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RESIDUALS OF THE JOIN OF ASCENDANT SUBGROUPS 

J E N N I F E R W H I T E H E A D 

1. I n t r o d u c t i o n . 1.1. If G is a group, then we say H is an ascendant subgroup 
of G, and write H asc G, if there exists a sequence of subgroups (Ga)a^P where p 
is some ordinal number, such t ha t Go = H, Gp = G, Ga <\ Ga+i for all a < p 
and G\ = U {Ga\a < \} for all limit ordinals X ^ p. (Ga)«^p is said to be an 
ascending series from H to G. If p < œ wherecodenotes the least infinite ordinal, 
then H is a subnormal subgroup of G and we write H sn G; if the index of 
subnormal i ty is a t most n, then we write H <T G. 

Let 36 be a class of groups. Then X is called an ascendant (subnormal) coali

tion class if whenever H and K are ascendant (subnormal) 36-subgroups of a 
group G then / = (H, K) is also an ascendant (subnormal) ^-subgroup of G. 

T h e class of groups satisfying the minimal condition on subnormal sub
groups is shown by Robinson [2] to be an ascendant coalition class. Denot ing 
this class by Min-sn, the class of soluble groups by ©, then a further result in 
[2] shows tha t © C\ M'm-sn is an ascendant coalition class. 

1.2. Main Results. For a class of groups 36 we denote by G1 the 36-residual 
of a group G, i.e. the intersection of all normal subgroups of G whose factor 
groups are 36-groups. Here we generalize Robinson's result [2] and s ta te : 

T H E O R E M A. Let G = (H, K) where H, K Ç M'm-sn and H, K asc G. Then 
G/G® e &andG® = (H®,K®) = HBK®. 

T w o subgroups H and K of a group G are said to permute if HK = KH. An 
immediate corollary is then: 

COROLLARY. Let H be a perfect ascendant subgroup of a group G, and let K 
be an ascendant subgroup of G. Then if H, K G M'm-sn, H permutes with K. 

We note t ha t Wielandt has proved the result s ta ted as Theorem A for 
groups with a composition series [4]. Our next result is similar. Let L9I denote 
the class of locally nilpotent groups; then: 

T H E O R E M B. Let G = (H, K) where H, K £ M'm-sn and H, K asc G. Then 
G/Gm 6 L3landGm = (Hm,Km) = Hm Km. 

The equivalent result for nilpotent residuals is not t rue, since the join of 
two ascendant ni lpotent subgroups which satisfy Min-sw need not be nilpotent. 
Let G = (t, a; a1 = a - 1 , t2 = 1, a G A ) where A ~ C2oo . Denoting the class of 
ni lpotent groups by 9Î, then T = (t) and A are ascendant in G and belong to 
M'm-sn P\ yi, bu t G is not nilpotent. 
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1.3. Notation. If H is a class of groups then SU is the class of subgroups of 
X-groups, QH is the class of epimorphic images of ^-groups, RH is the class of 
subdirect products of X-groups; and LU is the class of locally X-groups. 
H = Rol if, whenever G/Nl and G/N2 6 ï where Nh N2 < G, then 
G/(N\ P N2) Ç Ï . 8 denotes the class of finite groups. 

If G is a group and H ^ G we denote the normalizer of H in G by NG(H), 
the largest normal subgroup of G contained in H by CoreG(H), and the smallest 
normal subgroup of G containing H by HG. 

2. Proofs of Theorems A and B. 

2.1. Preliminary Lemmas. We first examine the Lï-residuals of locally 
finite groups. 

LEMMA 2.1. Let G £ Lg and fe/ X = (S, R0, Q)H ^ g. 7 7 ^ G/GLÏ G L3É and 
GL* = (F*\ F is a finite subgroup of G). 

