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ON THE GENERALIZED TEICHMULLER SPACES AND

DIFFERENTIAL EQUATIONS

AKIKAZU KURIBAYASHI

It is well known that for the family F of Riemann surfaces {R(z)}

defined by the equations y2 = x(x — ΐ)(x — z), zeC — {0,1}, we have one

independent abelian differential ω = y~ιdx on each R(z) and if we con-

Ch

sider ^ a s a parameter on C — {0,1}, the integrals y~ιdx (g, h = 0,l, oo)
Jg

are solutions of the Gauss's differential equation

*«L (2* - l) * L + « = 0 .
d 4

*(* 1) + (2* l) +
dz2 dz 4

If we take two suitable solutions w^iz), w2(z) of the equation, and denote
the ratios of w^z) and w2(z) by r, then the inverse function z(τ) is a
single valued holomorphic function on the upper-half τ plane.

The first aim of this paper is to consider families of Riemann sur-
faces for the differential equations of Fuchsian type, just as we have
considered the family F for the Gauss's differential equation. These are
investigated in § 1 and § 2. The second aim is to investigate the ana-
lytic properties in these families by considering the symmetric domain
H which was introduced by Shimura [9] and the generalized Teichmϋller
space which was constructed in [5]. These are studied in §3. The
main result here is Theorem (3.3.7), which is an answer to the exten-
sion of the case of the Gauss's differential equation.

Just as for the family F the parameter z is the Lambda function
in the upper half plane, and is represented by the quotients of theta
constants, our third aim is to similarly investigate the analyticity of the
parameters, which we have in 1.3, in the complex structure. We study
this problem in §4, wherein an answer is given by Theorem (4.2.11).
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98 AKIKAZU KURIBAYASHI

§ 1 . A family Ω{g'9n9{vl9 ,yr}) of Riemann surfaces

1.1. Let R be a compact Riemann surface of genus g(> 1). Let σ

be an automorphism of R. We say that (R9σ) and CB',σ') are isomor-

phic if there exists a holomorphic bisection f:R-*R' such that fσ = <J'/.

We denote by <JF2, σ) the isomorphism class of 0R,σ). Let w be a prime

number and {vl9 , t> r} be a set of positive integers such that 1 < vx < n

(1 < i < r). We denote by Ω(g'9 n9 {vl9 , yr}) the set of all isomorphism

classes of (R9σ) satisfying the following conditions:

(1.1.1) ( i ) σ is an automorphism of order n with r fixed points.

(ii) R/G = Rf is of genus gf, where G is the cyclic group gen-

erated by σ.

(iii) σ can be represented as tt —> ζv% + (ζ = exp (2πi/ri))9

where tt is a local parameter at qi9 a fixed point of σ, and

i runs from 1 to r.

Clearly in (iii) the coefficient ζVi does not depend on the choice of local

parameter.

1.2. Let K (resp. K!) be the field of meromorphic functions on R

(resp. .RO Then £ is a Galois extension of K'9 whose Galois group can

be identified with G. Then there exists an element y of K such that

<*y) = ζy,K = K\y) and yn e K'. If K' is the rational function field, then

we can write the equation of R in the form

(1.2.1) yn = (x — αo)
m°(# — aj™1 - (x — α ί + 1 ) m +1, ^ | m 0 + . . . + m5+1,

0 < mi < n (l^i^s + ΐ) .

with distinct complex numbers αo> ,α«+i Here r = s + 3, and we

have mpi = 1 (modn) for 0 < i < s + 1. Further we have a relation

2g = (n — l)(s + 1) and it is easy to see that we have (ΣfίJ Wi)vr + 1 = 0

(mod w).

In the equivalence class of <#, σ), we can find a representative (R9 σ)

such that the equation of R is

(1.2.2) yn = #mo(# — 2j)mi (OJ — zs)
m°(x — l)w*+! .

Here, z19- 9z890 and 1 are distinct complex numbers. We call this

form of the equation a normal one and denote the Riemann surface

defined by this equation by R(z) and the complex vector space of all
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abelian differentials of R(z) by Viz), then we have the following lemma.

(1.2.3) LEMMA. Viz) is spanned by abelian differentials of the form

(1) ω = χk»(χ - Zι)
kl (a? — zs)

kt(x — l)k*+1y-edx

(0 < £ < n - 1,0 < k0, , ks+1 < n) .

Jϊere we must have

(2) (n - 1) + nkt - £mt > 0 (0 < i < s + 1) ,

(3) £(m0 + + ms+1) - n(k0 + - + fct+1) > w + 1 .

