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THE HILBERT TRANSFORM OF GENERALIZED 
FUNCTIONS AND APPLICATIONS 

J. N. PANDEY AND MUHAMMAD ASLAM CHAUDHRY 

Introduction. The theory of Fourier transforms of tempered distribu
tions as developed by Laurent Schwartz [17] is quite simple and elegant 
and has wide variety of applications, but there does not exist a 
corresponding neat and simple theory for the Hilbert transform of 
generalized functions (distributions) having wide applications. One of the 
objectives of this paper is to develop such a theory for the Hilbert 
transform of generalized functions and indicate its applicability to a 
variety of problems. 

In problems of physics sometimes we need to find harmonic functions 
u(x, y) in the region y > 0 whose limit as y —> 04- does not exist in 
pointwise sense but does exist in the distributional sense. The theory of 
Hilbert transform of generalized functions that we are going to develop 
will provide an answer to the existence and uniqueness of this problem. 

Hilbert transform for distributions in various subspaces of 2' were 
investigated by a number of authors in [2], [3], [5]-[13], [15]-[16]. We note 
that Mitrovic in [7]-[10] has extended Hilbert transform to 0'a [3] and 
Orton in [12]-[13], to an arbitrary element of 9)'. Methods followed by 
Orton [12]-[13] are dependent upon the analytic representation of 
distribution [3] which is not quite constructive for distributions which do 
not have compact support and as such the methods used by her [12] 
cannot be applied with sufficient ease to applied problems which involve 
computations of Hilbert transforms of distributions having non-compact 
support. 

The work done by Mitrovic [7]-[10], concerning the Hilbert transform of 
distributions of Or

a suffers from similar drawbacks. Though the analytic 
representation F(z) of an arbitrary/ e 0'ais straight forward; i.e., under 
suitable restrictions on F we have 
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HILBERT TRANSFORM 479 

(1) F(z) = ^-.< f(t), T^— > I m z ^ O , 

the corresponding computation of the Hilbert transform of an arbitrary 
/ e Of

a is not straightforward. We will show that the classical Hilbert 
transform H is a homeomorphism from Q)LP, p > 1 onto itself and then 
define the Hilbert transform Hfoîf e (&U)' a s a generalized function in 
(&LP)' by the relation 

(2) < Hf, <p > = < / , -#<p > V <p G ^ L , , /? > 1 

which is an analogue of a classical result proved in [18, p. 132]. The 
formula (2) enables us to compute Hilbert transform of a n y / G {2LP)' and 
thus in view of the inversion formula 

(3) --2H
2f = f V / e (%,) ' , p> 1 

TT 

which we will prove in the sequel, it becomes quite simple to apply our 
technique to solve some singular integral equations in (&£/)', p > 1. To 
our knowledge none of the theories of Hilbert transform of distributions 
including those of Orton and Mitrovic will be so well suited to solve 
singular integral equations. Besides, contrary to Orton and Mitrovic and 
others we will be interpreting limits in distributional boundary value 
problems in (&IP)' (and not in @f) and the weak convergence in Sd' of our 
solutions to boundary value problems follows as a simple corollary. 

There have been considerable amounts of work on the solution to 
Hilbert problems in generalized function spaces by numerous authors in 
[7]-[10], [12]-[13], [15]-[16]. As a by-product of our theory, its uses in 
solving certain Hilbert problems in the space {@u>y will also be shown. We 
will prove that for a n y / G. (@LPÏ>P > 1 t n e analytic function F(z), Im z 
¥" 0 defined by 

(4) F(z) = -L < / ( , ) , - ! _ > 
2m t — z 

is an analytic representation of / e (®z/0' m t n e sense that 

lim < F(x + iy) — F(x — iy), <p(x) > = < f, <p > 

Again, it may be noted that though our space (Sal?)' is not quite as large as 
that of Orton and Mitrovic our definition of analytic representation turns 
out to be more general. 
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We will also solve the problem of distributional representation of 
analytic functions [10], for the space (@IP)'\ that is given an analytic 
function F(z) in the region Im z > 0 and satisfying the uniform bound 

(5) sup \F(x + iy)\ ^ A8 < oo 
— 0 0 < A ' < 0 0 

y ^ 8 

and the uniform asymptotic order (with respect to x) 

(6) \F(x + iy)\ = o(l), y -» oo 

such that the distributional limit (in (J&LP)') of F(x + iy) as y —» 0 + exists 
and equals f^(t) then we wish to prove that for Im z > 0, 

(7) F(z) = ^-.<J+(t),-l—>. 
LIT I t — Z 

The distributional representation (7) of the analytic function F(z) defined 
by (5) and (6) is arrived at in a way similar to that arrived at by Mitrovic 
for the space 0'a [10]. 

