largest eigenvalue. Our first tool is a version of a result from Terwilliger [16].

LEMMA 4.1. Let X be a distance regular graph of diameter d with an eigenvalue í
and let w0, . . . , wd be the corresponding cosine sequence. Let u be a vertex in X, let N be
the adjacency matrix of X(u) and let ú be an eigenvalue of N. Then (1�w2)+(w1�w2)ú ½
0. If í Â≥ 0 then equality holds if and only the vectors v(í) with v 2 X(u) form a linearly
dependent set.

PROOF. Define the matrix M by

M ≥ I + w1N + w2(J � I � N).
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Then m
jV(X)jM is the principal submatrix of Eí with rows and columns indexed by the

neighbours of u, consequently M is positive semi-definite and therefore its eigenvalues
are non-negative. As the neighbourhood of u is regular (with valency a1) the vector 1 is
an eigenvector of N, and hence is eigenvector of M with eigenvalue

1 + a1w1 + (k � a1 � 1)w2 ≥ 1 + a1w1 + b1w2.

Using (3.3), we find that this equals í2Ûk.
Suppose that z is an eigenvector for N that is orthogonal to 1 and has eigenvalue ú.

Then z is an eigenvector for M with eigenvalue (1 � w2) + (w1 � w2)ú, and therefore

(1 � w2) + (w1 � w2)ú ½ 0.

Equality will hold if and only if there is an eigenvector of M that is orthogonal to 1 and
has eigenvalue 0. This proves the last claim.

If k Ù m then the vectors v(í) for v in X(u) will be linearly dependent; this will be
very helpful when we come to prove our main result, Theorem 4.3.

The following is a combination of important results from Brouwer, Cohen and Neu-
maier [3], that are based in part on earlier work of Neumaier [13] and Terwilliger [17].

THEOREM 4.2. Let X be a distance regular graph with diameter d and valency k, let
w0, . . . , wd be the cosine sequence for í1 and let m be the multiplicity of í1. If c2 Ù 1,
1 � 2w1 + w2 ≥ 0 and k ½ m then X is:

(a) a Johnson graph J(v, k),
(b) a Hamming graph H(n, q) or a Doob graph,
(c) a halved n-cube,
(d) the Schläfli graph or one of the three Chang graphs,
(e) the Gosset graph.

PROOF. If 1 � 2w1 + w2 ≥ 0 then (3.6) implies that b1 ≥ í1 + 1. Graphs satisfying
this condition are classified by Theorem 4.4.11 and Theorem 3.12.4 of [3], as follows.

If X has diameter two then, by [3: Theorem 4.4.11(i)], its least eigenvalue is �2,
whence [3: Theorem 3.12.4] yields that X is J(v, 2), H(2, n), the Shrikande graph (which
is a Doob graph) or one of the graphs listed in (d).

If the diameter of X is greater than two then, since we have c2 ½ 2, Theorem 4.4.11
of [3] yields that c2 2 f2, 4, 6, 10g and determines the graphs that can arise for each of
the four possible values of c2. We consider these in turn.

If c2 ≥ 2 then X is a Hamming graph, a Doob graph or is one of two locally Petersen
graphs described in [3: Theorem 1.16.5(ii) and (iii)]. From the tables at the end of [3] we
see that k Ú m for both of these graphs.

If c2 ≥ 4 or 6 then X must be a Johnson graph or a halved-cube respectively. If c2 ≥ 10
then X is the Gosset graph.

A Doob graph is the Cartesian product of H(n, 4) with some number of copies of
the Shrikande graph. The latter is a strongly regular graph on 16 vertices with the same
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parameters as H(2, 4). The Schläfli graph is a strongly regular graph on 27 vertices with
valency 16; the Chang graphs are strongly regular graphs on 28 vertices with the same
parameters as J(8, 2). The halved 5-cube is also known as the Clebsch graph, and occurs
in this guise in [3: Theorem 3.12.4]. The Gosset graph is an antipodal distance-regular
graph with diameter 3 on 56 vertices with valency 7, it is locally a Schläfli graph. For
further information about these graphs, we refer the reader to [3].