Proo/. R(z) has an automorphism σ: x->x,y->ζy, where ζ is equal

to exp (2πί/ri). Fixing a suitable basis of V(z), we can represent a by a

diagonal matrix as follows:

Here ζk (1 < k < g) is a w-th root of unity. Hence, we have ωkσk =

(1 < k < g). It is well-known that ωk can be expressed by a polynomial

φ(x,y) in a?,2/ as follows:

Therefore, we obtain ωkσ = ζφ(x, ζy)y~(n~1)dx. On the other hand, this

is equal to ζkωk = ζkφ(x9y)y~(n~υdx. Hence we have φ(x,ζy) = ζaφ(x,y)

with an integer α (0 < o: < n — 1). If we put

φ(x, y) =

with polynomials in x, ao(x), aλ(x), , αm(#), then obviously we have

Φ(β, ζy) = Σ
i = 0

By the condition φ(x, ζy) = ζ^(α;, y), every term except αm_αOOζα:?/α must

be zero. Consequently, the differentials ωk (1 < k < g) which form a

basis of Viz) are of the form ωk = fix)y~edx, where ^ is a number 1 < 4

< w — 1 and fix) is a polynomial in x. Our next problem is to see this

polynomial is of the form xkoix - z^kl i% — £*)*'(# — l) f c s + 1 with some

integers fci, •• ,fc m . Let these points of i%) which are over 0 , 1 , ^ ,
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• >zs> °° be q09 q19 qZχ9 , qZs, q^ respectively. Then we have

div (x) = nqQ — nqw , div (x — 1) = nqλ — n^^ ,

div (x - s<) = nqZi - nq^ (1 < i < s) ,

div (do;) = (w - 1)% + Σ (w - l)<?2i + in - 1 ) ^ - (w - 1)
i = l

div (2/-'dx) = {(n - 1) - Λ»,}gβ + j ] {(n - 1) - A»,}?,4
i = l

+ {(n - 1) - ίw^Jft + {^(gmy) ~ (n - 1

Hence we have £(Σύ-1omj) > (^ + 1). First, we assume that n — 1 —

jβrrii > 0 for all i (0 < i < s + 1). Then obviously we have ^ ( Σ y t l ^ ) —

(n + 1) — tn > 0. Here ί = deg fix). Consequently, y~edx9 , y'Wdx

are differentials of the first kind and f(x)y~*dx is generated by our differ-

entials. Second, we assume that one of (n — 1) — irrii (0 < i < s + 1) is

negative, say, (n — 1) — £m1 < 0. Then there exists an integer kx<t

such that (n — 1) + nkx — £m1 > 0, and f(x) must contain a factor

(# — Zi)*1. Therefore we can write fix) = (# — ^x)*1^^), where #(#) is a

polynomial. If we put fc0 = deg#(#), then as before, (α; — zx)
kly~edx, ,

#fco(# — Zi)kly-*dx a,re differentials of the first kind and again fix)y"ίdx

is generated by our differentials. If two of in — 1) — tof (0 < i < s + 1)

are negative, it goes similarly, and so on. Consequently, we can con-

clude that Viz) is generated by differentials of the first kind of the form

(1).

It is easy to see that the abelian differentials ω must satisfy the

relations (2) and (3).

1.3. Now, we give a brief account of the generalized Teichmuller

space Λ. We fix a couple iR0,σ0) such that <β,σ> belongs to Ωig',n9

{v19 , vr}) and denote by ΓiR09 σ0) the set of all the elements (R9 σ) of

Ωigf

9n9{vi}) such that iR,σ) is topologically equivalent to iR0,σ0)9 i.e.,

there exists a topological mapping f:R0-*R such that fσ0 = σf. We

consider a triple iR9σ9a) formed by a couple iR9σ) such that <#,σ> of

ΓiR09σ0) and a homotopy class a: of orientation preserving topological

mappings of iR0,σ0) onto (#, σ). We say that (#, σ,αr) is isomorphic to

iR'9σ'9a') if there exists an isomorphism of (i?, σ) onto iR'9σ
f) which be-

longs to the homotopy class afa~ι. We denote by <R9σ9ά) the isomor-

phism class of CR, σ9 a) and the set of all classes <72, σ9 a} is denoted by

Λig'9 n9 {vi} (#<>> tfo)) or Λ(#0,(70). We have the following [5]:
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(1.3.1) LEMMA. The generalized Teichmuller space Λ(g', n, {v19 -9vr};

(RQ, σ0)) is a simply connected 3g' — 3 + r dimensional complex analytic

manifold. The mapping c of Λ(R0,σQ) into the ordinary Teichmuller

space Tg, defined by corresponding (R,σ,a) to (R,a) is isomorphic.

If gr z= 0, then each member of Ω(g', n, {v^) belongs to one Γ(RQ, σ0),

and is of form <7?, </> where R is given by the equation (1.2.2) [5].

Now, we denote one of the normal form of (R09σ0) by

(1.3.2) yn = xmo(% - £iO))mi •••(# — zlO))m°(x — l) m β + 1 , n)(m0 + + ms+1 .

