
ON PÔLYA'S THEOREM 

J. SHEEHAN 

1. Introduction. In 1927 J. H. Redfield (9) stressed the intimate inter
relationship between the theory of finite groups and combinatorial analysis. 
With this in mind we consider Polya's theorem (7) and the Redfield-Read 
superposition theorem (8, 9) in the context of the theory of permutation 
representations of finite groups. We show in particular how the Redfield-Read 
superposition theorem can be deduced as a special case from a simple exten
sion of Polya's theorem. We give also a generalization of the superposition 
theorem expressed as the multiple scalar product of certain group characters. 
In a later paper we shall give some applications of this generalization. 

2. An extension of Polya's theorem. Suppose that Dh D2l . . . , Dq is 
a partition of a set D into q subsets and Dt consists of the at elements 
dn, di2, . . . , dtai, where 

Q 

^0Lt = m. 
i=i 

Let Ri, R2, . . . , Rq be a partition of a set R into q subsets. Elements of R 
are called figures and Ri is called the ith figure range. Let F be the set of 
functions of D into R with the restriction 

f(Dt) QRu i= 1 , 2 , . . . , q. 
An element of F is called an 3-configuration. Let @ be a permutation group 
of degree m and order g which permutes the elements of D and suppose the 
transitive constituents of @ are the q subsets Di, D2} . . . , Dq. ^-configurations 
fi , /2 are ©-equivalent if there is a a £ ® such that 

fi(dij) = j2{dij CT), j = 1, 2, . . . , au i = 1, 2, . . . , q. 
To each figure there is assigned a unique non-negative integer m called its 
content. (In the general case each figure of the ith figure range is assigned an 
ordered set of œt non-negative integers (ka, ki2, . . . , kiui). However, without 
loss of generality and for simplicity, we consider the case when co* = 1, 
i = 1, 2, . . . , q.) If </>£. is the number of figures of content kt belonging to 
Ru then the polynomial 

00 

p{xt) = £ *t, *<* 
fa=0 

is called the figure counting series of Rt. We now need to define the content 
of an ^-configuration. 
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Suppose / Ç F and / is denned by 

/ : di} -*f(dij) = X^ e Ri9 j = 1, 2, . . . , at; i = 1, 2, . . . , q; 

then, if X^ has content &0, the ordered set (k) of g non-negative integers 

/ «1 <*2 Otq \ 

(i) (*) = ( 5 > i * 2 > 2 , f . . . , 2 : * J 

is the content of / . Letting 

ki = J2 kijy i = 1,2, . . . ,0, 

(1) may be written 

(2) (*) = (K *2, . . . , * ,) . 

Let 4̂(fc) be the number of ©-inequivalent ^-configurations of content (k). 
Then 

(3) P(xi, x2, . . . , xg) = Ylvc) Aw X!kl x2
k2. . . xf* 

is called the ^-configuration counting series. 
The object of this extension of Pôlya's theorem is to express P(xi, x2, . . . , xq) 

in terms of ® and p{xt), i = 1, 2, . . . , g. This is accomplished using the 
3-cycle index Z7(@) of © defined below. This form of the cycle index of © 
is mentioned in (7) but appears to have been overlooked. 

A permutation a Ç ® is of 3-type 

( 0 = ({^ll, tu, . . . , hal\ ; {^21, ^22, . . . , t2a2} Î • • • Î {tqly ^2 , • • • , tqaq}) 

if it contains tij disjoint cycles of length j of the elements of Dt. When no 
confusion arises, a is simply said to be of 3-type (t). The non-negative integers 
tij must satisfy the following equations: 

(4) Un + 2ti2 + . . . + at tiai = at, i = 1, 2, . . . , q. 

The number of permutations of 3-type (/) belonging to ® is denoted by h(t). 
Let gij (j = 1 , 2 , . . . , at; i = 1, 2, . . . , q) be indeterminates. The ^-cycle 
index Z7(@) of ® is defined by 

Z'(@) = ±X hwgut11 • • • giaS1"1 gnt21 . . . g.J2a> ...g<i tql a hoLq 

£ (0 

where the summation is over permutations of all 3-types (t) belonging to @. 
We note here that when © is transitive ZJ(@) is exactly the same (4) as the 
usual form of the cycle index Z(®) of ©, and this will be assumed below. 