The representation (7) will be exploited in proving the uniqueness of the 
solution to a Dirichlet boundary-value problem in the space (3)tf)f. The 
existence of the solution will be proved in a very constructive way. 

It is known that if / e LP, 1 < p < oo, then its Hilbert transform 

f°° fit) 
(8) F(x) = P / - ^ - dt = Hf 

J -co t - x 

(where the integral is taken in Cauchy principal-value sense), belongs to 
the space LP [18, p. 132]. Therefore, if g is another function belonging to 
Lq where \/p + \/q = 1 and G(t) is its Hilbert transform then the 
integrals 

/

oo /*co 

_00F(x)g(x)dx and J _QQ G(x)f(x) dx 
both exist and 

/

oo Too 

^ F(x) g(x) dx = - J _oo G(t)f(t) dt. [19, p. 170]. 
In adjoint notation this result can be written as 

(10) < Hf,g> = < / , -Hg> 

where ///^stands for the Hilbert transform o f / in the classical and Cauchy 
principal-value sense. Our Hilbert transform of generalized functions will 
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be defined in analogy to the result in (10). To this end we have to 
construct a testing function space of infinitely differentiable functions 
which is mapped by the operation H of the classical Hilbert transforma
tion (as described before) into another (or the same) testing function space 
of infinitely differentiable functions in a continuous way. 

The notation and terminology follow that of [20]. The set of real 
numbers is denoted by R, and t, x and y are real variables unless otherwise 
stated. If / is a generalized function, then the notation / ( / ) is used to 
indicate that the testing functions on which fis defined have / as their 
variable. The pairing between a testing function space and its dual is 
denoted by < / , <p > . The space of C°° functions on R having compact 
support is denoted by @. Its dual is the space of Schwartz distributions 
on R [17]. 

Schwartz testing function space @LP (1 < p < oo ). An infinitely 
differentiable function cp defined over R is said to belong to the space @LP 
if ^k\t) belongs to LP for each k = 0, 1, 2, 3, . . . . We assign a topology to 
the space 3)LP in such a way that the sequence <pj <E 3)LP converges to 0 in 
S>Lp if <pj converges to 0 in Lp for each k = 0, 1, 2, 3, . . . as 7 -» 00 [17, 
p. 199]. 

S is dense in Q)LP (1 < p < 00) and convergence in 3) implies 
convergence in 3)LP and consequently the restriction of / G (@LP)' to 2) is 
in ®'\ i.e., 3)' D (2LPy [17, p. 199]. An element <p of 2)LP is bounded on R 
and belongs to LP, q = p and converges to zero as \x\ —> 00 [17, p. 200]. 

If {<pj} is a sequence in 3)LP converging to zero in @LP, as j —> 00 then 
«̂  -> 0 uniformly on every compact subset of R and each k = 0, 1, 
2, . . . . Consequently every distribution of compact support belongs 
to (®LP)'. 

THEOREM 1. Let H be the mapping defined by (8). Then for 1 < p < 00, 
H is a linear homeomorphism from @)LP onto itself and 

H~] = -XH. 

Proof If <p <E @)Lp, then, denoting H<p by F, we have 

f°° <p(t) 

J —00 1 

https://doi.org/10.4153/CJM-1983-026-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1983-026-7


482 J. N. PANDEY AND M. A. CHAUDHRY 

where 

<p(t + x) — <p(x) 

= «P'OO when t = 0. 

We can show that ^(x, /)> along with all of its partial derivatives, is a 
continuous function of x, / for all real x and t. 