Let λ0 be (Ro,ao,aoy and let λ be an arbitrary element of Λ(Roy σ0). In

the homotopy class aa^1 there exists one and only one extremal quasi-con-

formal mapping f:λo—+λ which has the property fσQ = σf [5]. Then /

can be considered as a mapping of a Riemann sphere to a Riemann

sphere. Put /(0) = 0, /(I) = 1, /(oo) = oo and /(^ 0 )) = z< (l<i< s). We

have as the equation of λ

(1.3.3) y n = x m o ( x — zdmi •••(» — zs)
m°(x — l ) m « + 1 , nJ(m0 + . . . + ms+1 ,

with these 0,z19 —',zs and 1. Obviously they are distinct from each

other, and the parameters zt (1 < i < s) can be considered as functions

on the generalized Teichmuller space Λ(R0,σQ). Then we have the follow-

ing lemma.

(1.3.4) LEMMA. zt (1 < i < s) are continuous on Λ(Roy σ0) .

Proof. We have topologized Λ(R0,oQ) by the Teichmuller metric

(1.3.5) dist α λ') = log K , k = (K - 1)/(K + 1) .

Here K is the maximal dilatation of the extremal quasi-conformal map-

ping g of λ to λ'. Since βreα^"'1 commutes with the automorphism, it

can be considered as a mapping of the Riemann sphere which fixes 0, 1

and oo, and which maps zt to zf

t (1 < i < s) in their equations. Then we

have the following lemma [1].

(1.3.6) [g{ζ),ζ]<C\\μ\U.

Here [ζ, ζ7] denotes the spherical distance of ζ and ζ7, and μ is a meas-

urable function with fc = HμH .̂ C is a constant which does not depend

on k. In fact, g is the unique μ-conformal mapping which fixes 0, 1

and oo of the Riemann sphere. (1.3.6) shows the continuity of the
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functions zt.

§2. Hypergeometnc differential equations

2.1. As we see in § 1, a differential of the first kind on a Riemann

surface R(z) defined by

(2.1.1) yn = xmi(x ~ l)m a(# — z)ms , n)fm1 + m2 + m3

is of the form

(2.1.2) ω = a*ι(α; - l)fc2(# - z)k*y-'dx (0 < ^ < n - 1 , 0 < klf k2, kz<ri) .

Now, by considering z as a variable we can connect the differential

with a differential equation of Fuchsian type. If we put

a = -(&! + k2 + kz) + £{mx + m2

(2.1.3) β = -fc3 + ίmzn-χ ,

r = — (*i + h)

then the relations (2) and (3) in (1.2.3) that the differential of the first

kind must satisfy gives us following conditions:

(2 1 4 ) ( ί ) β~r + 1^n~1> r-a^n"1' l - β ^ n ' 1 , a>n~\
(ii) a, β, a — γ, β — γ are not integers.

With these a,β,γ, we construct a differential equation

(2.1.5) z(z - l ) ^ f + [(a + β + ΐ)z - γ]^- + aβw = 0.
dz2 dz

Then the solution w(z) is given by

(2.1.6) w(z) = Γ x>-*(x - iy-"-\x - z)-'dx ,
Jg

where g, h are any two of 0,1 and oo [7]. This solution is nothing but

the integral

(2.1.7) Γ xk\x - l)kK% - z)k*y-'dx .
Jg

Conversely, consider the differential equation (2.1.5) with conditions

roiδΛ ( i ) £ - r + i > o , r - « > o , i - ^ > o , a>o,

( n ) a, β, a — γ, β — γ are not integers,
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(iii) a = an'1, β = bn~ι, γ = en"1 where n is a prime number

and a,b,c are integers.

Using Gaussian symbols we put

(2.1.9) fcx = [0 - r ] + 1 , fc8 = [ r - α - l ] + l , &3 = [-0] + 1

Choosing suitable tt such that 0 < tiW1 < 1, we have kx — (β — γ) = ί^"1,

2̂ — (r — « — 1) = *2^"S h — (—β) = tsn~K Let ^ be a maximal common

divisor of t2, t2 and ί3. Then we have

fci — Cjβ — r) = ^ i ^ " 1 > fc2 — (f — α — 1) = ^m2^"1 ,

^3 — (—β) = -^V^"1

with integers mέ such that 1 < m< < n (1 < i < 3). Hence we have

£(mι + m2 + m^n~ι = kx + Jc2 + k3 + l + a and so we have n\ (mx + m2 + m3).

Thus we can construct with these mum2,m3 and w a Riemann surface

(2.1.1). It is easy to see that ω = a;*1-/Win"1(aj - l ) * - - ^ " - 1 ^ _ z)k9-4min'1dx
Γh

is a differential of the first kind and ω is a solution of the given

differential equation (2.1.5). Here g, h are any two of 0,1, oo.