We now come to our main result.

THEOREM 4.3. Let X be distance regular and let P be the eigenpolytope associated
to the second-largest eigenvalue of X. Then X is the 1-skeleton of P if and only if it is
one of the following:

(a) a Johnson graph J(v, k),
(b) a Hamming graph H(n, q),
(c) a halved n-cube,
(d) the Schläfli graph,
(e) the Gosset graph,
(e) the icosahedron,
(f) the dodecahedron,
(g) the complement of r copies of K2, or
(h) a cycle.

PROOF. Assume X is distance regular with diameter d and valency k, let í denote its
second-largest eigenvalue and let P be the corresponding eigenpolytope. Let m be the
multiplicity of í. We assume that X is the 1-skeleton of P , whence k ½ m. We prove that
X is either a Chang graph, a Doob graph, or one of the graphs listed in the statement of
the theorem. We may assume k ½ 3.

If í Ú 0 then X̄ has least eigenvalue greater than �1, and therefore X is complete. If
í ≥ 0 then X̄ has least eigenvalue�1. It follows that each component of X̄ is a complete
graph, and hence that X is a regular complete multipartite graph. Assume that X̄ consists
of r disjoint copies of Km. Because í ≥ 0 we have w1 ≥ 0 and, from (3.5), we find that
w2 ≥ �1Ûb1 ≥ �1Û(m � 1). Consequently 1 � 2w1 + w2 Ù 0 unless m ≥ 2. When
m ≥ 2, vertices of P corresponding to vertices at distance two in X are antipodal and so
X is isomorphic to the 1-skeleton of P . Consequently we may assume that í Ù 0.

Let u be a vertex of X and let N be the adjacency matrix of X(u). Assume henceforth
that ú denotes the least eigenvalue of N. We have

1 � 2w1 + w2 � [1 � w2 + (w1 � w2)ú] ≥ �(w1 � w2)(ú + 2).

By Lemma 4.1, this implies that 1 � 2w1 + w2 Ù 0 when ú Ú �2. Therefore ú ½ �2. If
ú ≥ �2 then Lemma 4.1 yields that 1 � 2w1 + w2 ½ 0, therefore 1 � 2w1 + w2 ≥ 0. If
c2 Ù 1 we appeal to Theorem 4.2, if c2 ≥ 1 then X(u) cannot contain an induced path of
length two, therefore it is a disjoint union of complete graphs and ú ½ �1.

Thus we may assume that ú Ù �2, and hence that each component of X(u) is a clique
or an odd cycle.
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Suppose c2 Ù 1. By Theorem 4.2 we may assume that 1�2w1+w2 Ú 0, whence Theo-
rem 3.3 implies that X contains no induced 4-cycle, and therefore the common neighbours
of any two vertices at distance two must be a clique. Suppose a and b are neighbours of u
that are distance at least three in X(u). The common neighbours of a and b form a clique
containing u, implying that u is the only common neighbour of a and b. As c2 Ù 1, this
is impossible. Consequently the neighbourhood of each vertex in X is a pentagon; given
this, it is not hard to show that X is the icosahedron.

If k Ù m then equality holds in the bound of Lemma 4.1; together with the identities
from Section 3 this yields

ú ≥ �1 � b1

í + 1
.

If a1 ≥ 0 then ú ≥ 0, but then b1 Ú 0 which is impossible. If a1 ≥ 1 then ú ≥ �1 but
then we find that b1 ≥ 0 and X is complete. Suppose ú Ú �1. Then a1 ½ 2 and, as the
least eigenvalue of an even cycle is �2, this means that X(u) is a disjoint union of odd
cycles and at least one of these cycles has length at least five. This implies that c2 Ù 1.

