OPERATOR QUASILINEARITY OF SOME FUNCTIONALS ASSOCIATED WITH DAVIS-CHOI-JENSEN'S INEQUALITY FOR POSITIVE MAPS

S. S. DRAGOMIR

(Received 21 July 2016; accepted 26 July 2016; first published online 19 October 2016)

Abstract

In this paper we establish operator quasilinearity properties of some functionals associated with Davis-Choi-Jensen's inequality for positive maps and operator convex or concave functions. Applications for the power function and the logarithm are provided.

2010 Mathematics subject classification: primary 47A63; secondary 47A30, 15A60.
Keywords and phrases: Jensen's inequality, operator convex functions, arithmetic mean-geometric mean inequality, superadditivity, subadditivity.

1. Introduction

Let H be a complex Hilbert space and $\mathcal{B}(H)$ the Banach algebra of bounded linear operators acting on H. We denote by $\mathcal{B}_{h}(H)$ the semi-space of all self-adjoint operators in $\mathcal{B}(H)$. We denote by $\mathcal{B}^{+}(H)$ the convex cone of all positive operators on H and by $\mathcal{B}^{++}(H)$ the convex cone of all positive-definite operators on H.

Let H, K be complex Hilbert spaces. Following [1] (see also [15, page 18]), we say that a map $\Phi: \mathcal{B}(H) \rightarrow \mathcal{B}(K)$ is linear if it is additive and homogeneous, namely

$$
\Phi(\lambda A+\mu B)=\lambda \Phi(A)+\mu \Phi(B)
$$

for any $\lambda, \mu \in \mathbb{C}$ and $A, B \in \mathcal{B}(H)$. The linear map $\Phi: \mathcal{B}(H) \rightarrow \mathcal{B}(K)$ is positive if it preserves the operator order, that is, if $A \in \mathcal{B}^{+}(H)$, then $\Phi(A) \in \mathcal{B}^{+}(K)$. We write $\Phi \in \mathfrak{P}[\mathcal{B}(H), \mathcal{B}(K)]$. The linear map $\Phi: \mathcal{B}(H) \rightarrow \mathcal{B}(K)$ is normalised if it preserves the identity operator, that is, $\Phi\left(1_{H}\right)=1_{K}$. We write $\Phi \in \mathfrak{P}_{N}[\mathcal{B}(H), \mathcal{B}(K)]$.

We observe that a positive linear map Φ preserves the order relation, namely

$$
A \leq B \text { implies } \Phi(A) \leq \Phi(B),
$$

and preserves the adjoint operation $\Phi\left(A^{*}\right)=\Phi(A)^{*}$. If $\Phi \in \mathfrak{P}_{N}[\mathcal{B}(H), \mathcal{B}(K)]$ and $\alpha 1_{H} \leq A \leq \beta 1_{H}$, then $\alpha 1_{K} \leq \Phi(A) \leq \beta 1_{K}$.

[^0]If the map $\Psi: \mathcal{B}(H) \rightarrow \mathcal{B}(K)$ is linear, positive and $\Psi\left(1_{H}\right) \in \mathcal{B}^{++}(K)$, then by putting $\Phi=\Psi^{-1 / 2}\left(1_{H}\right) \Psi \Psi^{-1 / 2}\left(1_{H}\right)$ we see that $\Phi \in \mathfrak{B}_{N}[\mathcal{B}(H), \mathcal{B}(K)]$, that is, it is also normalised.

A real-valued continuous function f on an interval I is said to be operator convex (concave) on I if

$$
f((1-\lambda) A+\lambda B) \leq(\geq)(1-\lambda) f(A)+\lambda f(B)
$$

for all $\lambda \in[0,1]$ and for all self-adjoint operators $A, B \in \mathcal{B}(H)$ whose spectra are contained in I.

The classical Davis-Choi-Jensen's inequality which motivates this article states that if $f: I \rightarrow \mathbb{R}$ is an operator convex function on the interval I and if $\Phi \in$ $\mathfrak{P}_{N}[\mathcal{B}(H), \mathcal{B}(K)]$, then for any self-adjoint operator A with spectrum contained in I,

$$
\begin{equation*}
f(\Phi(A)) \leq \Phi(f(A)) \tag{1.1}
\end{equation*}
$$

(see [1, Theorem 2.1]).
We observe that if $\Psi \in \mathfrak{P}[\mathcal{B}(H), \mathcal{B}(K)]$ with $\Psi\left(1_{H}\right) \in \mathcal{B}^{++}(K)$, then by taking $\Phi=\Psi^{-1 / 2}\left(1_{H}\right) \Psi \Psi^{-1 / 2}\left(1_{H}\right)$ in (1.1),

$$
f\left(\Psi^{-1 / 2}\left(1_{H}\right) \Psi(A) \Psi^{-1 / 2}\left(1_{H}\right)\right) \leq \Psi^{-1 / 2}\left(1_{H}\right) \Psi(f(A)) \Psi^{-1 / 2}\left(1_{H}\right)
$$

If we multiply both sides of this inequality by $\Psi^{1 / 2}\left(1_{H}\right)$, we get the following Davis-Choi-Jensen's inequality for general positive linear maps:

$$
\begin{equation*}
\Psi^{1 / 2}\left(1_{H}\right) f\left(\Psi^{-1 / 2}\left(1_{H}\right) \Psi(A) \Psi^{-1 / 2}\left(1_{H}\right)\right) \Psi^{1 / 2}\left(1_{H}\right) \leq \Psi(f(A)) \tag{1.2}
\end{equation*}
$$

We denote by $\mathfrak{P}_{I}[\mathcal{B}(H), \mathcal{B}(K)]$ the convex cone of all linear, positive maps Ψ with $\Psi\left(1_{H}\right) \in \mathcal{B}^{++}(K)$, that is, $\Psi\left(1_{H}\right)$ is a positive invertible operator in K, and define the functional $\mathbf{F}: \mathfrak{P}_{I}[\mathcal{B}(H), \mathcal{B}(K)] \rightarrow \mathcal{B}(K)$ by

$$
\mathbf{F}_{f, A}(\Psi)=\Psi^{1 / 2}\left(1_{H}\right) f\left(\Psi^{-1 / 2}\left(1_{H}\right) \Psi(A) \Psi^{-1 / 2}\left(1_{H}\right)\right) \Psi^{1 / 2}\left(1_{H}\right)
$$

where $f: I \rightarrow \mathbb{R}$ is an operator convex (concave) function on the interval I and A is a self-adjoint operator whose spectrum is contained in I.