Now, consider a Riemann surface defined by the equation

(2.1.11) Yn' = X^{X - l)mKX - z)m> , nf)(m[ + mi + m'3 ,

where nf is a prime integer and m[, τn'29 mi are integers less than n'. We

assume that

i ω' = X«KX - W<X - z)*Y-'dx

(0 < V < nf - 1,0 < k'19 fcj, K < nf)

is a differential of the first kind and further, assume that by consider-

ing ^ as a variable the integral ωr is a solution of the given differ-
J g

ential equation (2.1.5). Here g, h are any two of 0,1, oo. Then we have

(2.1.13) k[ - t'm'anf-1 = β - γ = kx - Sm^1 .

Hence we see that n = nJ'. Also we see that i'm^ — M^ = 0 (mod n) for

all %{1 < i < 3). There exists an integer V such that VI' = 1 (mod^).

Hence we have m[ — ί^m^ = 0 (mod n) for all i (1 < ΐ < 3). Put ί7^ = q*

Then the Riemann surface (2.1.11) is represented by
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= {Xqmi(X - l ) 9 m 2 ( Z - z)qm*}{Xnpi(X - ϊ)npKX -

with integers pu p2 and p3. By the birational transformation X = f, Γ =

ηξHξ - l)Pf(f - z)P3 (2.1.11) is transformed to

(2.1.14) ψ = f«mi(f - 1)«W2(? - 2)«m3 .

However this is transformed to (2.1.1) by the birational transformation
ξ = x, ηa'ξm^'{ξ - l)w«δ'(f - 2)ms5/ = y. Here α', 6' are integers such that
α'g + δ'w = 1. Therefore, (2.1.1) and (2.1.11) are conformally equivalent.
Thus, we obtain the following theorem:

(2.1.15) THEOREM. Consider a hyper geometric differential equation
(2.1.5) with conditions (i), (ii) and (iii). Then there exists a family of
Riemann surfaces {R(z)} defined by (2.1.1) and by considering z as a
variable a differential ω of the first kind of R(z) such that the integral

I o) (g, h = 0,1, oo) is a solution of (2.1.5). The Riemann surface R(z)
Jg

is uniquely determined up to conformal equivalence in usual sense.
However if we consider in the family of Riemann surfaces Ω(g', n, {ẑ })
it is uniquely determined.

2.2. Now, we assume that there exist positive integers s19s2 and
s8, which satisfy the inequality 1/S1 + 1/S2 + 1 / S 8 < 1 and the system of
equalities

1 - j8 = (l/8l + l/s2 - l/ss + D/2 ,

(2.2.1) 1 + β - γ = (l/*a + l/β l - l/s2 + l)/2 ,

γ - a = (l/s2 + 1/s, - l/8ι + D/2 ,

in the differential equation (2.1.5). For the meaning of this see [7].

We must study what becomes of the equation of a Riemann surface
under the condition (2.2.1). (2.2.1) says there exist integers 8ίf s2, s3 such
that

k3 - tmzn~ι = (1/β! + l/s2 - l/β8 -

(2.2.2) k, - ίmxn-χ = (l/s3 + l/sι - l/s2 -

fc2 - iw^vr1

Since n is prime, by a simple calculation we see that kx = fe2 = fc3 and
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Mi = m2 = m3. Here we must notice that sx = s2 = s3 and the Riemann

surface defined by Yn = Xm(X - l)m(X - z)m is conformally equivalent

to the Riemann surface defined by yn = #(# — 1)(# — z). Indeed, we

need only to do a birational transformation such that x = X, y = YαZό

.(X — l) δ (Z — 2)δ It is easily seen that we can have the same differ-

ential equation from these Riemann surfaces. Here, a and b are in-

tegers such that am + bn = 1.

2 3. As we see in § 1, a differential of the first kind on a Riemann

surface R(z) defined by

(2.3.1) yn = xmo(x - £i)mi •••(»- zs)
m*O - D m s + 1 , n)(mQ + + ms+1 ,

is of the form

ω = #*0(£ — ^) f c l - (x — s,)* (α - l)* +1i/"^a?

(0 < Λ < n - 1,0 < ki < n) .

Now, by considering zlf --'9z8 as independent variables we can connect

the differential with a partial differential equation of Appellian type by

the same method which we used in 2.1 and 2.2. Namely, if we put

a = ~Σ h + 4Σ mt)n-1 - 1 ,

(2.3.3) βi= -ki + SntiU-1 (1 < i < s) ,

then we obtain the following conditions by the relations (2) and (3) in

(1.2.3):

(i) Σί-iβi -T + 1> n-1, γ-cc> n~\ 1 - ft > n"1 (1 < i < s),
(2.3.4) a > n~\

(ii) α, ft (1 < i < s), y — a, γ — Σi- i j9* ^ r e ^ o ί integers.