Using Holder's inequality for integrals and Weierstrass' M-test for 
uniform convergence of integrals, we can show that for N > 0 each of the 
integrals 

r/(t+x)
dt and r *{t+x)

 dt 
J N I J —GO I 

converges uniformly for all real x. Therefore, using standard results on 
interchange of order of integration and differentiation, we have 

fN W ( f~N f°°\ vV + x) , 
-N dx 

fN <p'(t + x ) ~ <p'(X) 
J -N t 

dt 

:>* 

p r°° M + x) 
J -oo ; 

p f°° *'(') 
J - ° ° t - x 

: ) dt 

dt = H cp\ty 

Since <p' G LP, F e LP [18, pp. 132-33], using a similar technique and the 
method of induction we can prove that 
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(11) (H<p)(k) = (Hy){k\ k = 1, 2, 3, . . . . 

Therefore H<p e <&LP. The linearity of H is trivial. Continuity of H follows 
by virtue of the fact that 

(12) ||i**>(*)||„ S MpU
k\ 

where Mp is a constant independent of <p [18, p. 133]. The fact that H is one 
to one and onto follows by virtue of the Riesz-Titchmarsh classical 
inversion formula i.e., 

(13) - \ H2 <p = «p. 
77 

Therefore H~] exists and H~] = — H/TT2 and so H~] is continuous. 

Hilbert transform of distributions. In analogy to the relation (10) we 
define the Hilbert transform Hf of / e (@LP)', 1 < p < oo by the 
relation 

(14) < / / / < ? > = <f -Hip > V q> JLp ' 

where H<p in (14) stands for the Hilbert transform of <p in the 
principal-value sense as defined in (8). 

In words, we can say that the Hilbert transform (Hf) of a generalized 
function/ e (@LP)' is a generalized function in (<^z/)' which assigns the 
same number to an element <p G <&LP as/assigns to — i/<p for all <p G 2U>, 1 
< p < oo. Note that the functional / / / so defined belongs to (Q>IP)'

 i n v i e w 

of Theorem 1 [20, pp. 25-31]. 
The regular generalized function generated b y / ( x ) G L*7, when g > 1 

and \lp + XI q = 1 is denoted b y / a n d is defined by the relation 

/*oo 

(15) < / <p > = / _oof(x) <p(x) dx V cp G SL/>. 

The fact t h a t / G ( ^ y is obvious [20, pp. 53-54]. Denoting the Hilbert 
transform of the regular generalized function / by Hf and using the 
definition (14) and the result (9) we can show that the generalized Hilbert 
transform Hf of / G Lq, q > 1 is the same as the regular generalized 
function generated by 

/ : 

/ ( '> * . 
/ - x 

Using (13) and (14) as well as [20, pp. 27-28] we prove 
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COROLLARY 1. 

(16) -~1H
2f = f, Kp <oo V / e ( 0 L , ) ' . 

77~ 

COROLLARY 2. The operator H:(@LP)' —» (&LP)'•> 1 < p < oo, is an 

isomorphism. 

Example 1. 

< tf 8, «p > = < 8, - P / - ^ - A > 
J - o o / 

J - o o f 

== < —PV-, <p > V <p G ^ . 

Therefore 

# 8 = -PV -
t 

and using (16) we have 

HPV- = TT28 

which can be arrived at by direct computation too. 

Example 2. Now let us use these facts to solve the integral equation 

f°° fit) 
(17) Hy = P - - ^ - dt + 8(x) 

' -°° r - x 
in the space (^u)' f ° r 7 G ^ where/?, g > 1 satisfy the relation 

The relation (17) can be rewritten as 

(18) Hy = Hf+ 8(x) 

where the operator H is as defined in (14). 
Operating on (17) by H we have 

H1 y = H2f+ H8(x) = -<n2f - PV-
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or 

IT X 

Example 3. Let us now consider the solution to the integral equation 
(operator equation) 

(19) y(x) = Hy + f{x) 

where / G (@LP)', p > 1 and H is defined by (14). 
Operating on both sides of (19) by H we have 

Hy = H2y + Hf 
Hy = -<ir2y + Hf 

or 
y -f{x) = -7T2y + Hf 

Therefore, 

Let us define the derivative/' of a generalized function/ G (3)if)', 1 < /? 
< oo, by the relation 

<f\q>> = <f-<p'> V <p G ^L„, [20, p. 30]. 

i.e.,/ ' is an element of (2if)' which assigns the same number to <p G Q)LP as 
/assigns to — y'. It now readily follows that 

(20) Hfk) = (Hffk\ k = 1, 2, 3, . . . . 

For, if <p G ,©£/> then 

< Hf, ? > = < / ' , - # ? > 

= < / tfq/ > 
= < - Hf, y' > 
= < (///y, cp > . 