In this paper we establish operator quasilinearity properties of some functionals associated with Davis-Choi-Jensen's inequality (1.2) for positive maps and operator convex (concave) functions. We also give applications to the power function and the logarithm.

2. The main results

Theorem 2.1. Let $f: I \rightarrow \mathbb{R}$ be an operator convex (concave) function on the interval I and A a self-adjoint operator whose spectrum is contained in I. If $\Psi_{1}, \Psi_{2} \in$ $\mathfrak{P}_{I}[\mathcal{B}(H), \mathcal{B}(K)]$, then

$$
\begin{equation*}
\mathbf{F}_{f, A}\left(\Psi_{1}+\Psi_{2}\right) \leq(\geq) \mathbf{F}_{f, A}\left(\Psi_{1}\right)+\mathbf{F}_{f, A}\left(\Psi_{2}\right), \tag{2.1}
\end{equation*}
$$

that is, $\mathbf{F}_{f, A}$ is operator subadditive (superadditive) on $\mathfrak{B}_{I}[\mathcal{B}(H), \mathcal{B}(K)]$.

Proof. We give the proof for operator convex functions. If $\Psi_{1}, \Psi_{2} \in \mathfrak{P}_{I}[\mathcal{B}(H), \mathcal{B}(K)]$, then $\Psi_{1}+\Psi_{2} \in \mathfrak{P}_{I}[\mathcal{B}(H), \mathcal{B}(K)]$ and

$$
\begin{aligned}
\mathbf{F}_{f, A}\left(\Psi_{1}+\Psi_{2}\right)=(& \left.\Psi_{1}+\Psi_{2}\right)^{1 / 2}\left(1_{H}\right) \\
& \cdot f\left(\left(\Psi_{1}+\Psi_{2}\right)^{-1 / 2}\left(1_{H}\right)\left(\Psi_{1}+\Psi_{2}\right)(A)\right. \\
& \left.\cdot\left(\Psi_{1}+\Psi_{2}\right)^{-1 / 2}\left(1_{H}\right)\right)\left(\Psi_{1}+\Psi_{2}\right)^{1 / 2}\left(1_{H}\right),
\end{aligned}
$$

where by '. ' we understand the usual operator multiplication. Observe that

$$
\begin{align*}
\left(\Psi_{1}+\right. & \left.\Psi_{2}\right)^{-1 / 2}\left(1_{H}\right)\left(\Psi_{1}+\Psi_{2}\right)(A)\left(\Psi_{1}+\Psi_{2}\right)^{-1 / 2}\left(1_{H}\right) \\
=(& \left(\Psi_{1}+\Psi_{2}\right)^{-1 / 2}\left(1_{H}\right)\left(\Psi_{1}(A)+\Psi_{2}(A)\right)\left(\Psi_{1}+\Psi_{2}\right)^{-1 / 2}\left(1_{H}\right) \\
=(& \left(\Psi_{1}+\Psi_{2}\right)^{-1 / 2}\left(1_{H}\right) \Psi_{1}(A)\left(\Psi_{1}+\Psi_{2}\right)^{-1 / 2}\left(1_{H}\right) \\
\quad & +\left(\Psi_{1}+\Psi_{2}\right)^{-1 / 2}\left(1_{H}\right) \Psi_{2}(A)\left(\Psi_{1}+\Psi_{2}\right)^{-1 / 2}\left(1_{H}\right) \\
=(& \left.\Psi_{1}+\Psi_{2}\right)^{-1 / 2}\left(1_{H}\right) \Psi_{1}^{1 / 2}\left(1_{H}\right)\left(\Psi_{1}^{-1 / 2}\left(1_{H}\right) \Psi_{1}(A) \Psi_{1}^{-1 / 2}\left(1_{H}\right)\right) \\
\quad & \cdot \Psi_{1}^{1 / 2}\left(1_{H}\right)\left(\Psi_{1}+\Psi_{2}\right)^{-1 / 2}\left(1_{H}\right) \\
& +\left(\Psi_{1}+\Psi_{2}\right)^{-1 / 2}\left(1_{H}\right) \Psi_{2}^{1 / 2}\left(1_{H}\right)\left(\Psi_{2}^{-1 / 2}\left(1_{H}\right) \Psi_{2}(A) \Psi_{2}^{-1 / 2}\left(1_{H}\right)\right) \\
& \cdot \Psi_{2}^{1 / 2}\left(1_{H}\right)\left(\Psi_{1}+\Psi_{2}\right)^{-1 / 2}\left(1_{H}\right) . \tag{2.2}
\end{align*}
$$

If we define

$$
V:=\Psi_{1}^{1 / 2}\left(1_{H}\right)\left(\Psi_{1}+\Psi_{2}\right)^{-1 / 2}\left(1_{H}\right) \quad \text { and } \quad U:=\Psi_{2}^{1 / 2}\left(1_{H}\right)\left(\Psi_{1}+\Psi_{2}\right)^{-1 / 2}\left(1_{H}\right)
$$

then

$$
V^{*}=\left(\Psi_{1}+\Psi_{2}\right)^{-1 / 2}\left(1_{H}\right) \Psi_{1}^{1 / 2}\left(1_{H}\right) \quad \text { and } \quad U^{*}=\left(\Psi_{1}+\Psi_{2}\right)^{-1 / 2}\left(1_{H}\right) \Psi_{2}^{1 / 2}\left(1_{H}\right)
$$

Also,

$$
\begin{aligned}
V^{*} V+U^{*} U & =\left(\Psi_{1}+\Psi_{2}\right)^{-1 / 2}\left(1_{H}\right)\left(\Psi_{1}\left(1_{H}\right)+\Psi_{2}\left(1_{H}\right)\right)\left(\Psi_{1}+\Psi_{2}\right)^{-1 / 2}\left(1_{H}\right) \\
& =\left(\Psi_{1}+\Psi_{2}\right)^{-1 / 2}\left(1_{H}\right)\left(\Psi_{1}+\Psi_{2}\right)\left(1_{H}\right)\left(\Psi_{1}+\Psi_{2}\right)^{-1 / 2}\left(1_{H}\right)=1_{K}
\end{aligned}
$$

and (2.2) may be written as

$$
\begin{aligned}
& \left(\Psi_{1}+\Psi_{2}\right)^{-1 / 2}\left(1_{H}\right)\left(\Psi_{1}+\Psi_{2}\right)(A)\left(\Psi_{1}+\Psi_{2}\right)^{-1 / 2}\left(1_{H}\right) \\
& \quad=V^{*}\left(\Psi_{1}^{-1 / 2}\left(1_{H}\right) \Psi_{1}(A) \Psi_{1}^{-1 / 2}\left(1_{H}\right)\right) V+U^{*}\left(\Psi_{2}^{-1 / 2}\left(1_{H}\right) \Psi_{2}(A) \Psi_{2}^{-1 / 2}\left(1_{H}\right)\right) U
\end{aligned}
$$