Example. Suppose that ® is the permutation group which permutes the 
symbols a, b, c, d, e, / , and consists of: 

(a)(b)(c)(d)(e)(f); (ab) (c) (d) (e) (J) ; (a) (b) (cd) (e) (f) ; (ab) (cd) (e) (f) ; 

(ab)(c)(d)(ef); (a) (b) (cd) (ef) ; (ab) (cd) (ef) ; (a)(b)(c)(d)(ef). 
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Then 

2 J(®) = |(gii2 g2i
2 gn2 + gu g2i2 gn2 + gn2 £22 gn2 + gn2 g2i2 gz2 

+ gl2 g22 gZl2 + gl2 g212 gZ2 + gll2 g22 gZ2 + gl2 g22 gZ2>, 

whereas 
Z{®) = | ( f i6 + 3/i«/î + 3/i2/22 + /2 3 ) . 

where/i , /2 are indeterminates. 
Finally, for any set of power series f(xt), i = 1,2, . . . ,q, let 

£ 7 [ ® , { / ( * I ) , / ( * Ï ) , . . . . / ( * . ) } ] 

denote the polynomial obtained from ZJ(@) by writing 

gn = f(Xij), j = 1,2, . . . ,at; i = 1,2, . . . ,q. 

We are now able to state the theorem. However, the proof will be omitted 
since it is almost exactly the same as the proof of the Hauptsatz itself. 

THEOREM 1 (Pôlya's theorem, an extension). The ^-configuration counting 
series P(xi, ) is obtained by substituting the set of figure counting series 
p(xt), i = 1,2, . . . , q, into the Q-cycle index ZJ(@) of @. Symbolically, 

P(xi, x2, . . . , xa) = Z7[®, {p(xi), P(x2), . . . , p(xQ)}]. 

3. Representation theory. 

Definitions. We must now examine certain properties of permutation repre
sentations of abstract finite groups. A group G of permutations is called a 
permutation representation of an abstract group P if there is a mapping /x of P 
onto G, a —> fj>(c), a € P, /x(o-) G G such that 

jLt(o-l)ju((72) = /X ( y i O - 2 ) , f o r a l l (7i, 0-2 G P . 

If the groups P and G are isomorphic, the permutation representation G 
of P is said to be faithful. Suppose P is of order p. The characteristic X(o-) of 
a- Ç P in G is the number of cycles of ju(o-) of length one. The set of p charac
teristics X(o-), or G P , is called the character of G and is denoted by X. Now 
if X and X; are the characters of permutation representations G and G' of 
P respectively, then 

(X ,X ' )=^Ex(<r )X ' (< r - 1 ) 
P <r£P 

is called the scalar product of X and X;. The multiple scalar product is as denned 
in (3). Let / be the character which has value unity for all a G P . 

Now suppose G above is a permutation representation of P . Suppose G is 
of degree a and permutes the symbols ai, a2, . . . , a«. The permutations 
induced on the homogeneous products, of degree q, of a,\, a2, . . . , aa by G 
give a permutation representation of P (7, p. 300) called the symmetrized 
Kronecker product representation of dimension q, of P , denoted by (G)q. XQ 
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denotes the character of (G)q. Furthermore, we suppose, for simplicity of 
notation, that G is transitive. Let 

(5) Z (G) = ~2Li Cjij2 - • • 3ahn hn • • • taa
f 

P U) 
where the summation is over all 3-types (J) belonging to G. ZZ[G> X(o-)], 
a Ç P , is the polynomial obtained from ZT(G) by writing 

*x = X ( ^ ) , X = 1,2, ...,k. 

Finally the group of order n\, which consists of all possible permutations 
on n elements, is called the symmetric group of degree n and is denoted by 
©n. We now state as lemmas two well-known results. For Lemmas 1 and 2, 
see (5) and (10, p. 68) respectively. 