The result (20) is now proved for A: = 1. Using this result and the 
method of induction the result (20) follows for any positive integer k. 

Example 4. Consider the following differential equation 

j - = HS'(x) 
ax 
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in the space {^if)\ 1 < p < oo . 
The given differential equation can be written as 

^ - — 
dx dx 

or 

-f(y-H8) = 0. 
ax 

Hence, y — HS = 0, for the only constant generalized function in 
(@if)\p > 1 is the zero distribution [17, p. 201]. 

Therefore, 

y = HS = -PV-. 
X 

Approximate Hilbert transform. L e t / e (@\y)', 1 < p < oo, and x be 
real. Define a numerical valued function Fv(x) of x for each fixed TJ > 0 by 
the relation 

(21) Fv(x) = < / ( / ) , _ ^ ~ 2 * + ^2 > - (#! , / ) (*) . 

Note that for each fixed real x, and TJ > 0, 

f — x _ 
(* - x)2 + î]2 L 

Therefore the function /^(x), as defined by (21), exists. It can easily be 
seen that 

3? V ( / - x ) 2
 + W G ^ 

as a function of t for each k = 1, 2, 3, . . . . Again, by using the same 
technique as used in proving [14, Theorem 1] or the structure formula for 
/ , [17, p. 201] we can show that 

(22) & W =<«<>>& (t-xArt*-
LEMMA 1. Let f e (&LP)\P > 1 and Fr](x) be the approximate Hilbert 

transform offas defined by (21). Then for each k = 0, 1, 2, 3, . . . , 

Fik) (x) <= I/*, w/zere a > 1, - + - = 1. 
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Proof. We will sketch the proof of the fact that Fv(x) e Lq, q > 1, (i.e., 
for k = 0) as the proof for the cases k = 1, 2, 3, . . . can be given in similar 
fashion. In view of the structure formula [17, p. 201] there exists a 
non-negative and finite integer r and functions / G Lq such that 

(23) W = 2 / /,(0(~gj (/ - xf + 7)2 dt. 

Now, using the results in [18, p. 134] and the fact that 

t - x 

(t x)2 + r,2 
1 

2hi' 
(77 real ^ 0), 

it follows that each of the terms in the summation in (23) for fixed real 77 
=£ 0 is an element of Lq. This completes the proof of Lemma 1. 

Hence using Lemma 1, we have 

< Fv(x), <p(x) > / : 
Fv(x) <p(x) dx exists V <p G @LP 

and we can show that the regular generalized function generated by Fv(x) 
is in (^ifY. 

By using the structure formula for / as in (23) and Lemma 1, and 
Fubini's theorem it follows quite readily that 

(24) 
/ : FJx) <p(x) dx < m, S°. qjx)(t - X) 

(t ~ xf + 7]2 dx > 

2 LP 

or 

(25) < # „ / , * > = < / , -H^ <p > V y G 2Lp. 

Since <p G LP, in view of results proved by Riesz and Titchmarsh, Hv <p 
G Lp [18, pp. 132-37]. Again, since <p —> 0 as x —> ±oo, using the technique 
of integration by parts, we can see that 

(26) —k (Hv <p)(x) = (//, *(/c)) (x) G Z/\ 

Therefore, (Hv<p)(x) G ^L/> (and hence the expression on the right hand 
side of (24) or (25) is meaningful). Using the relation (26) and the results 
[18, p. 136] we can see that (H^Xx) —> (H<p)(x) as 77 —> 0 + in the topology 
of Q)LP. Therefore, letting 77 —> 0-f- in (24) or (25) we get 
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lim < Hvf <p > = < / , - H<p > 

= < Hf <p > (by definition). 

We have now proved: 

THEOREM 2. For 1 < p < oo let f e (<©#>)'• For each r\ > 0, /<?/ H^fbe 
its approximate Hilbert transform as defined by (21). Then the regular 
distribution H^f as generated by (H^Xx) tends to Hf in the weak topology 
of(2Lp)' as j] -» 0 + . 

By using a similar technique we can show that 

« /TO, — ^ 2 , 2x > » ^ ) > "* < /> v > , 
TT( (r - * ) - + / ) 

as 
y —» 0 + V <p G ^ L , , 1 < /> < oo , 

i.e., 

< / o , ^ — j ; , 2 . 2, > - V i n ( ^ y 
7l( (f ~ XY + / ) 

as.y -> 0 + [18, pp. 132-133], [21, pp. 44-45]. 