By applying f and using Hansen-Pedersen-Jensen's inequality for operator convex functions,

$$
\begin{array}{rl}
f\left(\left(\Psi_{1}+\Psi_{2}\right)^{-1 / 2}\left(1_{H}\right)\left(\Psi_{1}+\Psi_{2}\right)(A)\left(\Psi_{1}+\Psi_{2}\right)^{-1 / 2}\left(1_{H}\right)\right) \\
\leq V^{*} & f\left(\Psi_{1}^{-1 / 2}\left(1_{H}\right) \Psi_{1}(A) \Psi_{1}^{-1 / 2}\left(1_{H}\right)\right) V+U^{*} f\left(\Psi_{2}^{-1 / 2}\left(1_{H}\right) \Psi_{2}(A) \Psi_{2}^{-1 / 2}\left(1_{H}\right)\right) U \\
=\left(\Psi_{1}+\Psi_{2}\right)^{-1 / 2}\left(1_{H}\right) \Psi_{1}^{1 / 2}\left(1_{H}\right) f\left(\Psi_{1}^{-1 / 2}\left(1_{H}\right) \Psi_{1}(A) \Psi_{1}^{-1 / 2}\left(1_{H}\right)\right) \\
& \cdot \\
\quad & \Psi_{1}^{1 / 2}\left(1_{H}\right)\left(\Psi_{1}+\Psi_{2}\right)^{-1 / 2}\left(1_{H}\right) \\
\quad+\left(\Psi_{1}+\Psi_{2}\right)^{-1 / 2}\left(1_{H}\right) \Psi_{2}^{1 / 2}\left(1_{H}\right) f\left(\Psi_{2}^{-1 / 2}\left(1_{H}\right) \Psi_{2}(A) \Psi_{2}^{-1 / 2}\left(1_{H}\right)\right) \tag{2.3}\\
& \cdot \Psi_{2}^{1 / 2}\left(1_{H}\right)\left(\Psi_{1}+\Psi_{2}\right)^{-1 / 2}\left(1_{H}\right)
\end{array}
$$

Finally, by multiplying both sides of (2.3) by $\left(\Psi_{1}+\Psi_{2}\right)^{1 / 2}\left(1_{H}\right)$,

$$
\begin{aligned}
\mathbf{F}_{f, A}\left(\Psi_{1}+\Psi_{2}\right) \leq & \Psi_{1}^{1 / 2}\left(1_{H}\right) f\left(\Psi_{1}^{-1 / 2}\left(1_{H}\right) \Psi_{1}(A) \Psi_{1}^{-1 / 2}\left(1_{H}\right)\right) \Psi_{1}^{1 / 2}\left(1_{H}\right) \\
& +\Psi_{2}^{1 / 2}\left(1_{H}\right) f\left(\Psi_{2}^{-1 / 2}\left(1_{H}\right) \Psi_{2}(A) \Psi_{2}^{-1 / 2}\left(1_{H}\right)\right) \Psi_{2}^{1 / 2}\left(1_{H}\right) \\
= & \mathbf{F}_{f, A}\left(\Psi_{1}\right)+\mathbf{F}_{f, A}\left(\Psi_{2}\right)
\end{aligned}
$$

and the proof is concluded.
Corollary 2.2. Let $f: I \rightarrow \mathbb{R}$ be an operator convex (concave) function on the interval I and A a self-adjoint operator whose spectrum is contained in I. If Ψ_{1}, $\Psi_{2} \in \mathfrak{P}_{I}[\mathcal{B}(H), \mathcal{B}(K)]$ and $\lambda \in[0,1]$, then

$$
\mathbf{F}_{f, A}\left((1-\lambda) \Psi_{1}+\lambda \Psi_{2}\right) \leq(\geq)(1-\lambda) \mathbf{F}_{f, A}\left(\Psi_{1}\right)+\lambda \mathbf{F}_{f, A}\left(\Psi_{2}\right),
$$

that is, $\mathbf{F}_{f, A}$ is operator convex (concave) on $\mathfrak{B}_{I}[\mathcal{B}(H), \mathcal{B}(K)]$.
Proof. Suppose that $\Psi_{1}, \Psi_{2} \in \mathfrak{P}_{I}[\mathcal{B}(H), \mathcal{B}(K)]$ and $\lambda \in[0,1]$. Then $(1-\lambda) \Psi_{1}+\lambda \Psi_{2} \in$ $\mathfrak{P}_{I}[\mathcal{B}(H), \mathcal{B}(K)]$ and, by (2.1),

$$
\begin{aligned}
\mathbf{F}_{f, A}\left((1-\lambda) \Psi_{1}+\lambda \Psi_{2}\right) & \leq(\geq) \mathbf{F}_{f, A}\left((1-\lambda) \Psi_{1}\right)+\mathbf{F}_{f, A}\left(\lambda \Psi_{2}\right) \\
& =(1-\lambda) \mathbf{F}_{f, A}\left(\Psi_{1}\right)+\lambda \mathbf{F}_{f, A}\left(\Psi_{2}\right),
\end{aligned}
$$

since $\mathbf{F}_{f, A}$ is positive homogeneous on $\mathfrak{B}_{I}[\mathcal{B}(H), \mathcal{B}(K)]$, that is,

$$
\mathbf{F}_{f, A}(\alpha \Psi)=\alpha \mathbf{F}_{f, A}(\Psi)
$$

for any $\alpha>0$ and $\Psi \in \mathfrak{P}_{I}[\mathcal{B}(H), \mathcal{B}(K)]$.
For $\Psi_{1}, \Psi_{2} \in \mathfrak{P}_{I}[\mathcal{B}(H), \mathcal{B}(K)]$, we write $\Psi_{2}>_{I} \Psi_{1}$ if $\Psi_{2}-\Psi_{1} \in \mathfrak{B}_{I}[\mathcal{B}(H), \mathcal{B}(K)]$. This means that $\Psi_{2}-\Psi_{1}$ is a positive linear functional and $\Psi_{2}\left(1_{H}\right)-\Psi_{1}\left(1_{H}\right) \in \mathcal{B}^{++}(K)$. For examples of such maps, see [6].