Hence we are left with the case where c2 ≥ 1 and k ≥ m. As X is the 1-skeleton of P ,
Theorem 2.3 implies that P is simple and Theorem 2.4(b) that every path of length two
in X lies in a 2-face, necessarily unique. Since c2 ≥ 1, no face is a 4-gon.

If every 2-face is a triangle then there is no induced copy of P3 and X is complete.
Suppose then that a, b and c induce a copy of P3, and that the 2-face which contains
this is an n-gon. The angle between the vectors a(í) � b(í) and c(í) � b(í) is ô � 2ô

n . A
straightforward computation yields that

cos
�
ô � 2ô

n

�
≥ 1 � 2w1 + w2

2(1 � w1)
≥ b1 � 1 � í

2b1

and therefore

(4. 1) cos
�2ô

n

�
≥ í + 1 � b1

2b1
.

Thus each 2-face of P is a triangle or an n-gon, where n is determined by í and b1, and
is at least five.

Assume now that a1 ≥ 0. As í Ú k, equation (4.1) implies that

cos
�2ô

n

�
Ú 1

k � 1
.

If k ½ 5, this implies n ½ 6. However any 3-face of P is a cubic planar graph and,
from Euler’s relation, it follows that such a graph must have a face of size at most five.
Therefore k � 4, and so m � 4. If k ≥ 3 or 4 then n ≥ 5. Hence if k ≥ 3 then
X is the dodecahedron. If k ≥ 4 then Euler’s formula yields that each 3-face of P is
a dodecahedron. Therefore P is a regular 4-polytope and the only regular 4-polytopes
with distance-regular 1-skeletons are the simplex, the 4-cube and its dual. (This follows
for example, from Zhu [18], where the distance-regular graphs with an eigenvalue of
multiplicity four are determined.)
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Assume now that a1 Ù 0. As c2 ≥ 1, the neighbourhood of a vertex in X is the disjoint
union of t cliques of size a1 + 1, where t ≥ kÛ(a1 + 1). Assume first that t ½ 3.

Let u be a fixed vertex in X and let p, v and w be neighbours of u such that v ¾ w but
neither v nor w is adjacent to p. Let F denote the smallest face of P that contains u and
these three neighbours. By Theorem 2.4(b), it follows that F is a simple 3-polytope with
all faces triangles or n-gons. The 1-skeleton of F is cubic, hence there is a vertex, v0 say,
adjacent to p but not u and lying in an n-gon that contains u and v. Similarly there is a
vertex w0 adjacent to p but not u and lying in an n-gon that contains w. These two n-gons
lie in affine planes that intersect in the line through u and p. The configuration formed
by these two n-gons is symmetric about the plane through u, p and (v + w)Û2. It follows
that

kv0(í) � w0(í)k ≥ kv(í) � w(í)k,

which implies that v0 and w0 must be adjacent. From this we conclude, by a trivial induc-
tion argument, that each vertex in F lies in exactly one triangle. Consequently n must be
even—every other edge in a 2-face of size n lies in a triangle—and so n ½ 6.

Now let F denote the simple 3-polytope formed by the smallest face of P that contains
u and three pairwise non-adjacent neighbours of u. (Such neighbours exist, because t ½
3.) Then the 1-skeleton of F is a cubic graph that, by the argument of the last paragraph,
is triangle-free. As it is a planar graph, Euler’s formula implies that some face of F has
length at most five. This implies that n ≥ 5, a contradiction.

Thus we are left with the cases when t � 2. If t ≥ 1 then X is complete and no
more need be said. If t ≥ 2 then X is the line graph of a triangle-free graph. By [3:
Theorem 4.2.16] it follows that if X is not listed in the statement of theorem then it is the
line graph of either

(a) the incidence graph of a regular generalised d-gon with d 2 f3, 4, 6g, or

(b) a Moore graph (with diameter two and valency 3, 7 or 57).