With these or, ft (1 < i < s) and ^ we construct a partial differential equa-
tion as follows [2: pp. 117-120]:

^ + έ B ?
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Here, At — z^ — 1), Cι — aβt and

Bf = -ftgjfri-1) (i * j) ,
zt — ^

£f = zl*i - 1) Σ — ^ (r - Σ ft) - A

+ [α - (g ft) + 2ft + ψ

Then a solution w(z19 , zs) is given by the integral

(2.3.6) w(z19 . . . , 2.) = Γ 3" + " +*-'(s - ^ ) " ^ (x - zs)Ήx - ly-^dx ,

where 5r, h are any two of 0,1, z19 , zs and oo.
Conversely, we consider the partial differential equation of Appellian

type (2.3.5) with conditions

(2.3.7) (ii) a, βt (1 < i < s), γ — a and γ — Σί-i ft a r e n o t integers,
(iii) a = an"1, & = δ^" 1 , ̂  = en'1 where n is a prime number

and CL,bi(l < i < s), c are integers.

Then we have k0, , ks+1 and m0, ,m ί + 1 such that W/fmo + + ms+1.
Thus, we can construct a family of Riemann surfaces {R(z)}9 y

n = xmo

'(x — ̂ x ) m i .. {x — zs)
msθ£ — l) m s + 1 , with these mt (0 < i < s + 1) and ̂ .

Also we can construct a differential ω of the first kind on R(z) such that
Ch

the integral ω is a solution of the given differential equation (2.3.5).
Jg

R(z) is uniquely determined up to conformal equivalence in the usual
sense.

§3. Periods of Riemann surfaces

3.1. We recall some results of Shimura [9,10]. Let Q be the ra-
tional number field and let K = Q(ζ), ζ = exp (2πi/ri). Here we assume
that n is a prime number. Clearly [K: Q] = n — 1. Put 2h = w — 1.
We denote by p the complex conjugation. Let Φ be a representation of
K by complex matrix of size g. We say that a triple 9 = (A, C, 0) is
a polarized abelian variety of type (KyΦ,p) if the following conditions
are satisfied:
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(3.1.1) ( i ) A is an Abelian variety of dimension g, defined over the

complex number field C.

(ii) θ is an isomorphism of K into EndQ(A), and the represen-

tation of θ(x) for x e K by an analytic coordinate system

of A is equivalent to Φ(x).

(iii) C is a polarization of A, and the involution of EndQ(A)

determined by C coincides with θ(x) —> θ(xp) on Θ(K).

Let 0> = (A,C,Θ) be of type (K,Φ,p). Take a complex torus C°/D

isomorphic to A, where D is a lattice in Cg. We may choose the co-

ordinate system of C° so that θ(a) is represented by the matrix Φ(a) for

every aeK. Then we can find u = g/h vectors &, •• ,£ ί t such that

QD = K& + + Kιu. For every a = (α1? , α j e Kω, put g(α) = ΦCeOϊi

+ + Φ(αtt)jtt. Then, the mapping a —• g(α) is an isomorphism of !£*

onto QD. Let M be the inverse image of D by this mapping. Let

E(ι, tj) be a non-degenerate Riemann form on C9/D corresponding to a

basic polar divisor in C. There exists an element tυ e K such that

#(Φ(α)Si> Si) = t r (α*o) (1 < ^ i < § + 1). Put Γ = (t^). Let σ19 -σA, σ^,

• , σΛio be all the isomorphisms of K into C, and let τμ (resp. ŝ ) be the

multiplicity of σμ (resp. σ^) in Φ. In order to ensure the existence of

<? of type (K, Φ, p), the following relation should be satisfied: 2g =

(n — 1)0% + ŝ ) (1 < μ < h). Let Jϊ^ be the space of all complex matrices

Zμ with rμ rows and sμ columns such that 1 — Zu

ιZμ is positive definite,

and let H = Hλ x x HΛ . The dimension of i ϊ is equal to Σϊ-i rμs^

If we fix T and Λί, then we get an analytic family of polarized abelian

varieties of type (K9 Φ, p) parametrized by the points of H. We denote

by 2 this family and 0i

i the member of 2 determined by 3 e if. There

exists a discontinuous group G of transformations on H, and two mem-

bers ^ 3 and ^V °f Σ a r e isomorphic if and only if 3 = Z7(3θ for an

element U of (?. Therefore, the isomorphism classes of members of 2

are in one to one correspondence with the points of the quotient space

H/G.

3.2. Now, let Ω(g', n, fa}) be the family of Riemann surfaces defined

in 1.1. If g'= 0, each member of Ω(g',n,fa}) is of the form (R, σ)

where R is given by the equation (1.2.2). In this case, using all the

member of Ω(g', n, fa}) we can construct the generalized Teichmiiller space.

Moreover, a basis of the vector space V of R(z) is given by Lemma
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(1.2.3). Therefore, the representation Φ(σ) of σ is given by

(3.2.1)

Here, g is the genus of R and a% > 1 (1 < i < g). Φ(σ) can be identified

with the representation Φ(ζ) of K = Q(ζ) which we considered in 3.1.