LEMMA 1. If JU(O-), o- G P is of ^s-type (j'1,72, . . . , j a ) , then 

X(<r*) = E n * ^ . 
where X^u denotes that the summation is over all t that divide k (including 
t = 1) and ak denotes the kth power (k > 1) of a. 

LEMMA 2. 

8(y*) e x p ^ / i + | -^ 2 + . . . + ^ + . . .) = Z7(@,), 

where 8(. . .) denotes uthe coefficient of . . . -m." 

LEMMA 3. 

8(/)Z7[G, (1 - 30-1] = ~ E *[©*, X(cO] = » Z ^(cx;. 

Proo/. 

(6) Z7[G, (1 - 3T1] = -*-£ C**...*,(i - yrjl(l - y2ri2... (1 - / ) - * " 

= T Z Cjlj2...jaexp[-jilog(l - y) - j 2 l o g ( l - y2) 
P u) 

- . . . - 7 a l 0 g ( l - / ) ] 

= l?, CJlit...ia exp^y + | + | + • • •) 
/ 2 4 6 \ 

/ l.a 2.a 3.a \ 1 

+HV+V+V+---JJ 
1 r 2 

^ Z C;u-2...ya expj^J! y + (71 + 2/2) | " + • • • 

( 5 *)*+•••]• + 
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On regrouping under the summation and using Lemma 1, equation (6) becomes 

2 k 

(7) Z7[G, (1 - 3T1] = ~ E exp X(a)y + X(^) % + . . . + X(</) ^ + , 

Therefore, from Lemma 2 and equation (7), 

(8) 8(/)Z z[G, (1 - yy1] = ^ E Z7[©„ XW]. 

Finally, from (6, p. 300), 

(9) \i:zT[®k,x(a)] = lY:xk(<r). 
PaÇP Pc£P 

This completes the proof of the lemma. 

4. Generalization of the Redfield-Read superposition theorem. We 
now return to the discussion of § 2. Let PH denote the transitive permutation 
representation of P (2, p. 233) induced by a subgroup H of P. Suppose @ is 
a permutation representation of P defined by a homomorphism IT from P 
onto ©. Let TTI be the homomorphism from P onto the permutation group 
®i (say), where 71^(0), a £ P , is obtained by considering ir(a) simply as a 
permutation on the elements of D{. Thus @z- permutes the elements of Df. 
Clearly @* is a transitive permutation representation of P of degree at and is 
isomorphic as a permutation group (2, p, 236) to PHi for some subgroup Ht 

of P of index at. Suppose PHi has character Xz. In particular therefore 

(10) Z(®t) = Z ' ( P ^ ) , i = 1,2, . . . ,<? . 

For all o £ P the monomial associated with TT i(a) in Z7(@z) will be denoted 
by Zi(o). Then the notation Zi[a, p(xt)] follows naturally from §2. 

LEMMA 4. 

2'(®)=Jiri«.w. 
P <r£p 2=1 

Proof. This follows immediately from the above if ® is a faithful repre
sentation of P . If ® is not faithful, it is perhaps worth noting that, if |vr| is 
the order of the kernel of 71, then 

(ID ^(®) = - ^ x : A n **(«-) 
P <r(:p \T\ i=\ 

(i2) = ^ n *,w. 
The equality of (11) and (12) has been tacitly assumed in equations (5) 
and (6). 
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THEOREM 2. 

8(yi" V 2 . . . y W [ ® , (i - yO"1, (i - y 2 ) - 1 , . . . , (l - yg)~
l] 

= ( X A X A . . . , x/*) 

(we suppose that (XJ«) = (X</w, / ) , 1 < co < q). 

Proof. Using Lemma 4, 

Z'[®, (1 - y,)"1, (1 - y , )" 1 , . . . , (1 - y,)"1] = ^ Z I I * i k (1 - y.)"1]-

Therefore, by an extension of Lemma 3, 

Hyih y^' • • • yfrz'l®, (l - yiT\ (l - y*)"1 (l - y,)"1] 

= ^D IT x,%) = ( x A x / ! x/«). 

This completes the proof of the theorem. 