The incidence graph of a regular generalised d-gon is bipartite with girth 2d and therefore
the shortest cycle other than a triangle in its line graph has length at least 2d. Since X
contains pentagons, this case cannot arise. The eigenvalues and their multiplicities for
line graphs of Moore graphs appear in [3: p. 149]; in each case m Ù k.

We prove next that a Doob graph is never the 1-skeleton of its í1-eigenpolytope. A
Doob graph is defined to be the Cartesian product of H(n, 4) with some positive number
of copies of the Shrikande graph. We quote the information we need from [3: pp. 103–
104]. The Shrikande graph is a strongly regular graph on 16 vertices with the same pa-
rameters as H(2, 4); hence it has a1 ≥ c2 ≥ 2 and í1 ≥ 2 with multiplicity six. The
neighbourhood of any vertex is isomorphic to C6, whereas in H(2, 4) all neighbourhoods
are isomorphic to 2K3. The least eigenvalue ú of C6 is�2, whence Lemma 4.1 yields that
the image in P of the neighbourhood of a vertex is linearly dependent, and therefore lies
in a 4-dimensional affine space. Since P is 6-dimensional this contradicts Theorem 2.1.
Therefore the Shrikande graph is not the 1-skeleton of its í1-eigenpolytope.
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The same argument works in general. The neighbourhood of a vertex in a Doob graph
X must be a disjoint union of copies of K3 and C6, with at least one C6. Hence ú ≥ �2
and therefore the image of a C6 is linearly dependent.

For the Chang graphs c2 ≥ 4. A computer search carried out by M. Conder (using the
package CAYLEY) yielded that in each of these three graphs there is a pair of vertices at
distance two whose four common neighbours induce a clique. Hence the Chang graphs
are not isomorphic to the 1-skeletons of their í1-eigenpolytopes.

Now we must show that the graphs listed in the statement of the theorem are iso-
morphic to the 1-skeletons of their í1-eigenpolytopes. For the cycle no proof should be
required. To treat the Hamming and Johnson graphs we prove that if 1� 2w1 + w2 ≥ 0
and every induced path of length two lies in an induced 4-cycle then X is the 1-skeleton
of P . If a 2 V(X), let C(a) denote the convex cone generated by the vectors u(í) � a(í)
as u ranges over the vertices of X and let C1(a) denote the cone generated by the vectors
u(í) � a(í) as u ranges over the neighbours of a. Clearly C1(a) � C(a). We show that
every vector in C(a) is a non-negative linear combination of vectors u(í) � a(í), where
u ¾ a. This implies that X is the 1-skeleton of P .

Let v be a vertex at distance i from a, and let b be a neighbour of v at distance i � 1
from a. We prove by induction on i that there is a neighbour, u say, of a such that

(4. 2) u(í) � a(í) ≥ v(í) � b(í).
If i ≥ 1 there is nothing to prove. If i ½ 2, let b0 be a neighbourof b at distance i�2 from a.
Then b0, b and v lie in an induced 4-cycle with a fourth vertex v0. Because 1�2w1+w2 ≥ 0
this implies that

v0(í) � b0(í) ≥ v(í) � b(í)
and by induction on i there is a neighbour u of a such that

u(í) � a(í) ≥ v0(í) � b0(í).
It follows that if v 2 V(X) then v(í) � a(í) is equal to a sum of vectors of the form
u(í) � a(í), where u 2 X(a), and hence C1(a) ≥ C(a).

The common neighbours of two distinct non-adjacent vertices in the Schläfli graph
induce a subgraph isomorphic to K8 with a perfect matching deleted. (This follows, for
example, from the description of this graph as the complement of the point graph of the
generalised quadrangle of order (2, 4)—see page 103 of [3].) Hence Theorem 3.3 yields
that it is isomorphic to the 1-skeleton of its í1-eigenpolytope.

