RESIDUALS OF THE JOIN OF ASCENDANT SUBGROUPS

JENNIFER WHITEHEAD

1. Introduction. 1.1. If G is a group, then we say H is an ascendant subgroup of G, and write H asc G, if there exists a sequence of subgroups $(G_{\alpha})_{\alpha \leq \rho}$ where ρ is some ordinal number, such that $G_0 = H$, $G_{\rho} = G$, $G_{\alpha} \triangleleft G_{\alpha+1}$ for all $\alpha < \rho$ and $G_{\lambda} = \bigcup \{G_{\alpha} | \alpha < \lambda\}$ for all limit ordinals $\lambda \leq \rho$. $(G_{\alpha})_{\alpha \leq \rho}$ is said to be an ascending series from H to G. If $\rho < \omega$ where ω denotes the least infinite ordinal, then H is a subnormal subgroup of G and we write H sn G; if the index of subnormality is at most n, then we write $H \triangleleft^n G$.

Let \mathfrak{X} be a class of groups. Then \mathfrak{X} is called an *ascendant* (subnormal) coalition class if whenever H and K are ascendant (subnormal) \mathfrak{X} -subgroups of a group G then $J = \langle H, K \rangle$ is also an ascendant (subnormal) \mathfrak{X} -subgroup of G.

The class of groups satisfying the minimal condition on subnormal subgroups is shown by Robinson [2] to be an ascendant coalition class. Denoting this class by Min-sn, the class of soluble groups by \mathfrak{S} , then a further result in [2] shows that $\mathfrak{S} \cap \text{Min-}sn$ is an ascendant coalition class.

1.2. Main Results. For a class of groups \mathfrak{X} we denote by $G^{\mathfrak{X}}$ the \mathfrak{X} -residual of a group G, i.e. the intersection of all normal subgroups of G whose factor groups are \mathfrak{X} -groups. Here we generalize Robinson's result [2] and state:

THEOREM A. Let $G = \langle H, K \rangle$ where $H, K \in \text{Min-sn and } H, K \text{ asc } G$. Then $G/G^{\mathfrak{S}} \in \mathfrak{S}$ and $G^{\mathfrak{S}} = \langle H^{\mathfrak{S}}, K^{\mathfrak{S}} \rangle = H^{\mathfrak{S}} K^{\mathfrak{S}}$.

Two subgroups H and K of a group G are said to *permute* if HK = KH. An immediate corollary is then:

COROLLARY. Let H be a perfect ascendant subgroup of a group G, and let K be an ascendant subgroup of G. Then if H, $K \in \text{Min-sn}$, H permutes with K.

We note that Wielandt has proved the result stated as Theorem A for groups with a composition series [4]. Our next result is similar. Let $L\mathfrak{N}$ denote the class of locally nilpotent groups; then:

THEOREM B. Let $G = \langle H, K \rangle$ where $H, K \in \text{Min-sn and } H, K \text{ asc } G$. Then $G/G^{L\mathfrak{N}} \in L\mathfrak{N} \text{ and } G^{L\mathfrak{N}} = \langle H^{L\mathfrak{N}}, K^{L\mathfrak{N}} \rangle = H^{L\mathfrak{N}} K^{L\mathfrak{N}}$.

The equivalent result for nilpotent residuals is not true, since the join of two ascendant nilpotent subgroups which satisfy Min-sn need not be nilpotent. Let $G = \langle t, a; a^t = a^{-1}, t^2 = 1, a \in A \rangle$ where $A \cong C_2 \infty$. Denoting the class of nilpotent groups by \Re , then $T = \langle t \rangle$ and A are ascendant in G and belong to Min-sn Ω , but G is not nilpotent.

Received October 19, 1976 and in revised form, February 15, 1977.