Corollary 2.3. Let $f: I \rightarrow[0, \infty)$ be an operator concave function on the interval I and A a self-adjoint operator whose spectrum is contained in I. If $\Psi_{1}, \Psi_{2} \in$ $\mathfrak{P}_{I}[\mathcal{B}(H), \mathcal{B}(K)]$ with $\Psi_{2}>_{I} \Psi_{1}$, then

$$
\begin{equation*}
\mathbf{F}_{f, A}\left(\Psi_{2}\right) \geq \mathbf{F}_{f, A}\left(\Psi_{1}\right), \tag{2.4}
\end{equation*}
$$

that is, $\mathbf{F}_{f, A}$ is operator monotonic nondecreasing in the order ' $>_{I}$ ' of $\mathfrak{P}_{I}[\mathcal{B}(H), \mathcal{B}(K)]$. Proof. Let $\Psi_{1}, \Psi_{2} \in \mathfrak{P}_{I}[\mathcal{B}(H), \mathcal{B}(K)]$ with $\Psi_{2}>_{I} \Psi_{1}$. By (2.1),

$$
\mathbf{F}_{f, A}\left(\Psi_{2}\right)=\mathbf{F}_{f, A}\left(\Psi_{1}+\Psi_{2}-\Psi_{1}\right) \geq \mathbf{F}_{f, A}\left(\Psi_{1}\right)+\mathbf{F}_{f, A}\left(\Psi_{2}-\Psi_{1}\right),
$$

implying that

$$
\mathbf{F}_{f, A}\left(\Psi_{2}\right)-\mathbf{F}_{f, A}\left(\Psi_{1}\right) \geq \mathbf{F}_{f, A}\left(\Psi_{2}-\Psi_{1}\right)
$$

Since f is positive and $\Psi_{2,1}:=\Psi_{2}-\Psi_{1} \in \mathfrak{P}_{I}[\mathcal{B}(H), \mathcal{B}(K)]$ and since $\Psi_{2,1}\left(1_{H}\right)=$ $\Psi_{2}\left(1_{H}\right)-\Psi_{1}\left(1_{H}\right) \in \mathcal{B}^{++}(K)$, it follows that

$$
f\left(\Psi_{2,1}^{-1 / 2}\left(1_{H}\right) \Psi_{2,1}(A) \Psi_{2,1}^{-1 / 2}\left(1_{H}\right)\right) \geq 0
$$

and, by multiplying both sides by $\Psi_{2,1}^{1 / 2}\left(1_{H}\right)$, we see that $\mathbf{F}_{f, A}\left(\Psi_{2}-\Psi_{1}\right) \geq 0$ and the inequality (2.4) is proved.

Corollary 2.4. Let $f: I \rightarrow[0, \infty)$ be an operator concave function on the interval I and A a self-adjoint operator whose spectrum is contained in I. If $\Psi, \Upsilon \in$ $\mathfrak{P}_{I}[\mathcal{B}(H), \mathcal{B}(K)], t, T>0$ with $T>t$ and $T \Upsilon>_{I} \Psi>_{I} t \Upsilon$, then

$$
T \mathbf{F}_{f, A}(\Upsilon) \geq \mathbf{F}_{f, A}(\Psi) \geq t \mathbf{F}_{f, A}(\Upsilon)
$$

Proof. The result follows from (2.4) on taking first $\Psi_{2}=T \Upsilon, \Psi_{1}=\Psi$ and then $\Psi_{2}=\Psi$, $\Psi_{1}=t \Upsilon$ and by the positive homogeneity of $\mathbf{F}_{f, A}$.

We consider now the functional $\mathbf{J}_{f, A}: \mathfrak{P}_{I}[\mathcal{B}(H), \mathcal{B}(K)] \rightarrow \mathcal{B}(K)$ defined by

$$
\begin{aligned}
\mathbf{J}_{f, A}(\Psi) & :=\Psi(f(A))-\mathbf{F}_{f, A}(\Psi) \\
& =\Psi(f(A))-\Psi^{1 / 2}\left(1_{H}\right) f\left(\Psi^{-1 / 2}\left(1_{H}\right) \Psi(A) \Psi^{-1 / 2}\left(1_{H}\right)\right) \Psi^{1 / 2}\left(1_{H}\right) .
\end{aligned}
$$

Theorem 2.5. Let $f: I \rightarrow \mathbb{R}$ be an operator convex (concave) function on the interval I and A a self-adjoint operator whose spectrum is contained in I. Then the functional $\mathbf{J}_{f, A}$ is positive (negative) on $\mathfrak{P}_{I}[\mathcal{B}(H), \mathcal{B}(K)]$, positive homogeneous and concave (convex) on $\mathfrak{B}_{I}[\mathcal{B}(H), \mathcal{B}(K)]$ and superadditive (subadditive) on $\mathfrak{P}_{I}[\mathcal{B}(H), \mathcal{B}(K)]$.

Proof. We consider only the operator convex case. The positivity of $\mathbf{J}_{f, A}$ on $\mathfrak{P}_{I}[\mathcal{B}(H), \mathcal{B}(K)]$ is equivalent to Davis-Choi-Jensen's inequality for general positive linear maps (1.2). The positive homogeneity follows by the same property of $\mathbf{F}_{f, A}$ and the definition of $\mathbf{J}_{f, A}$.

If $\Psi_{1}, \Psi_{2} \in \mathfrak{P}_{I}[\mathcal{B}(H), \mathcal{B}(K)]$ and $\lambda \in[0,1]$, then, by Corollary 2.2,

$$
\begin{aligned}
& \mathbf{J}_{f, A}\left((1-\lambda) \Psi_{1}+\lambda \Psi_{2}\right) \\
& \quad=\left((1-\lambda) \Psi_{1}+\lambda \Psi_{2}\right)(f(A))-\mathbf{F}_{f, A}\left((1-\lambda) \Psi_{1}+\lambda \Psi_{2}\right) \\
& \quad \geq(1-\lambda) \Psi_{1}(f(A))+\lambda \Psi_{2}(f(A))-(1-\lambda) \mathbf{F}_{f, A}\left(\Psi_{1}\right)-\lambda \mathbf{F}_{f, A}\left(\Psi_{2}\right) \\
& \quad=(1-\lambda)\left[\Psi_{1}(f(A))-\mathbf{F}_{f, A}\left(\Psi_{1}\right)\right]+\lambda\left[\Psi_{2}(f(A))-\mathbf{F}_{f, A}\left(\Psi_{2}\right)\right] \\
& \quad=(1-\lambda) \mathbf{J}_{f, A}\left(\Psi_{1}\right)+\lambda \mathbf{J}_{f, A}\left(\Psi_{2}\right),
\end{aligned}
$$

which proves the operator concavity of $\mathbf{J}_{f, A}$. The operator superadditivity follows in a similar way and we omit the details.