Let the first homology group with coefficients in Q of R be H^R, Q),

and let the endomorphism of H^R, Q) induced naturally by the automor-

phism a of R be Φ*(σ). Define Φ*{a) by

(3.2.2) Φ*(α) = α0 + α ^ f r ) + + an^Φ^σ)%'%

where, α = α0 + a£ + + αn.aζn"2, (α0, α^ - •, αn_2 e Q). Then, Φ^α)

operates on J3Ί(β, Q). Hence, HX(R, Q) can be regarded as a vector space

over Φ*(K). On the other hand, we have 2g = (w — l)(s + 1) by the

formula of Riemann-Hurwitz. Therefore, there exists s + 1 vectors Zx,

• , Z f + 1 such that

(3.2.3) HX{R9 Q) = Φ^K)Zλ + + Φ#(X)ZI+1 .

Now, it would be interesting to represent explicitly a basis of

H^R, Q) over ίC. Let x0 be an arbitrary point on the α -sphere distinct

from 0,zl9 •••,«„ 1 and oo. We connect a;0 to these points by curves

which have no intersection with each other except for x0. Denote these

curves by a0, , as+1, a8+2 respectively. Fix a point p0 = (xQ, yQ) on R

and denote by άt the lift of at with the initial point at pQ. We put

(3 2 4) ( ί ) c< = a< + σ W '* i + *" + < y W < ( l""1 )^ ( 0 < i < s + 2 ) ,
(ϋ) Zj = c , . x - c , a < y < 8 + l ) .

Then we see easily that Cs is a curve on β connecting pQ and (^0, ζ̂ /o),

and that Zό is a closed curve. Moreover we can prove Zί9 , Z8+ι are

a basis over K = Q(ζ) and Zx, σZlf , σn~2Zι Zβ + 1, σZθ+1, , σn~2Zs+1

are a basis over the ring of integers Z.

3.3. Consider a point 3 of if which corresponds to (#, σ) of β ^ , n,

We know that 0>z is isomorphic to 0>z, if and only if (R9 σ) is

isomorphic to (JB^σO, where a7 corresponds to (R',σ') of £(#', w, {p<}), i.e.,

there exists an injection of Γ(RQ,σ0) into iϊ/G.
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Now take a point z = (zlf •••,«,) of Cs. Here we assume that z19

•••,«„ 0 and 1 are different from each other. We denote by Cs the

set which consists of such points. Let z = (z19 , zs) be an arbitrary-

point of Cs. We can associate to z a point <#,σ> of Γ(# o, σ0) by the

equation

(3.3.1) 2/w = #mo(# - Zi)mi •••(&- zs)
msθ£ - l ) m s + 1 , n)(m0 + + w s +i

There exists an extremal quasi-conformal mapping of <JR0> <?O> defined by

(1.3.2) to <β,σ) defined by (3.3.1) [5]. Therefore there exists at least

one λ of Λ(RQ, σ0) such that the equation of λ is (3.3.1), and we have a

surjective map z of Λ(R0, σ0) to Cs.

Take a point z of C*. Let zf = (z'lf , £0 be a point of Cs in a

neighborhood of z- We denote by R(z') the Riemann surface defined by

(1.2.2) with this z' Then, we can take a basis of V(z') of R(zf)9{ωl9

ωg}, each of which is a differential of the form (1.2.3). Consider s + 1

vectors &(zθ (1 < i < s + 1) which are represented by

(3.3.2) %(zΊ

Here Zt can be taken constant in the neighborhood of z Therefore,

li(z') are holomorphic in the neighborhood. Moreover, we have by the

same method as in [5] the following lemma.

(3.3.3) LEMMA. Let the data corresponding to a point zf in a small

neighborhood of z be fe(z'), , s.+i(z0 W ) , T(z% Then M(z')> T{z') are

constants in the neighborhood.

Hence, we see that each coordinate of 9*^ is a holomorphic function

in the neighborhood of z. We denote by F(z') = (ί\(zθ, , FN(z')) the

coordinates of ^ 3 , . Here N is the dimension of the symmetric domain

H which corresponds to the generalized Teichmuller space A(R0,σ0). Let

G be the discontinuous group mentioned in 3.1. Then, we have the

following lemma [5].

(3.3.4) LEMMA. There exists a holomorphic mapping w(λ) of Λ(Ro,σo)

into H, which is a G-invariant mapping.