Analytic representation. Let / e 0^z/)'> P > 1 a n d ^Xz) be 
complex-valued functions of z defined in the region Im z ¥= 0 by 

(27) F(z) = - ^ < / ( 0 , —^— > 
2771 t — Z 

then using the structure formula f o r / a n d the same technique as used in 
proving (22) we can show that 

1 , 1 
2m (t — z) 

(28) F\z) = — < / ( * ) , - 2 > • 

The analytic function F(z), Im z ^ 0 in view of Theorem 2 satisfies the 
relation 

(29) lim < F(x + /e) - F(JC - /c), <P(JC) > = < / , <p > 
e->0 

Therefore, F(z) defined by (27) is an analytic representation of / <E 
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Distributional representation of analytic functions. Using the structure 
formula fo r / e (2LP)f we can easily show that the function F(z) defined 
by (27) satisfies the condition (5) and the uniform asymptotic order 
(uniformity with respect to x is assumed here) 

(29) \F(x + iy)\ = o\\], y^oo 

where S = (p — 1) / p. 
Let us now reverse the problem. Let F(z) be analytic in the upper half 

plane and satisfy the relation (5) and the uniform asymptotic order (6), 
such that F(t + it) e Lq for fixed e > 0 and 

(30) lim < F(t + /c) = f~(t) in {2LP)''. 

Can we f ind / <= (2LPy satisfying 

(31) F(z)=<f(t), > , l m z > 0 ? 
t — z 

The answer is affirmative. In view of the asymptotic order (6), the bound 
(5) and the Cauchy's theorem it can be proved that 

(32) J - /~ 3!L±Jf)A =F(, + «), j m z > 0 
2m '• J ~°° t - z = 0, Im z < 0. 

Now, \/(i — z) e Q)LP for fixed z satisfying Im z ^ 0. Therefore, from 
(32) we have 

(33) —- < F(t + /c), > = F(z + /e), Im z > 0. 
277/ t — Z 

Since F(z) is holomorphic in the region Im z > 0 letting e —» 0 + in (33) 
we have 

</*"( ' ) , ^ — ! — > = *"(*). I m z > 0 . 
277/ t — Z 

Therefore, (31) holds with 

(34) /(0 = T^/V) 
277/ 

and we have 

(35) / • ( z ) = J_< /+ ( / ) > _!_ > > l m 2 > 0 . 
277/ t — Z 
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We now conclude the following. 

THEOREM 3. Let F(z) be an analytic complex-valued function of the 
complex variable z = x -f iy in the set Q> where £2 is the region of the 
upper-half plane (im z > 0) in the complex z-plane, satisfying 

(i) a) for fixed y > 0, a = , p > 1 we have F(x + iy) e Lq 

P ~ 1 

(36) b) lim F(z) =f~(x)in(@LPy 
v-H) + 

(37) (ii) \F(z)\ = o(l) as y -> oo 

uniformly for all x e R and 

(38) (iii) sup \F(z)\ = A8 < oo 
— 0 0 < A ' < 0 0 

then 

(39) F(z) = < / + ( / ) , T 1 - —!— > V z e f i . 
277"/ t — Z 

As a consequence of Theorem 3 we have 

THEOREM 4. Let S Z?e //ze region as defined in Theorem 3. Then there 
exists one and only one function F(z) analytic in the region £2 satisfying the 
conditions (36), (37), (38) and that F(z) has the representation formula 
(39). 

Existence and uniqueness of the solution to a Diritchlet boundary value 
problem. 

Definition. A harmonic function w(x,y) defined in the upper half plane 
(z : Im z > 0) is said to belong to the space Jf? if and only if 

(40) (i) (a) w(x, y) for fixed y > 0 belongs to Lq, q = p/(p — 1), p > 
1 when treated as a function of x 

(b) w(x, y) converges to some distributional limit in {&ip)' as 
y -> 0 + 

(41) (ii) sup \w(x9 y)\ = A$ < oo 
— oo<x<oo 

y^8>0 

(42) (iii) w(x,y) = o(\) as y —> oo 

the asymptotic order being uniform with respect to V x e R. 
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-Hf= -g 
77 