Corollary 2.6. Let $f: I \rightarrow \mathbb{R}$ be an operator convex function on the interval I and A a self-adjoint operator whose spectrum is contained in I. If $\Psi, \Upsilon \in \mathfrak{P}_{I}[\mathcal{B}(H), \mathcal{B}(K)]$, $t, T>0$ with $T>t$ and $T \Upsilon>_{I} \Psi>_{I} t \Upsilon$, then

$$
T \mathbf{J}_{f, A}(\Upsilon) \geq \mathbf{J}_{f, A}(\Psi) \geq t \mathbf{J}_{f, A}(\Upsilon)
$$

or, equivalently,

$$
\begin{equation*}
T\left(\Upsilon(f(A))-\mathbf{F}_{f, A}(\Upsilon)\right) \geq \Psi(f(A))-\mathbf{F}_{f, A}(\Psi) \geq t\left(\Upsilon(f(A))-\mathbf{F}_{f, A}(\Upsilon)\right) \geq 0 \tag{2.5}
\end{equation*}
$$

The inequality (2.5) has been obtained in [6] in an equivalent form for an operator concave function f and normalised functionals Ψ and Υ.

Now assume that A is a self-adjoint operator whose spectrum is contained in $[m, M]$ for some real constants $M>m$. If f is convex, then for any $t \in[m, M]$,

$$
\begin{equation*}
f(t) \leq \frac{(M-t) f(m)+(t-m) f(M)}{M-m} . \tag{2.6}
\end{equation*}
$$

If A is a self-adjoint operator whose spectrum is contained in $[m, M$], then $m 1_{H} \leq A \leq M 1_{H}$ and by applying the map Ψ we get $m \Psi\left(1_{H}\right) \leq \Psi(A) \leq M \Psi\left(1_{H}\right)$ for $\Psi \in \mathfrak{P}_{I}[\mathcal{B}(H), \mathcal{B}(K)]$. This is equivalent to

$$
m 1_{K} \leq \Psi^{-1 / 2}\left(1_{H}\right) \Psi(A) \Psi^{-1 / 2}\left(1_{H}\right) \leq M 1_{K}
$$

From (2.6) and the continuous functional calculus,

$$
\begin{aligned}
f\left(\Psi^{-1 / 2}\left(1_{H}\right) \Psi(A) \Psi^{-1 / 2}\left(1_{H}\right)\right) \leq & \frac{1}{M-m}\left[f(m)\left(M 1_{K}-\Psi^{-1 / 2}\left(1_{H}\right) \Psi(A) \Psi^{-1 / 2}\left(1_{H}\right)\right)\right] \\
& +\frac{1}{M-m}\left[f(M)\left(\Psi^{-1 / 2}\left(1_{H}\right) \Psi(A) \Psi^{-1 / 2}\left(1_{H}\right)-m 1_{K}\right)\right] .
\end{aligned}
$$

Multiplying this inequality on both sides by $\Psi^{1 / 2}\left(1_{H}\right)$ yields

$$
\mathbf{F}_{f, A}(\Psi) \leq \mathbf{T}_{f, A}(\Psi),
$$

where

$$
\mathbf{T}_{f, A}(\Psi):=\frac{f(m)\left(M \Psi\left(1_{H}\right)-\Psi(A)\right)+f(M)\left(\Psi(A)-m \Psi\left(1_{H}\right)\right)}{M-m}
$$

is a trapezoidal-type functional. We observe that $\mathbf{T}_{f, A}$ is additive and positive homogeneous on $\mathfrak{P}_{I}[\mathcal{B}(H), \mathcal{B}(K)]$.

We define the functional $\mathbf{D}_{f, A}: \mathfrak{P}_{I}[\mathcal{B}(H), \mathcal{B}(K)] \rightarrow \mathcal{B}(K)$ by

$$
\begin{aligned}
\mathbf{D}_{f, A}(\Psi): & =\mathbf{T}_{f, A}(\Psi)-\mathbf{F}_{f, A}(\Psi) \\
= & \frac{f(m)\left(M \Psi\left(1_{H}\right)-\Psi(A)\right)+f(M)\left(\Psi(A)-m \Psi\left(1_{H}\right)\right)}{M-m} \\
& \quad-\Psi^{1 / 2}\left(1_{H}\right) f\left(\Psi^{-1 / 2}\left(1_{H}\right) \Psi(A) \Psi^{-1 / 2}\left(1_{H}\right)\right) \Psi^{1 / 2}\left(1_{H}\right) .
\end{aligned}
$$

We observe that if f is convex (concave) on $[m, M]$ and $m 1_{H} \leq A \leq M 1_{H}$, then

$$
\mathbf{D}_{f, A}(\Psi) \geq(\leq) 0 \quad \text { for any } \Psi \in \mathfrak{B}_{I}[\mathcal{B}(H), \mathcal{B}(K)]
$$

Theorem 2.7. Let $f: I \rightarrow \mathbb{R}$ be an operator convex (concave) function on the interval $[m, M]$ and A a self-adjoint operator whose spectrum is contained in $[m, M]$. Then the functional $\mathbf{D}_{f, A}$ is positive (negative) on $\mathfrak{P}_{I}[\mathcal{B}(H), \mathcal{B}(K)]$, positive homogeneous and operator concave (convex) on $\mathfrak{P}_{I}[\mathcal{B}(H), \mathcal{B}(K)]$ and operator superadditive (subadditive) on $\mathfrak{P}_{I}[\mathcal{B}(H), \mathcal{B}(K)]$.

The proof is similar to the proof of Theorem 2.5 and we omit the details.