Now, we assume that for a point 0i

i of H there exists a point λ of

A which corresponds to &v We denote the coordinates of 0>Y by (gί, ,
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g^). Then, gί, >,$'N are holomorphic functions of λ' in a neighborhood

of λ. Thus, we obtain the following relation:

(3.3.5) aίtf0 = W)> , άttO = ** feO

in the neighborhood U(λ) of A and the neighborhood W(z) of z. Here

we have z'(λr) e W(z) for every λ' e U(λ). We have the following diagram:

(3.3.6)

Here we give a complex structure in Γ(R0,σ0) naturally by Cs, and the

mapping μ is a continuous injection [10]. Moreover, the mapping μ can

be considered as follows. Take a point (R, σ} of Γ(R0,σQ) and a small

neighborhood of that point. Then the compositiom π2Fπ~ι is well defined

in the neighborhood and coincides with μ. Since Γ(R0,σ0) is a normal

analytic space and μ is continuous we see that μ is holomorphic by the

theorem of Riemann [4]. Further, we remark that z and τr1C= πz) are

continuous.

Now, take an arbitrary point λ of Λ(R0, σ0). Consider the point π^λ)

of Γ(RQ,σ0). Since μ is holomorphic injection there exist a neighborhood

WOΓJC*)) of Γ(R0,σ0) and a neighborhood 7 of μiπ^λ)) in 2ϊ/G such that

the restriction of μ to W(πx(X)) is a proper mapping, i.e., μiWfaiλ)) is

an analytic set in V [8]. Let A be the singular locus in μiWiπ^λ)).

Consider the set w~ιπ;ι(A) in w^i^OO which contains λ. In a suitable

UQ(X), the dimension of W^JΓK-A) Π UO(X) is lower than the dimension of

UQ(X). In fact, Λ(R0, σ0) is a covering of Γ(R0,σ0) and so π2w(U0(X)) can-

not be contained in the set A.

By the way, πx is holomorphic in UQ(X) — w ^ C A ) and continuous

in Λ(R0, σQ). Then by the theorem of Riemann, πλ is holomorphic in

U0(X). Therefore, πx is a holomorphic covering of Λ(RQ, σ0) onto Γ(R0,σ0).

π is also a holomorphic covering of Cs onto Γ(R0,(f0), and 3 is a contin-

uous mapping of Λ(Rϋ, σ0) onto (7. By the same method as above we

obtain the following theorem.

(3.3.7) T H E O R E M . The parameters zl9 -,zs in (1.2.2) are single valued
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holomorphic functions on the generalized Teichmuller space Λ(R0, σ0) which
is constructed from Ω(g\n,{vi}).

3.4. We should notice that the formula (3.3.5) is a generalization
of the formula

(3.4.1) τ = wι(z)/w2(z) , Im τ > 0 ,

in the case of

(3.4.2) t = x(x ~ DO* - z) , z e C - {0,1} .

Moreover, (3.3.7) is surely an extension of the function z(τ) on the
upper half r-plane. In our case of (1.2.2), the space which corresponds
to the upper half plane may be the symmetric domain H. However,
(3.3.7) shows that it is not the symmetric domain H but the generalized
Teichmuller space which plays the role of the upper half plane.

It would be said that the formula (3.3.5) gives an answer to the
so-called "Schottky Problem" in the special case.

In the present paper, we treated the symmetric domain H which
was constructed by Shimura. However, it goes quite similarly with the
symmetric domain Hg which was introduced by Siegel. Because the
diagram analogous to (3.3.6) holds by the theorem of Torelli.

§4. A representation of the parameters by Theta constants

4.1. We give a brief account of the Theta function together with
an explanation of notations. Let R be a Riemann surface of genus g
and Ak, Bk (1 < k < g) be a canonical dissection of R. Let ρ0 be a com-
mon point of all Ak9 Bk (1 <̂  k ^ g). The point p0 is also the initial point
for integration. Let dw19 -,dwg be a basis of the differentials of the
first kind of R and dϊυ be the vector (dwlf - -,dwg). Let

u>i(p) = Γ dw, (1 ^ £ ^ g) ,
(4.1.1) £

ϊυ(p) = dϊυ ,
J

where p is the variable point on R and the integration paths are to be
selected on the canonically dissected Riemann surface iϋ*. We assume
that with this basis the period matrix has the form [EZ], where E is
the unit matrix of size g, and Z = X + iY satisfies the Riemann's rela-
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tion

(4.1.2) X = *X, Y = Ύ and Y > 0 ,

The Theta function formed with Z is defined by

(4.1.3) θ($) = θ(β, Z) = Σ n exp (Λt'nZn + 2πi'nδ)

and 0(3) satisfies the functional relation

(4.1.4) 0(3 + g + JZT&) = 0(3) exp ( -

where *g = (#j, , #,), 4Ij = (/&„ , hg) are arbitrary integer vectors. We

put f(ρ) = 0(fc>(» - £), where 'toip) = (Wi(p), , 10,00) and *§ = (sx, ,

Sg). With a circuit of p along a closed curve on R, ϊo(ρ) — 3 changed

by a summand of the form g + Z% and f(ρ) is multiplied by the non-

zero factor exp (-ίπ%Z§ - 2πί%ϊυ(p) - §)). If for a fixed 3, /(/>) does

not vanish identically in p, then it has exactly g zeros on R. Let c be

the vector consisting of the g quantities

(4.1.5) ck = ±[ wk{p)dwe - (l/2)zftfc (1 ^ fc ^ fir) .
6=1 J At

Now, if we choose $ such t h a t the function f(ρ) = 0(ίυ(p) — 3 + c)

does not vanish identically in jp, then its g zeros &, -,qg satisfy

(4.1.6) JX^)Ξ3.