The Gosset graph is locally a Schläfli graph and has c2 ≥ 10. Let u and v be two
vertices in it at distance two, and let a be one of their common neighbours. As X(a) is a
Schläfli graph, there are exactly eight common neighbours of u and v adjacent to a, hence
their tenth common neighbour is not adjacent to a and so X(u) \ X(v) is isomorphic to
the complement of 5K2. Thus Theorem 3.3 yields that the Gosset graph is isomorphic to
the 1-skeleton of its í1-eigenpolytope.
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The dodecahedron and icosahedron remain. Let u1, . . . , u20 be a set of vectors forming
the vertices of a regular dodecahedron in R3. By symmetry, the sum of the vectors uj

corresponding to the vertices adjacent to ui is equal to cui for some real number c and,
by symmetry, c is independent of i. Given this it is not too hard to see that u1, . . . , u20

can be taken to be the vertices of the í1-eigenpolytope of the dodecahedron. A similar
argument works for the icosahedron.

5. Faces. For the Johnson graphs, Hamming graphs and the halved cubes we can
describe all faces of the í1-eigenpolytope.

First a definition. Let distX(u, v) denote the distance between vertices u and v in a
graph. A subgraph Y of a graph X is convex if, given any two vertices u and v from Y,
any vertex x of X such that

distX(u, x) + distX(x, v) ≥ distX(u, v)

also lies in Y. (In other words, any vertex in X on a shortest path in X that joins u to v
must lie in Y.)

LEMMA 5.1. Let X be a distance regular graph with diameter d and let í be an
eigenvalue of X with cosine sequence w0, . . . , wd. If 1�2w1 + w2 ≥ 0 and every induced
path of length two lies in a 4-cycle then every face of the í-eigenpolytope is a convex
subgraph of X.

PROOF. Assume í has multiplicity m, let P be the í-eigenpolytope of X and let F be
a face of P . Then there is a vector h in Rm such that hTz ≥ 1 when z 2 F and hTz Ú 1
when z 2 P n F.

Suppose the lemma is false for F. Then there are vertices u and v in F and a shortest
uv-path P such that

P \ F ≥ fu, vg.

If b is the neighbour of v on P then hTb(í) Ú 1 and thus hT
�
v(í) � b(í)� Ù 0. From the

last part of the proof of Theorem 4.3, there is a neighbour, a say, of u such that

a(í) � u(í) ≥ v(í) � b(í)
and therefore hTa(í) Ù 1.

Let J(v, k) have as vertices all k-subsets of the v-set V. Let S and T be disjoint subsets
of V. Then the k-subsets of V which contain S and intersect T in the empty set form a
convex subset, and Lambeck [10: Chapter 5] has shown that all convex subsets of J(v, k)
are of this form. It is easy to verify that all these subsets are faces of the í1-eigenpolytope
of J(v, k).

View H(n, q) as the Cartesian product of n copies of Kq. If r1, . . . , rn are integers
between 1 and q, the Cartesian product of the graphs Kri is a convex subgraph, and all
convex subgraphs have this form. (This is probably folklore, and an easy exercise. A
proof does appear in [10: Chapter 5].) Again, it is easy to verify that all these subsets are
faces of the í1-eigenpolytope of H(n, q).
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For the halved cubes we can use the information we have obtained for Hamming
graphs. Let X be the n-cube H(n, 2) and let X2 be the graph with the same vertex set as
X, but with two vertices adjacent if and only if they are at distance two in X. Then X2

has two connected components with vertex sets the colour classes of X, each of which is
isomorphic to a halved n-cube. Let W denote one of the colour classes of X. Let í1 be the
second-largest eigenvalue of X and let P be its eigenpolytope. Note that the multiplicity
of í1 is n � 1. Let Q be the convex hull of the vectors u(í1), for u in W. Then Q is the
í1-eigenpolytope of the halved n-cube. We prove that a face of Q is either:

(a) A set of vertices in W with a common neighbour not in W, or
(b) The intersection of W with a face of X.