Corollary 2.8. Let $f: I \rightarrow \mathbb{R}$ be an operator convex function on the interval I and A a self-adjoint operator whose spectrum is contained in I. If $\Psi, \Upsilon \in \mathfrak{P}_{I}[\mathcal{B}(H), \mathcal{B}(K)]$, $t, T>0$ with $T>t$ and $T \Upsilon>_{I} \Psi>_{I} t \Upsilon$, then

$$
T \mathbf{D}_{f, A}(\Upsilon) \geq \mathbf{D}_{f, A}(\Psi) \geq t \mathbf{D}_{f, A}(\Upsilon)
$$

or, equivalently,

$$
\begin{aligned}
T & {\left[\frac{f(m)\left(M \Upsilon\left(1_{H}\right)-\Upsilon(A)\right)+f(M)\left(\Upsilon(A)-m \Upsilon\left(1_{H}\right)\right)}{M-m}-\mathbf{F}_{f, A}(\Upsilon)\right] } \\
& \geq \frac{f(m)\left(M \Psi\left(1_{H}\right)-\Psi(A)\right)+f(M)\left(\Psi(A)-m \Psi\left(1_{H}\right)\right)}{M-m}-\mathbf{F}_{f, A}(\Psi) \\
& \geq t\left[\frac{f(m)\left(M \Upsilon\left(1_{H}\right)-\Upsilon(A)\right)+f(M)\left(\Upsilon(A)-m \Upsilon\left(1_{H}\right)\right)}{M-m}-\mathbf{F}_{f, A}(\Upsilon)\right] \geq 0 .
\end{aligned}
$$

3. Examples for the power function and the logarithm

It is well known that the function $f_{v}:[0, \infty) \rightarrow[0, \infty)$ given by $f_{v}(x)=x^{\nu}$ for $v \in(0,1)$ is operator concave and positive on $[0, \infty)$. We consider the functional on $\mathfrak{P}_{I}[\mathcal{B}(H), \mathcal{B}(K)]$ defined by

$$
\mathbf{F}_{v, A}(\Psi)=\Psi^{1 / 2}\left(1_{H}\right)\left(\Psi^{-1 / 2}\left(1_{H}\right) \Psi(A) \Psi^{-1 / 2}\left(1_{H}\right)\right)^{\nu} \Psi^{1 / 2}\left(1_{H}\right),
$$

where A is a positive operator on H.
Assume that C, B are positive invertible operators on a complex Hilbert space $(H,\langle\cdot, \cdot\rangle)$. We use the following notation for operators as in [11]:

$$
C \nabla_{v} B:=(1-v) C+v B,
$$

the weighted operator arithmetic mean, and

$$
C \nVdash_{\nu} B:=C^{1 / 2}\left(C^{-1 / 2} B C^{-1 / 2}\right)^{\nu} C^{1 / 2},
$$

the weighted operator geometric mean, where $v \in[0,1]$. When $v=\frac{1}{2}$, we write $C \nabla B$ and $C \sharp B$ for brevity, respectively. The definition of $C \not{ }_{v} B$ can be extended to any real number v.

Using this notation, we observe that

$$
\mathbf{F}_{V, A}(\Psi)=\Psi\left(1_{H}\right) \sharp_{V} \Psi(A) .
$$

In particular, for $v=\frac{1}{2}$,

$$
\mathbf{F}_{1 / 2, A}(\Psi)=\Psi\left(1_{H}\right) \sharp \Psi(A) .
$$

Using the results from the previous section for the operator concave function f_{v}, we see that $\mathbf{F}_{v, A}$ is positive, operator concave, operator superadditive, operator monotonic nondecreasing in the order ' $>_{I}$ ' and we have the inequality

$$
T \Upsilon\left(1_{H}\right) \sharp_{V} \Upsilon(A) \geq \Psi\left(1_{H}\right) \sharp_{V} \Psi(A) \geq t \Upsilon\left(1_{H}\right) \sharp_{V} \Upsilon(A),
$$

where $\Psi, \Upsilon \in \mathfrak{P}_{I}[\mathcal{B}(H), \mathcal{B}(K)], t, T>0$ with $T>t$ and $T \Upsilon>_{I} \Psi>_{I} t \Upsilon$. The operator concavity, superadditivity and monotonicity may also be derived from the corresponding properties of the weighted operator geometric mean (see [15, page 146]).

If we consider the functional

$$
\mathbf{J}_{v, A}(\Psi):=\Psi\left(A^{v}\right)-\Psi\left(1_{H}\right) \#_{V} \Psi(A),
$$

then $\mathbf{J}_{v, A}$ is negative, operator convex and operator subadditive on $\mathfrak{P}_{I}[\mathcal{B}(H), \mathcal{B}(K)]$. Also, if $0<m 1_{H} \leq A \leq M 1_{H}$, then we can consider the functional

$$
\mathbf{D}_{v, A}(\Psi):=\frac{m^{\nu}\left(M \Psi\left(1_{H}\right)-\Psi(A)\right)+M^{v}\left(\Psi(A)-m \Psi\left(1_{H}\right)\right)}{M-m}-\Psi\left(1_{H}\right) \sharp_{\nu} \Psi(A)
$$

and from the above section we conclude that $\mathbf{D}_{v, A}$ is negative, operator convex and operator subadditive on $\mathfrak{P}_{I}[\mathcal{B}(H), \mathcal{B}(K)]$.

Now consider the function $\Phi_{p}(t)=t^{p}$ which is operator convex on $(0, \infty)$ if either $1 \leq p \leq 2$ or $-1 \leq p \leq 0$. We consider the functional on $\mathfrak{P}_{I}[\mathcal{B}(H), \mathcal{B}(K)]$ defined by

$$
\begin{aligned}
\mathbf{F}_{p, A}(\Psi) & =\Psi^{1 / 2}\left(1_{H}\right)\left(\Psi^{-1 / 2}\left(1_{H}\right) \Psi(A) \Psi^{-1 / 2}\left(1_{H}\right)\right)^{p} \Psi^{1 / 2}\left(1_{H}\right) \\
& =\Psi\left(1_{H}\right) \not H_{p} \Psi(A),
\end{aligned}
$$

where A is a positive-definite operator on H. In particular,

$$
\begin{aligned}
\mathbf{F}_{2, A}(\Psi) & =\Psi^{1 / 2}\left(1_{H}\right)\left(\Psi^{-1 / 2}\left(1_{H}\right) \Psi(A) \Psi^{-1 / 2}\left(1_{H}\right)\right)^{2} \Psi^{1 / 2}\left(1_{H}\right) \\
& =\Psi(A) \Psi^{-1}\left(1_{H}\right) \Psi(A)
\end{aligned}
$$

and

$$
\begin{aligned}
\mathbf{F}_{-1, A}(\Psi) & =\Psi^{1 / 2}\left(1_{H}\right)\left(\Psi^{-1 / 2}\left(1_{H}\right) \Psi(A) \Psi^{-1 / 2}\left(1_{H}\right)\right)^{-1} \Psi^{1 / 2}\left(1_{H}\right) \\
& =\Psi\left(1_{H}\right) \Psi^{-1}(A) \Psi\left(1_{H}\right)
\end{aligned}
$$

From the previous section, we can infer that $\mathbf{F}_{p, A}$ is positive, operator convex and subadditive on $\mathfrak{P}_{I}[\mathcal{B}(H), \mathcal{B}(K)]$.