It is known that o(ϊv(p) — 3 + c) does not vanish identically in p, iff the

inverse problem for the vector 3 is uniquely determined, i.e., the equa-

tion (4.1.5) has a unique solution qlf' ',qg. In this case, the divisor

D = & + + #9 is general. We shall call an integral divisor D = px

H + jpm general if there are no non-constant meromorphic functions

/ on R with the property div (/) + D > 0.

4.2. Now, for our investigation the following [11] is useful.

(4.2.1) LEMMA. Let f(p) be a meromorphic function on R with the

zeros a19 - ,am and the poles bl9 ,bm. We choose a general integral

divisor χ1 + . + χg_x of degree g — 1 such that x19 ,x^α are different

from the points al9 ,αTO and b19 , # m . Γfeew, α/ίβr suitable choice of

paths of integration, we have
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(i)

and

(ϋ) f(p) = v Π
Σ Hxύ - to(*,) - cj

ίfere, η is a quantity independent of p, and c is defined in (4.1.5).

Now, we apply (4.2.1) to a meromorphic function on R

(4.2.2) fip) = 1 -x(p), p = (as, y) .

Let the points on R which are over the points x = 0, zly •, zs, 1, oo on

the a -sphere be q0, q2ι, , qZl, qίt qm respectively. Then the zeros of f(p)

are n points qu •••,«! and the poles of f{p) are n points qa, ,qm.

Therefore, by (4.2.1) we have

. tf(to(ίo) + Σ
(4.2.3) /( ί 0) = η Π j £

and

(4.2.4) f(qZi) = , f[ A - ^ ^ — JL

\ ί=l /

Thus, we have the following formula.

- zί = π
Σ

+ Σ to(xύ - to(«J -
(4.2.5) X J1;'

n θ(ϊΏ(qo) + Σ to(*«) - to(βJ - c)
•Π -̂  ^ '--

θ(io(aύ + Σ toίxj - iυ(qd - c)

Now, we know that there exist a basis of differentials

(4.2.6) P1(ζ,X)dζ, ίpg(ζ,X)dζ

and a canonical homology basis
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(4.2.7) Ax(ζ, X), ., A,(ζ, X) ^ ( ζ , J), . .

such that

(4.2.8) Pj(ζ,X)dζ = δij , pM

Here Pjiζ, X) and A/ζ, ^), B (̂C, ̂ ) (1 ^ i ^ g) are holomorphic in A for every

fixed ζ in a bounded Jordan domain D(X) [3].

We take (4.2.6) as the basis of differentials and take (4.2.7) as the

canonical homology basis in (4.2.5). First, we see that c is holomorphic

in λ by (4.1.5). Second, we have for j (1 <; j <* g)

Wj(qZi) - Wjfa) = p p/ζ,
Jqi

Γffo

(4.2.9) Jqi

These are half periods along the closed curves which can be represented

by linear combinations of AX(C, X), , Bg(ζ, X) with constant coefficients

respectively in a neighborhood of λQ. Therefore they are holomorphic in

λ. Third, put *p(ζ,λ) = (Pi(C,Λ), ,pα(ζ,Λ)). Then, we can select a gen-

eral divisor D = xx + + J C ^ such that the integral

(4.2.10) toOO = Γ KC, ̂ )dζ (1 ^ ί ^ flr - 1)

is holomorphic in a neighborhood of λQ. Because we know that if D =

Xi + + *<7-i + ^ is general, then D = x1 + + #g_i is general. We

assume that x19 , xg are distinct # points on the Riemann surface. A

necessary and sufficient condition for D to be general is that the deter-

minant det (Viiζj, λ)) does not vanish. Here, ζl9 . , ζg are the coordinates

of x19 , xg in the domain Z)(/0 respectively. Then, det (Pi(ζj, X)) is a

holomorphic function in ζ19 , ζgf λlf - , Λs. Here, ^ = Ux, , λs). There-

fore, if this function does not vanish at χ0 = (CίO)> >^0))> then it does

not vanish at all points χ — (ζ19 -,λs) in a neighborhood of χo Hence

we get the assertion.

Summarizing, we obtain the following theorem.

(4.2.11) THEOREM. The single valued holomorphic functions which we

have obtained in (3.3.7) can be expressed in the form (4.2.5).
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We may say (4.2.11) is an extension of the representation of the
Lambda function by Theta constants.

The author wishes to thank Professor Kenkichi Kasahara for his
kind suggestion in a part of 3.3.
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