-Hg=f 
77 

u(x9y) = - <f(t),— 
77 (/ 

y 
- xf 4- y2 

v(x,y) = - < / ( / ) , — 
77 (/ " 

t — x 

- x)2 + y2 

THEOREM 5. Let Jt? be the space of harmonic functions defined above. 
Assume that u(x, y) and v(x, y) are conjugate harmonic functions belonging 
to the space Jf and converging to the weak distributional limits f and g 
respectively in (&//>)' as y —> 04-, then we have 

(43) 

and 

(44) u(x9 y) = - < f(t), - % , 2 > 
77 (/ — x) + y 

(45) p(x, y) = - < / ( / ) , / " X
 2 > 

77 (t — xf + yz 

More clearly, u and v as defined by (44) and (45) are the only harmonic 
functions belonging to Jf satisfying 

(46) lim u(x, y) = f 

(47) lim p(x,y) = g = - - Hf. 
V->0+ 77 

Proof. Let u and v both belong to J^ and let / and g be their 
distributional limits respectively in {f$ip)f as y —> 04-. 

Therefore, an appeal to Theorem 4 shows that there is only one 
conjugate pair u and vmJf? satisfying such a requirement and that 

(48) U(x, y) + iv (x, y) = < / ( / ) + ig(t), - ^ —^— > . 
Z77Z t — Z 

Letting y —» 04- in (48) and using Theorem 2 and the result stated 
immediately after it we have 

(49) f+ig = ZlEif+ lg)_ 
77 

Since / and g are real functionals (i.e., functionals which assign real 
numbers to real valued functions of ^if) equating the real and imaginary 
parts in both sides of (49) we get the reciprocity relation (43). Again, 
equating the real and imaginary parts of both sides of (48) (on the 
assumption tha t / and g are real functionals) and then using the definition 
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of the Hilbert transform of generalized functions and the reciprocity 
relation (43) we get, 

(so) u ( X , y ) ^ l < m , ( t _ x
y

) 2 + y 2 > 

(51) Hx,y)=l-<f(t),(t_;-2
X

+/>. 

The relation (51) can also be written in the form 

(52) ^y)=l-<g(0,{t_x
y
)2 + y l > . 

It can easily be verified that u and v obtained in (50) and (51) are 
conjugate Harmonic functions. An appeal to the structure formula fo r / e 
(®LP)' shows that 

u^y) = ° LP-D/J 'J '"* 0 0 

(53) y 

- ! ) / / > ] > . v(x,y) = O [ (p-u/ply-*00 

uniformly V x G R, and 

sup \u(x, y)\ = A§ < oo 
— oo < x < oo 

(54) F = é > 0 

sup \v(x,y)\ = B$ < oo. 
— OO < A' < OO 

Therefore, u and v as defined by (50) and (51) belong to the s p a c e d . The 
uniqueness has already been proved. 

Example 5. Consider the Dirichlet boundary-value problem 

A2 u = 0 in 12, u G ^ 

where, 

12 = {z : Im z > 0} 

lim u(x,y) = -PV\-) in (@LP)' 

This problem can be rewritten as 

A2 u = 0 in 12, w G j f 

lim w(x, _y) = 7/5. 

https://doi.org/10.4153/CJM-1983-026-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1983-026-7


HILBERT TRANSFORM 493 

The obvious solution is 

t — x —x 
v(x, y) = < o(/), * :y > = —Ô ô-

v " W (t - xf + y2 x2 + / 

The Hilbert problem for generalized functions. 

Description. Let g(x) be a given function of the real variable x defined 
on the real line. Let g+(z) and g~(z) be analytic functions holomorphic in 
the upper half plane (Im z > 0) and the lower half plane (Im z < 0) 
respectively. Assume that g+(x) and g~(x) are the limits of g+(z) and 
g~(z) respectively; i.e., 

g+(x) = lim g+(x + z>K 
(55) - ^ 0 + | 1 ; g-(x) = lim g~(x + / » / 

y - K ) -

Our object is now to find analytic functions g+(z) and g~(z) as described 
before, satisfying the relation 

(56) g+(x) + g-(x) = g(jc) . 

In many problems of mathematical physics a slightly more difficult 
problem appears, viz. 