Proof. If F is a finite subgroup of G/GL* there is a normal subgroup inter
secting F in 1 with quotient group in LU. Hence F £ L3£ and by 5-closure, 
F e £ and G/GLX G I X 

Let i? = <F*|F is a finite subgroup of G>; then i? < G. Also, / * ^ GL* for 
all finite subgroups of G, whence R ^ GL*. However, if K/R is any finite 
subgroup of G/R there exists a finite subgroup F of G such that FR/R = K/R. 
From Fi?/i? = W H i?) Ç Ç36 = X we obtain tf/i? G ï and G/i? G LU. 
Hence GL* ^ 7? and we have equality. 

A subgroup H of a group G is termed sm'aZ if there is a series between H and 
G (see [3, p. 9]). We prove a further technical result involving L36-residuals. 

LEMMA 2.2. Let G Ç Lg fr<? generated by two serial subgroups A and B of G. 
Let 36 = (RQ, S, Q)% and suppose that for any two finite subgroups X and Y 
which are subnormally embedded in their join that (X, Y)* = (X*. Y*) = 
X*Y*. ThenGL* = (AL*,BL*) = A**BL*. 

Proof. Let N = GL* and M - AL*BL*. We show that M = N. Obviously 
M ^ N. Let F be a finite subgroup of G. Then there exists a finite subgroup Fi 
such that F ^ Fi = (7\ P A 7\ P £>. By hypothesis vl Pi 7\, ^ H ^ s n 7\, 
whence we may conclude that F* ^ 7\* = (7\ Pi vl)*(7\ P £ )* g M. By 
Lemma 2.1 wTe have N ^ M and hence equality. 

WTe now consider groups satisfying the minimal condition on subnormal 
subgroups. For G G M'm-sn let F(G) be the smallest subgroup of finite index 
in G, and let E(G) = F(G)f. Then E(G) is the smallest normal subgroup of G 
with Cernikov factor group. 

The following is proved by Hartley and Peng in [1] : 

LEMMA 2.3. Let H, K £ M'm-sn and suppose that H and K are ascendant 
subgroups of a group G. Then E (H) ^ NG(K). 
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We examine E(G) in the following case: 

LEMMA 2.4. Let G = (H, K) where H, K asc G and H, K £ Min-sn. Then 
G Ç Min-sn and E(G) = E(H)E(K). 

Proof. The class Min-sn forms an ascendant coalition class (see [2]) and so 
G e Min-sn. Let X = (E(H), E(K))\ then X g E(G). Clearly G/XG is a 
Cernikov group and so XG = E(G). Now E(H) and E(K) have no proper 
subgroups of finite index, so by results in [2], X = E(H)E(K) and X <\ E(G). 
By 2.3 we have [E(H), K] ^ K, whence L = [E(H), K]X/X is a Cernikov 
group; similarly M = [E(K), H]X/X is a Cernikov group. Now L and M are 
ascendant in E(G)/X since (E(H), K) and (i7, E(K)) are ascendant in G. 
Cernikov groups form an ascendant coalition class by [2]; consequently 
(L,M) = XG/X = £ (G) /X is a Cernikov group, which shows thatE(G) = X. 

2.2. Proof of Theorem A. Since M'm-sn is an ascendant coalition class, G Ç 
Min-sn and G/G® G ©. 

Let A = G® and 5 = if® i^e . Then B ^ . Now G/£(G) is Cernikov and 
hence is locally finite and {G/E(G))m = (G/£(G))®. Since E(G) is perfect, 
E(G) S G®. Therefore (G/£(G))® = G®/E(G). 

By Wielandt's results in [4] the Theorem is true in the finite case. Hence we 
may apply 2.2 to the group G/E{G) to obtain A = BE(G). Lemma 2.4 then 
gives A = B. 

2.3 Proof of Theorem B. As in Theorem A, G G Min-sn and G/Gm G LSI. 
Locally nilpotent groups satisfying Min-sn are Cernikov and soluble (see 
[3, p. 154]). Hence by Theorem A, G® = H® X® < Hm Km, and without loss 
of generality we may assume G® = 1. Then G is soluble and locally finite. 
Again by [4] the result holds in the finite case. Applying 2.2, we have Gm = 
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