5. Theorem 2 and the theory of graphs. We shall now show how 
Theorem 2 can be interpreted as a generalization of the Red field-Read super
position theorem. We begin with a simple extension of R. C. Read's definition 
of a superposed graph (8) and our terminology will be that used in (8). 

Suppose (da) = (0i, 02» . . . » 0ff) is an ordered set of non-negative integers 
such that 

£ 0t = 12. 

Let G^ ( j = 1 , 2 , . . . , 0*; i = 1, 2, . . . , q) be a set of 12 unlabelled graphs, 
each on n nodes, such that the dt graphs G a, Gi2, . • . , G^* are each topologi-
cally similar to some graph Gt (say), i = 1, 2, . . . , q (note that Gt and Gy 
(1 < i,j < g; i ^ i ) are not necessarily distinct). Thus the automorphism 
group of each of the graphs Gn, Gi2, . . . , G ^ may be denoted by V(Gi) 
(say), i = 1, 2, . . . , q. The (0Q)-superposition of the 12 graphs Gtj is defined 
as any graph which can be constructed by: 

(i) labelling the nodes of each Gtj with the labels A\, A2y . . . , An in any 
manner; 

(ii) identifying all nodes having the same labels. 
Furthermore, if Gi, C2, . . . , CQ are q "colours" and if, when the graphs G^ 

have been labelled, we let r^C4«, A$) be the number of edges in G^ which 
join Aa and Ap, then the (da)-superposition of the 12 graphs Gi} corresponding 
to this labelling is defined as that graph on n nodes Ai, A2j . . . , An for which 
Aa and A$ are joined by 

T,rtj(Aa,Ap) 
. 7 = 1 
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edges coloured with "C" (thus each graph Giy, y = 1, 2, . . . , 6U may be 
thought of as being coloured with the same colour Ciy 1 < i < q). Two (0a) -
superposed graphs are similar as labelled graphs if 

Si 

ÈrviAatAp) 
3=1 

is always the same for one graph as for the other ( i = l , 2 , . . . , g ; a , / 3 = l, 
2, . . . , n). Two (0Q)-superposed graphs are topologically similar if, by re
labelling one of the graphs, we can convert it into a graph which is similar 
as a labelled graph to the other. Otherwise they are said to be distinct. We 
shall denote the set of distinct (^)-superposed graphs by S (da) and the 
cardinal of the set by |S(0Q)|. 

Before stating the next theorem we make the following assumptions about 
Theorem 2: (a) P = @w; (b) Ht = T(Gi)J i = 1, 2, . . . , q. 

THEOREM 3. |S(0Q)| = ( X A X2*
2, . . . , X/*). 

Proof. Let Dt consist of the at distinct labelled graphs obtained by labelling 
Gt with the labels Aly A2, . . . , An in all possible ways. Let Rt consist ol 
figures 4>io, <t>a, (f>i2, • • • , 4>ifa . . . of content 0, 1, 2, . . . , |8, . . . respectively. 
Then 

p(xt) = (1 - xt)-\ i = 1, 2, . . . , q. 

Clearly: 
(i) each ^-configuration Gf content (0i, 02, . . . , dq) corresponds uniquely 

to a (0a)-superposed graph and conversely: 
(ii) two such graphs are topologically similar if and only if their corre

sponding ^-configurations are ©-equivalent. 
The theorem follows immediately. 

Remark 1. If 6t = 1 (i = 1, 2, . . . , q), then Theorem 3 is an exact state
ment of Read's superposition theorem (8; 3, p. 278). xAlso Dr. R. C. Read 
has pointed out to me that when q = 1 the formula of Theorem 3 is given 
in (9). 

Remark 2. If, in Theorem 3, the elements of Dt are regarded as the cosets 
of T(Gi) with respect to P and we drop the assumption that P — 2 n , then 
it is clear that |5(0Q)| is equal to the number of transitive constituents of 

(Pm)dl® (PH.)H® . . . 0 ( i V * ) , 

where 0 denotes "Kronecker product'* (3). 

In a later paper we shall give some applications of Theorem 3. 
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