# FOR THE MINIMAL SURFACE EQUATION, THE SET OF SOLVABLE BOUNDARY VALUES NEED NOT BE CONVEX 

Frank Morgan


#### Abstract

One might think that if the minimal surface equation had a solution on a smooth domain $D \subset \mathbf{R}^{n}$ with boundary values $\varphi$, it would have a solution with boundary values $t \varphi$ for all $0 \leqslant t \leqslant 1$. We give a counterexample in $\mathbf{R}^{2}$.


We show by example that the minimal surface equation can have a solution on a smooth nonconvex domain $D \subset \mathbf{R}^{2}$ with smooth boundary values $\varphi$, but not with boundary values $\varphi / 2$. Thus the set of solvable smooth boundary values need not be convex or star-shaped about 0 .

Although a number of friends recall seeing and hearing this problem, I have been unable to locate the source.

For a convex domain, the minimal surface equation has a unique solution for any continuous boundary values. For any smooth domain, the minimal surface equation has a solution for small boundary values of Lipschitz constant at most 1 [6].

TheOrem. There are a smooth planar domain $D$ and a smooth function $\varphi$ on $\partial D$ such that the minimal surface equation has a solution with boundary values $t \varphi$ for $t=1$ but not for $t=1 / 2$.

Proof: Take two minimal surfaces $\left\{z=f_{1}(x, y)\right\},\left\{z=f_{2}(x, y)\right\}$ over a smooth domain $D$ about the origin such that

$$
f_{2}\left|\partial D=2 f_{1}\right| \partial D \text { but } f_{2}(0) \neq 2 f_{1}(0)
$$

An easy explicit example is provided by two pieces of catenoids over an annulus, but almost any prescribed boundary values on a convex domain probably will work. We may assume $D$ contains the unit disc $\mathbf{B}(0,1)$.

Consider a sequence $1 \gg \varepsilon_{1}>\varepsilon_{2}>\ldots \rightarrow 0$ and domains $D_{k}=D-\mathbf{B}\left(\mathbf{0}, \varepsilon_{k}\right)$. The function $f_{2} \mid D_{k}$ has a nice minimal graph. We claim that for $k$ large, there is no minimal surface $M_{k}=\left\{z=u_{k}(x, y)\right\}$ with $u_{k}\left|\partial D_{k}=(1 / 2) f_{2}\right| \partial D_{k}$.

[^0]Otherwise (replacing $u_{k}$ with a subsequence if necessary) we may assume the $u_{k}$ converge to a function $u_{\infty}$ on $D-\{0\}$, uniformly on each $D_{k}$, which satisfies the minimal surface equation and $u_{\infty}\left|\partial D=f_{1}\right| \partial D$ (see [3, Chapters 12,13$]$ ). Since a solution to the minimal surface equation cannot have an isolated singularity ([1], or see [ $5, \mathrm{p} .98]$ ), $u_{\infty}$ extends to all of $D$. By uniqueness, $u_{\infty}=f_{1}$.

Let $A=\max \left\{\left\|f_{1}\right\|_{C^{1}},\left\|f_{2}\right\|_{C^{1}}, 1\right\}, a=\min \left\{\left|(1 / 2) f_{2}(0)-f_{1}(0)\right| / A, 1\right\} . \quad$ By replacing $u_{k}$ with a subsequence if necessary, we may assume

$$
\begin{equation*}
\varepsilon_{2}<\varepsilon_{1} \ll a \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|u_{2}(x)-f_{1}(x)\right| \leqslant .1 a \text { for }|x| \geqslant \varepsilon_{1} . \tag{2}
\end{equation*}
$$

Choose $p=\left(x_{0}, u_{2}\left(x_{0}\right)\right)$ with $\varepsilon_{2}<\left|x_{0}\right|<\varepsilon_{1}$ and

$$
u_{2}\left(x_{0}\right)=\left(f_{1}(\mathbf{0})+\frac{1}{2} f_{2}(\mathbf{0})\right) / 2
$$

We claim that $\mathrm{B}^{3}(p, .1 a)$ does not intersect $\partial M_{2}$. The height of the inside boundary differs from $(1 / 2) f_{2}(0)$ by at most

$$
A \varepsilon_{2} / 2<A a / 2 \leqslant\left|\frac{1}{2} f_{2}(0)-f_{1}(0)\right| / 2
$$

while the height of $p$ differs from $f_{1}(0)$ by at most $\left|(1 / 2) f_{2}(0)-f_{1}(0)\right| / 2$. The horizontal coordinate gets nowhere near the outside boundary. Therefore $\mathrm{B}^{3}(p, .1 a)$ does not intersect $\partial M_{2}$. Hence by monotonicity [4, 9.3],

$$
\begin{equation*}
\text { area }\left(M_{2} \cap \mathbf{B}^{3}(p, .1 a)\right) \geqslant \pi(.1 a)^{2} \tag{3}
\end{equation*}
$$

Next we claim that

$$
\begin{equation*}
M_{2} \cap \mathbf{B}^{3}(p, .1 a) \subset \mathbf{B}^{2}\left(0, \varepsilon_{1}\right) \times \mathbf{R} \tag{4}
\end{equation*}
$$