1.3. Notation. If \mathfrak{X} is a class of groups then $S\mathfrak{X}$ is the class of subgroups of \mathfrak{X} -groups, $Q\mathfrak{X}$ is the class of epimorphic images of \mathfrak{X} -groups, $R\mathfrak{X}$ is the class of subdirect products of \mathfrak{X} -groups; and $L\mathfrak{X}$ is the class of locally \mathfrak{X} -groups. $\mathfrak{X} = R_0\mathfrak{X}$ if, whenever G/N_1 and $G/N_2 \in \mathfrak{X}$ where N_1 , $N_2 \triangleleft G$, then $G/(N_1 \cap N_2) \in \mathfrak{X}$. \mathfrak{F} denotes the class of finite groups.

If G is a group and $H \leq G$ we denote the normalizer of H in G by $N_G(H)$, the largest normal subgroup of G contained in H by $\operatorname{Core}_G(H)$, and the smallest normal subgroup of G containing H by H^G .

2. Proofs of Theorems A and B.

2.1. Preliminary Lemmas. We first examine the $L\mathfrak{X}$ -residuals of locally finite groups.

LEMMA 2.1. Let $G \in L\mathfrak{F}$ and let $\mathfrak{X} = \langle S, R_0, Q \rangle \mathfrak{X} \leq \mathfrak{F}$. Then $G/G^{L\mathfrak{X}} \in L\mathfrak{X}$ and $G^{L\mathfrak{X}} = \langle F^{\mathfrak{X}} | F \text{ is a finite subgroup of } G \rangle$.

Proof. If F is a finite subgroup of G/G^{LX} there is a normal subgroup intersecting F in 1 with quotient group in LX. Hence $F \in LX$ and by S-closure, $F \in X$ and $G/G^{LX} \in LX$.

Let $R = \langle F^{\mathfrak{X}}|F$ is a finite subgroup of $G\rangle$; then $R \lhd G$. Also, $F^{\mathfrak{X}} \subseteq G^{L\mathfrak{X}}$ for all finite subgroups of G, whence $R \subseteq G^{L\mathfrak{X}}$. However, if K/R is any finite subgroup of G/R there exists a finite subgroup F of G such that FR/R = K/R. From $FR/R \cong F/(F \cap R) \in Q\mathfrak{X} = \mathfrak{X}$ we obtain $K/R \in \mathfrak{X}$ and $G/R \in L\mathfrak{X}$. Hence $G^{L\mathfrak{X}} \subseteq R$ and we have equality.

A subgroup H of a group G is termed *serial* if there is a series between H and G (see [3, p. 9]). We prove a further technical result involving $L\mathfrak{X}$ -residuals.

LEMMA 2.2. Let $G \in L_{\mathfrak{F}}$ be generated by two serial subgroups A and B of G. Let $\mathfrak{X} = \langle R_0, S, Q \rangle \mathfrak{X}$ and suppose that for any two finite subgroups X and Y which are subnormally embedded in their join that $\langle X, Y \rangle^{\mathfrak{X}} = \langle X^{\mathfrak{X}}, Y^{\mathfrak{X}} \rangle = X^{\mathfrak{X}}Y^{\mathfrak{X}}$. Then $G^{L\mathfrak{X}} = \langle A^{L\mathfrak{X}}, B^{L\mathfrak{X}} \rangle = A^{L\mathfrak{X}}B^{L\mathfrak{X}}$.

Proof. Let $N = G^{LX}$ and $M = A^{LX}B^{LX}$. We show that M = N. Obviously $M \leq N$. Let F be a finite subgroup of G. Then there exists a finite subgroup F_1 such that $F \leq F_1 = \langle F_1 \cap A, F_1 \cap B \rangle$. By hypothesis $A \cap F_1, B \cap F_1$ so F_1 , whence we may conclude that $F^X \leq F_1^X = (F_1 \cap A)^X (F_1 \cap B)^X \leq M$. By Lemma 2.1 we have $N \leq M$ and hence equality.