The subgraphs corresponding to the faces in (a) are cliques, those in (b) are halved m-
cubes. We take it as given that these are faces, and show that there are no others. Assume
h 2 Rn�1 and that the vectors x such that hTx is maximal form a face F of Q . We may
assume that hTx ≥ 1 for all x in F. If hTx � 1 for all x in P then F is the intersection of
Q with a face of P . Suppose then that there is a vertex y in P such that hTy Ù 1, and
choose y so that hTy is maximal. Then y lies in the face, F0 say, of P determined by h.
No vertex in F0 can be the image of a vertex in W, but the 1-skeleton of F0 is a connected
subgraph of X. Hence F0 must be the vertex y, and therefore F must be a subset of the
neighbours of y. The convex hull of the neighbours of y is a simplex—this follows from
[2: Theorem 12.13] and the fact that the n-cube is a simple polytope—and therefore any
subset of it is a face.

Meyerowitz [12] has determined the completely regular designs of strength zero in the
Johnson and Hamming graphs. As any such design must form a face in the í1-polytope,
the results in this section provide another approach to his work.

6. Other eigenvalues, other graphs. We collect some observations about the poly-
topes of J(v, k) associated with eigenvalues other than í1. Delsarte [4: Theorem 4.6] de-
termines the principal idempotents for the Johnson scheme, from which we find that if
ã and å are k-sets with jã \ åj ≥ i then

0
@v � 4

k � 2

1
A(E2)ã,å ≥

0
@ i

2

1
A� (k � 1)2

v � 2
i +

�
k
2

�2

�
v�1

2

� .

From this we find immediately that 1 � 2w1 + w2 Ù 0, and therefore the 1-skeleton
contains at least X1 [ X2.

We also have

Ek ≥ v � 2k + 1
v � k + 1

kX
r≥0

(�1)r

0
@v � k

r

1
A
�1

Ar,

from which it follows that the terms in the cosine sequence for ík alternate in sign and
decrease strictly in absolute value. So in this case vertices at even distance in J(v, k) are
closer in the polytope than vertices at odd distance. Could the 1-skeleton be X2? The
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multiplicity of �k as an eigenvalue is
0
@v

k

1
A�

0
@ v

k � 1

1
A

which, in general, is greater than
�

k
2

��
v�k

2

�
, the valency of X2. Hence X2 cannot be the

1-skeleton of this polytope.
Our next result indicates that we should expect difficulties in identifying the facets of

an eigenpolytope.

LEMMA 6.1. The edges in a regular subgraph Y of Kv are the vertices of a face of the
í2-polytope of J(v, 2). This face is a facet if and only Y is connected and not bipartite.

PROOF. Any regular subgraph Y of Kv, with its complement, determines an equitable
partition of the vertices of J(v, 2) with two cells. By our remarks at the end of Section 2,
this gives rise to two parallel faces of J(v, 2). The face determined by Y will be a facet if
and only if the vertex-edge incidence matrix of Y has rank v, which happens if and only
Y is connected and not bipartite.

For J(v, 3) we note that any Steiner triple system on v points forms a completely
regular design of strength two, hence determines a face in the í3-polytope. This again
provides us with vast numbers of faces in general.

LEMMA 6.2. Let X be a distance regular graph with valency k and diameter d and
let í be an eigenvalue of X with cosine sequence w0, . . . , wd. Assume that k Ù í Ù �1
and w2 ½ wi when i ½ 2. If b1 Ù 2(í + 1) then each set of three vertices of X with any
two at distance at most two forms a 2-face of the í-polytope of X.

PROOF. The condition k Ù í implies that w1 Ú 1 and the condition í Ù �1 implies
that w1 Ù w2 (by (3.3)). Let a, b and c be distinct vertices of X, and let z1, z2 and z3 be
the corresponding standard eigenvectors. As 1 Ù w1, it follows that if z1, z2 and z3 form
a triangle, then z1 + z2 + z3 takes its maximum value on precisely the set fa, b, cg.