For $\Psi_{1}, \Psi_{2} \in \mathfrak{P}_{I}[\mathcal{B}(H), \mathcal{B}(K)]$, we have by the properties of $\mathbf{F}_{p, A}$ that the scalarvalued function

$$
\rho_{p, A}(\Psi):=\left\|\mathbf{F}_{p, A}(\Psi)\right\|=\left\|\Psi\left(1_{H}\right) \sharp_{p} \Psi(A)\right\|
$$

is subadditive and positive homogeneous on $\mathfrak{B}_{I}[\mathcal{B}(H), \mathcal{B}(K)]$.
Consider the functional

$$
\mathbf{J}_{p, A}(\Psi):=\Psi\left(A^{p}\right)-\Psi\left(1_{H}\right) \sharp_{p} \Psi(A)
$$

If A is positive definite and either $1 \leq p \leq 2$ or $-1 \leq p \leq 0$, then the functional $\mathbf{J}_{p, A}$ is positive, operator concave, operator superadditive, operator monotonic nondecreasing in the order ' $>_{I}$ ' and we have the inequality

$$
\begin{aligned}
T\left[\Upsilon\left(A^{p}\right)-\Upsilon\left(1_{H}\right) \sharp_{p} \Upsilon(A)\right] & \geq \Psi\left(A^{p}\right)-\Psi\left(1_{H}\right) \sharp_{p} \Psi(A) \\
& \geq t\left[\Upsilon\left(A^{p}\right)-\Upsilon\left(1_{H}\right) \sharp_{p} \Upsilon(A)\right] \geq 0,
\end{aligned}
$$

where $\Psi, \Upsilon \in \mathfrak{B}_{I}[\mathcal{B}(H), \mathcal{B}(K)]$, $t, T>0$ with $T>t$ and $T \Upsilon>_{I} \Psi>_{I} t^{\top}$. Also, if $0<m 1_{H} \leq A \leq M 1_{H}$, then the functional

$$
\mathbf{D}_{p, A}(\Psi):=\frac{m^{p}\left(M \Psi\left(1_{H}\right)-\Psi(A)\right)+M^{p}\left(\Psi(A)-m \Psi\left(1_{H}\right)\right)}{M-m}-\Psi\left(1_{H}\right) \sharp_{p} \Psi(A)
$$

is positive, operator concave, operator superadditive, operator monotonic nondecreasing in the order ' $>_{I}$ ' and we have the inequality

$$
\begin{aligned}
& T\left[\frac{m^{p}\left(M \Upsilon\left(1_{H}\right)-\Upsilon(A)\right)+M^{p}\left(\Upsilon(A)-m \Upsilon\left(1_{H}\right)\right)}{M-m}-\Upsilon\left(1_{H}\right) \sharp_{p} \Upsilon(A)\right] \\
& \quad \geq \frac{m^{p}\left(M \Psi\left(1_{H}\right)-\Psi(A)\right)+M^{p}\left(\Psi(A)-m \Psi\left(1_{H}\right)\right)}{M-m}-\Psi\left(1_{H}\right) \sharp_{p} \Psi(A) \\
& \quad \geq t\left[\frac{m^{p}\left(M \Upsilon\left(1_{H}\right)-\Upsilon(A)\right)+M^{p}\left(\Upsilon(A)-m \Upsilon\left(1_{H}\right)\right)}{M-m}-\Upsilon\left(1_{H}\right) \sharp_{p} \Upsilon(A)\right] \geq 0,
\end{aligned}
$$

where $\Psi, \Upsilon \in \mathfrak{P}_{I}[\mathcal{B}(H), \mathcal{B}(K)], t, T>0$ with $T>t$ and $T \Upsilon>_{I} \Psi>_{I} t \Upsilon$.
It is well known that the function $f:(0, \infty) \rightarrow \mathbb{R}, f(t)=\ln t$ is operator concave on $(0, \infty)$. We consider the functional on $\mathfrak{P}_{I}[\mathcal{B}(H), \mathcal{B}(K)]$ defined by

$$
\mathbf{F}_{\mathrm{ln}, A}(\Psi)=\Psi^{1 / 2}\left(1_{H}\right) \ln \left(\Psi^{-1 / 2}\left(1_{H}\right) \Psi(A) \Psi^{-1 / 2}\left(1_{H}\right)\right) \Psi^{1 / 2}\left(1_{H}\right),
$$

where A is a positive-definite operator on H.
Fujii and Kamei $[7,8]$ defined the relative operator entropy $S(A \mid B)$, for positive invertible operators A and B, by

$$
S(A \mid B):=A^{1 / 2}\left(\ln A^{-1 / 2} B A^{-1 / 2}\right) A^{1 / 2},
$$

a relative version of the operator entropy considered by Nakamura and Umegaki [13].
If $B \geq A$ and A is positive and invertible, then $A^{-1 / 2} B A^{-1 / 2} \geq I$ and, by the continuous functional calculus, $\ln \left(A^{-1 / 2} B A^{-1 / 2}\right) \geq 0$, which implies by multiplying both sides with $A^{1 / 2}$ that $S(A \mid B) \geq 0$. For some recent results on relative operator entropy, see [2-6, 9, 10, 12, 14].

Using the relative operator entropy notation,

$$
\mathbf{F}_{\mathrm{ln}, A}(\Psi)=S\left(\Psi\left(1_{H}\right) \mid \Psi(A)\right)
$$

where A is a positive-definite operator on H and $\Psi \in \mathfrak{P}_{I}[\mathcal{B}(H), \mathcal{B}(K)]$. From the properties established in the previous section applied to the operator concave function $f:(0, \infty) \rightarrow \mathbb{R}, f(t)=\ln t$, we see that $\mathbf{F}_{\mathrm{ln}, A}$ is operator concave and operator superadditive on $\mathfrak{P}_{I}[\mathcal{B}(H), \mathcal{B}(K)]$. These properties may also be derived from the corresponding properties of the relative operator entropy (see [15, page 153]).