(57) g+(x) + k(x) g~(x) = g(x) 

where A:(x) is a known function defined on the real axis. By factorizing 
k(x) as 

(58) k(x) = £ + (;c) fc~(x) 

the problem (57) which is known as Hilbert problem can be written as 

(59) ^ W + / C <*>* W = ^ W 

which is of the form (56). 
In [6] Lauwerier has considered the simpler problem (56) and has called 

it Hilbert Problem. In [6, p. 158], Lauwerier gives the solution to the 
Hilbert problem in the form 

1 f°° z(t) 
g+(z) = — / - ^ - dt + P(z), Im z > 0% 

( } 1 f™ sit) J 
2m J ~°° t — z 
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where P(z) is an arbitrary polynomial and g(x) is an appropriately chosen 
function. 

Solutions to the Hilbert problem (56) when g e (@[p)\p > 1 and limits 
are being interpreted in the weak distributional sense (or in (3)LP)') can be 
written as 

— < g(f), > + P(z) Im z > 0 
Llïl t — Z 

~ ^~. < g(0, —— > - P(z), I m z < ° 
277/ t — Z 

where P(z) is a polynomial in z and < g(t), \/(t — z) > is the Hilbert 
transform of g £ {@IP)\ p > 1 with complex parameter z such that Im z 
T̂  0. The fact that < g(t), \/(t — z) > is analytic in the upper and lower 
half planes follows quite readily in view of the structure formula for 
g [17, p. 201] or [20, pp. 58-59]. The fact that our solution obtained 
actually verifies (56) follows in view of the result stated immediately 
following Theorem 2. 

REFERENCES 

1. R. Balescu, Statistical mechanics of charged particles, Vol. 4 (Interscience Publishers, 
1963). 

2. E. J. Beltrami and M. R. Wohlers, Distributional boundary value theorems and Hilbert 
transforms, Arch. Rational Mech., Anal. 18 (1965), 304-309. 

3. H. J. Bremermann, Distributions, complex variables, and Fourier transforms (Addison-
Wesley, 1965). 

4. P. L. Butzer and R. J. Nessel, Fourier analysis and approximation, Vol. 1 (Academic Press, 
1971). 

5. I. M. Gel'fand and G. E. Shilov, Generalized functions, Vol. 2 (Academic Press). 
6. H. A. Lauwerier, The Hilbert problem for generalized functions, Arch. Rational Mech. 

Anal. 13 (1963), 157-166. 
7. D. Mitrovic, A Hilbert distributional boundary value problem, Mathematica Balkanica, / 

(1971), 177-180. 

8. Some distributional boundary-value problems, Mathematica Balkanica 2 (1972), 
161-164. 

9. Une remarque sur les valeurs au bord des fonctions holomorphes, Mathematica 
Balkanica 3 (1973), 363-367. 

10. A distributional representation of analytic functions, Mathematica Balkanica 79 
(1974), 437-440. 

11. R. W. Newcomb, Hilbert transforms — distributional theory, Stanford Electronics 
Laboratories, Technical report No. 2250-1 (1962). 

12. M. Orton, Hilbert transforms, Plemelj relations and Fourier transforms of distributions, 
SIAM J. Math. Anal. 4 (1973), 656-667. 

13. Hilbert boundary value problems — A distributional approach, Proc. Royal Soc, 
Edinburgh 76 A( 1977), 193-208. 

(61) 

g~(z) 

https://doi.org/10.4153/CJM-1983-026-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1983-026-7


HILBERT TRANSFORM 495 

14. J. N. Pandey and E. Hughes, An approximate Hilbert transform and its inversion, Tohoku 
Mathematical Jour. 28 (1976), 497-509. 

15. V. S. Rogozin, A general scheme of solution of boundary value problems in the space of 
generalized functions, Doklady 164 (1965), 1221-1225. 

16. On the theory of Riemann's problem in the class Lp, Soviet Math., Doklady 9 
(1968), 652-655. 

17. L. Schwartz, Théorie des distributions (Hermann, Paris, 1966). 
18. E. C. Titchmarsh, Introduction to theory of Fourier Integrals (Oxford University Press, 

1967). 
19. F. Tricomi, Integral equations (Interscience Publishers, N.Y., 1957). 
20. A. H. Zemanian, Generalized integral transformation (Interscience Publishers, 1968). 
21. Distribution theory and transform analysis (McGraw-Hill Book Company, 1965). 

Carleton University, 
Ottawa, Ontario 

https://doi.org/10.4153/CJM-1983-026-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1983-026-7