Suppose a is adjacent to b and c, and that b and c are at distance two. Define

ç :≥ 1 � 2w1 + w2

w1 � w2
, z :≥ çz1 + z2 + z3.

Then z takes the same value, ç + 2w1, on a, b and c. As

1 � 2w1 + w2

1 � w1
≥ 1 � í + 1

b1
,

we see that ç ½ 0; consequently the value of z on any vertex other than a, b or c is at
most (ç + 2)w1. Because

ç + 2w1 � (ç + 2)w1 ≥ ç(1 � w1) Ù 0

it follows that fa, b, cg is the set of vertices on which z is maximal.
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Suppose next that a is at distance two from b and c, which are adjacent. If

ç :≥ (1 + w1 � 2w2)Û(1 � w2), z ≥ çz1 + z2 + z3,

then z takes the value ç + 2w2 on a, b and c. As

ç � 1 ≥ (w1 � w2)Û(1 � w2) Ù 0,

the value of z on any vertex other than a, b or c is at most (ç + 2)w1. After some work,
we find that

ç + 2w2 � (ç + 2)w1 ≥ ç(1 � w1) � 2(w1 � w2)

≥ (1 � w1)2 � 2(w1 � w2)2,

whence it follows that fa, b, cg is the set of vertices on which z is maximal when
� 1 � w1

w1 � w2

�2 Ù 2.

This is equivalent to the condition b1 Ù
p

2(í + 1).
Now assume that a, b and c are pairwise at distance two and

z :≥ z1 + z2 + z3.

Then z is equal to 1 + 2w2 on a, b and c, and these three vertices form a face if

0 Ú 1 + 2w2 � 3w1 ≥ (1 � w1) � 2(w1 � w2).

This holds if and only if b1 Ù 2(í + 1).
If no three vertices pairwise at distance two in X have a common neighbour, the con-

dition of the lemma can be relaxed to b1 Ù p
2(í + 1). Combining this lemma with

Theorem 3.3(b) yields the following.

COROLLARY 6.3. Let X be a strongly regular graph, let í be an eigenvalue of X, not
the valency, and let P be the associated polytope. If b1 Ù í + 1 then the 1-skeleton of P
is complete. If b1 Ù 2(í + 1), every triple of vertices in X forms a face of P .

A polytope is k-neighbourly if every set of k vertices forms a face. The above result
thus asserts that P is 3-neighbourly when b1 Ù 2(í + 1). For information about neigh-
bourly polytopes, see [2: Section 14].

We provide some examples where the conditions of the corollary hold. If X is the
complement of the line graph of Kn then b1 ≥ 2n�8 and í1 ≥ 1. Here í1 has multiplicity
n�1, and the í1-polytope is 3-neighbourly when n ½ 7. If X is the block graph of a Steiner
triple system on v points then í1 ≥ (v � 9)Û2 and b1 ≥ v � 5. The multiplicity of í1 is
v � 1, and the polytope is 3-neighbourly when v ½ 7. (The vertices of the block graph
are the triples of the Steiner triple system, two triples are adjacent if they have a vertex
in common.) A Paley graph on n vertices is self-complementary, with b1 ≥ (n � 1)Û4
and í1 ≥ (�1 +

p
n)Û2. The multiplicity of í1 is (n � 1)Û2, which is also the valency.

The polytope is 3-neighbourly when n Ù 25; for the graph to exist n must be a prime
power congruent to 1, modulo 4.
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7. Questions. An m-polytope can be at most bmÛ2c-neighbourly (see [2: Corol-
lary 14.5]); can this bound can be realised by eigenpolytopes of distance-regular graphs
more than finitely often when m ½ 4?

It appears that the 1-skeleton of an eigenpolytope of a distance regular graph is often
complete; hence it would be interesting to find more examples where it is not.

Finally it would be good to have more examples of eigenpolytopes of distance regular
graphs where we can explicitly describe the facets.
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