Moreover, if $\Psi>_{I} \Upsilon$, then

$$
\mathbf{F}_{\mathrm{ln}, A}(\Psi)-\mathbf{F}_{\mathrm{ln}, A}(\Upsilon) \geq \mathbf{F}_{\mathrm{ln}, A}(\Psi-\Upsilon)
$$

and, in addition, if $\Psi(A)+\Upsilon\left(1_{H}\right) \geq \Upsilon(A)+\Psi\left(1_{H}\right)$, then

$$
\mathbf{F}_{\ln , A}(\Psi) \geq \mathbf{F}_{\ln , A}(\Upsilon) .
$$

The function $f(t)=-\ln t, t>0$, is operator convex. If we consider now the functional

$$
\mathbf{J}_{-\ln , A}(\Psi):=S\left(\Psi\left(1_{H}\right) \mid \Psi(A)\right)-\Psi(\ln (A)),
$$

then from the previous section we can infer that $\mathbf{J}_{-\ln , A}$ is positive, operator concave, operator superadditive, operator monotonic nondecreasing in the order ' $>_{I}$ ' and we have the inequality

$$
\begin{aligned}
T\left(S\left(\Upsilon\left(1_{H}\right) \mid \Upsilon(A)\right)-\Upsilon(\ln (A))\right) & \geq S\left(\Psi\left(1_{H}\right) \mid \Psi(A)\right)-\Psi(\ln (A)) \\
& \geq t\left(S\left(\Upsilon\left(1_{H}\right) \mid \Upsilon(A)\right)-\Upsilon(\ln (A))\right) \geq 0
\end{aligned}
$$

provided that $\Psi, \Upsilon \in \mathfrak{P}_{I}[\mathcal{B}(H), \mathcal{B}(K)], t, T>0$ with $T>t$ and $T \Upsilon>_{I} \Psi>_{I} t \Upsilon$. Consider also the functional

$$
\mathbf{D}_{-\ln , A}(\Psi):=S\left(\Psi\left(1_{H}\right) \mid \Psi(A)\right)-\frac{\ln m\left(M \Psi\left(1_{H}\right)-\Psi(A)\right)+\ln M\left(\Psi(A)-m \Psi\left(1_{H}\right)\right)}{M-m}
$$

for $\Psi \in \mathfrak{B}_{I}[\mathcal{B}(H), \mathcal{B}(K)]$. Then $\mathbf{D}_{-\ln , A}$ is positive, operator concave, operator superadditive, operator monotonic nondecreasing in the order ' $>_{I}$ ' and we have the inequality

$$
\begin{aligned}
& T\left[S\left(\Upsilon\left(1_{H}\right) \mid \Upsilon(A)\right)-\frac{\ln m\left(M \Upsilon\left(1_{H}\right)-\Upsilon(A)\right)+\ln M\left(\Upsilon(A)-m \Upsilon\left(1_{H}\right)\right)}{M-m}\right] \\
& \quad \geq S\left(\Psi\left(1_{H}\right) \mid \Psi(A)\right)-\frac{\ln m\left(M \Psi\left(1_{H}\right)-\Psi(A)\right)+\ln M\left(\Psi(A)-m \Psi\left(1_{H}\right)\right)}{M-m} \\
& \quad \geq t\left[S\left(\Upsilon\left(1_{H}\right) \mid \Upsilon(A)\right)-\frac{\ln m\left(M \Upsilon\left(1_{H}\right)-\Upsilon(A)\right)+\ln M\left(\Upsilon(A)-m \Upsilon\left(1_{H}\right)\right)}{M-m}\right] \geq 0
\end{aligned}
$$

provided that $\Psi, \Upsilon \in \mathfrak{P}_{I}[\mathcal{B}(H), \mathcal{B}(K)], t, T>0$ with $T>t$ and $T \Upsilon>_{I} \Psi>_{I} t \Upsilon$.

References

[1] M. D. Choi, 'A Schwarz inequality for positive linear maps on C^{*}-algebras', Illinois J. Math. 18 (1974), 565-574.
[2] S. S. Dragomir, 'Some reverses of the Jensen inequality for functions of selfadjoint operators in Hilbert spaces', J. Inequal. Appl. 2010 (2010), article 496821, 15 pages.
[3] S. S. Dragomir, Operator Inequalities of the Jensen, Čebyšev and Grüss Type, Springer Briefs in Mathematics (Springer, New York, 2012).
[4] S. S. Dragomir, 'Some inequalities for relative operator entropy', RGMIA Res. Rep. Coll. 18 (2015), article 145, 12 pages [online http://rgmia.org/papers/v18/v18a145.pdf].
[5] S. S. Dragomir, 'Further inequalities for relative operator entropy', RGMIA Res. Rep. Coll. 18 (2015), article 160, 11 pages [online http://rgmia.org/papers/v18/v18a160.pdf].
[6] S. S. Dragomir, J. I. Fujii and Y. Seo, 'Bounds for an operator concave function', Electron. J. Linear Algebra 26 (2013), 192-200.
[7] J. I. Fujii and E. Kamei, 'Relative operator entropy in noncommutative information theory', Math. Japon. 34(3) (1989), 341-348.
[8] J. I. Fujii and E. Kamei, 'Uhlmann's interpolational method for operator means', Math. Japon. 34(4) (1989), 541-547.
[9] I. H. Kim, 'Operator extension of strong subadditivity of entropy', J. Math. Phys. 53 (2012), article 122204, 3 pages [online http://dx.doi.org/10.1063/1.4769176].
[10] P. Kluza and M. Niezgoda, 'Inequalities for relative operator entropies', Electron. J. Linear Algebra 27 (2014), 851-864.
[11] F. Kubo and T. Ando, 'Means of positive operators', Math. Ann. 264 (1980), 205-224.
[12] M. S. Moslehian, F. Mirzapour and A. Morassaei, 'Operator entropy inequalities', Colloq. Math. 130 (2013), 159-168.
[13] M. Nakamura and H. Umegaki, 'A note on the entropy for operator algebras', Proc. Japan Acad. 37 (1961), 149-154.
[14] I. Nikoufar, 'On operator inequalities of some relative operator entropies', Adv. Math. 259 (2014), 376-383.
[15] J. Pečarić, T. Furuta, J. Mićić Hot and Y. Seo, Mond-Pečarić Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space (Element, Zagreb, 2005).

S. S. DRAGOMIR, Mathematics, College of Engineering and Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia and
DST-NRF Centre of Excellence in the Mathematical and Statistical Sciences, School of Computer Science and Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa
e-mail: sever.dragomir@vu.edu.au

[^0]: (C) 2016 Australian Mathematical Publishing Association Inc. 0004-9727/2016 \$16.00