We now consider groups satisfying the minimal condition on subnormal subgroups. For $G \in \text{Min-}sn$ let F(G) be the smallest subgroup of finite index in G, and let E(G) = F(G)'. Then E(G) is the smallest normal subgroup of G with Černikov factor group.

The following is proved by Hartley and Peng in [1]:

Lemma 2.3. Let $H, K \in \text{Min-sn}$ and suppose that H and K are ascendant subgroups of a group G. Then $E(H) \leq N_G(K)$.

We examine E(G) in the following case:

LEMMA 2.4. Let $G = \langle H, K \rangle$ where H, K asc G and $H, K \in \text{Min-sn}$. Then $G \in \text{Min-sn and } E(G) = E(H)E(K)$.

Proof. The class Min-sn forms an ascendant coalition class (see [2]) and so $G \in \text{Min-sn}$. Let $X = \langle E(H), E(K) \rangle$; then $X \subseteq E(G)$. Clearly G/X^G is a Černikov group and so $X^G = E(G)$. Now E(H) and E(K) have no proper subgroups of finite index, so by results in [2], X = E(H)E(K) and $X \triangleleft E(G)$. By 2.3 we have $[E(H), K] \subseteq K$, whence L = [E(H), K]X/X is a Černikov group; similarly M = [E(K), H]X/X is a Černikov group. Now L and M are ascendant in E(G)/X since $\langle E(H), K \rangle$ and $\langle H, E(K) \rangle$ are ascendant in G. Černikov groups form an ascendant coalition class by [2]; consequently $\langle L, M \rangle = X^G/X = E(G)/X$ is a Černikov group, which shows that E(G) = X.

2.2. Proof of Theorem A. Since Min-sn is an ascendant coalition class, $G \in \text{Min-sn}$ and $G/G^{\mathfrak{S}} \in \mathfrak{S}$.

Let $A = G^{\mathfrak{S}}$ and $B = H^{\mathfrak{S}} K^{\mathfrak{S}}$. Then $B \leq A$. Now G/E(G) is Černikov and hence is locally finite and $(G/E(G))^{L\mathfrak{S}} = (G/E(G))^{\mathfrak{S}}$. Since E(G) is perfect, $E(G) \leq G^{\mathfrak{S}}$. Therefore $(G/E(G))^{\mathfrak{S}} = G^{\mathfrak{S}}/E(G)$.

By Wielandt's results in [4] the Theorem is true in the finite case. Hence we may apply 2.2 to the group G/E(G) to obtain A = BE(G). Lemma 2.4 then gives A = B.

2.3 Proof of Theorem B. As in Theorem A, $G \in \text{Min-sn}$ and $G/G^{L\Re} \in L\Re$. Locally nilpotent groups satisfying Min-sn are Černikov and soluble (see [3, p. 154]). Hence by Theorem A, $G^{\mathfrak{S}} = H^{\mathfrak{S}} K^{\mathfrak{S}} \preceq H^{L\Re} K^{L\Re}$, and without loss of generality we may assume $G^{\mathfrak{S}} = 1$. Then G is soluble and locally finite. Again by [4] the result holds in the finite case. Applying 2.2, we have $G^{L\Re} = H^{L\Re} K^{L\Re}$.

I would like to thank Dr. Stewart Stonehewer for his help and encouragement during the preparation of this paper, and also the Science Research Council for their financial support.

REFERENCES

- B. Hartley and T. A. Peng, Subnormality, ascendancy and the minimal condition, J. Algebra 41 (1976), 58-78.
- 2. D. J. S. Robinson, On the theory of subnormal subgroups, Math. Z. 89 (1965), 30-51.
- Finiteness conditions and generalized soluble groups, Part 1 (Springer, Berlin/Heidelberg/New York, 1972).
- 4. H. Wielandt, Vertauschbare nachinvariante Untergruppen, Abh. Math. Sem. Univ. Hamburg 21 (1957), 55-62.

University of Warwick, Coventry, England; Texas A & M University, College Station, Texas