Otherwise there is some

$$
\left(x, u_{2}(x)\right) \in \mathbf{B}^{3}(p, .1 a)-\mathbf{B}^{2}\left(0, \varepsilon_{1}\right) \times \mathbf{R}
$$

Since $\left(x, u_{2}(x)\right) \in \mathbf{B}^{3}(p, .1 a)$, therefore $|x|<\varepsilon_{1}+.1 a<.2 a$ and

$$
\left|u_{2}(x)-f_{1}(0)\right| \geqslant\left|u_{2}\left(x_{0}\right)-f_{1}(0)\right|-.1 a \geqslant .5 A a-.1 a \geqslant .4 A a .
$$

Since $\left(x, u_{2}(x)\right) \notin \mathrm{B}^{2}\left(0, \varepsilon_{1}\right) \times \mathbf{R}$, therefore $\varepsilon_{1}<|x|<.2 a$ and

$$
\left|u_{2}(x)-f_{1}(\mathbf{0})\right| \leqslant\left|u_{2}(x)-f_{1}(x)\right|+\left|f_{1}(x)-f_{1}(0)\right| \leqslant .1 a+(.2 a) A \leqslant .3 a A,
$$

by (2). This contradiction establishes (4).
By (3) and (4),

$$
\begin{equation*}
\text { area }\left(M_{2} \cap \mathbf{B}^{2}\left(0, \varepsilon_{1}\right) \times \mathbf{R}\right) \geqslant \pi(.1 a)^{2} \tag{5}
\end{equation*}
$$

On the other hand, since $M_{2}$ minimises area among graphs [4, 6.1], area $\left(M_{2} \cap \mathbf{B}^{2}\left(0, \varepsilon_{1}\right) \times R\right)$ is less than the area of $\mathbf{B}^{2}\left(\mathbf{0}, \varepsilon_{1}\right) \times\left\{(1 / 2) f_{2}(0)\right\}$, plus the area of a cylinder of radius $\varepsilon_{2}$ and height at most $(1 / 2)\left\|f_{2}\right\|_{C^{1}} \varepsilon_{2} \leqslant .5 A a$, plus the area of a cylinder of radius $\varepsilon_{1}$ and height at most

$$
\left|\frac{1}{2} f_{2}(0)-f_{1}(0)\right|+\left\|f_{1}\right\|_{C^{1}} \varepsilon_{1} \leqslant A a+A \varepsilon_{1} \leqslant 2 A a
$$

Thus

$$
\begin{equation*}
\text { area }\left(M_{2} \cap \mathbf{B}^{2}\left(\mathbf{0}, \varepsilon_{1}\right) \times \mathbf{R}\right) \leqslant \pi \varepsilon_{1}^{2}+2 \pi \varepsilon_{2}(.5 A a)+2 \pi \varepsilon_{1}(2 A a) \tag{6}
\end{equation*}
$$

Now (5) and (6) contradict hypothesis (1), proving the theorem.
REMARK 1. We conjucture there are wildly oscillating smooth boundary values $\varphi$ on the unit disc $D$ such that the solutions $u_{t}$ to the minimal surface equation with boundary values $t \varphi$ have the property that $u_{t}(0)$ intersects a linear function $\lambda t$ for arbitrarily many values $t_{1}, \ldots, t_{k}$ and that for small $\delta>0$ the set of $t$ for which the minimal surface equation has a solution on $D-\mathbf{B}(0, \delta)$ with boundary values $t \varphi$ on $\partial D$ and $\lambda t$ on $\partial \mathbf{B}(\mathbf{0}, \delta)$ has $k$ components. To obtain these solutions it may be helpful to choose $\varphi$ even, so that $D u_{t}(0)=0$.

REmark 2. Since our argument depends on deleting a small disc to obtain our domain, the conjecture remains open for simply connected planar domains. Our argument does extend to smooth nonconvex balls in $\mathrm{R}^{\boldsymbol{n}}(n \geqslant 3)$, where we can delete a thin finger instead of a small disc. Then the limiting argument produces a solution of the minimal surface equation with a curve of possible singularities, which are removable for $n \geqslant 3$ ([2], or see [3, Theorem 16.9]).

Added in Proof. Fred Almgren has given a simplified counterexample for simply connected planar domains.

## References

[1] L. Bers, 'Isolated singularities of minimal surfaces', Ann. of Math. 53 (1951), 364-386.
[2] E. De Giorgi and G. Stampacchia, 'Sulle singularità eliminabili delle ipersuperficie minimi', Rend. Acc. Lincei 38 (1965), 352-357.
[3] E. Giusti, Minimal surfaces and functions of bounded variation (Birkhäuser, Boston, 1984).
[4] F. Morgan, Geometric measure theory: A beginner's guide, (second edition, 1995) (Academic Press, New York, 1988).
[5] R. Osserman, A survey of minimal surfaces (Dover, New York, 1986).
[6] G.H. Williams, 'The Dirichlet problem for the minimal surface equation with Lipschitz continuous boundary data', J. Reine Angew. Math. 354 (1984), 123-140.

Department of Mathematics
Williams College
Williamstown MA 01267
United States of America


[^0]:    Received 22 June 1995
    I would like to thank Klaus Ecker and Graham Williams for inspiration, and the Australian National University and Melbourne University for hospitality. This work was partially supported by a National Science Foundation grant.

