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Abstract
A set of integers greater than 1 is primitive if no member in the set divides another. Erdős proved in 1935 that the
series 𝑓 (𝐴) =

∑
𝑎∈𝐴 1/(𝑎 log 𝑎) is uniformly bounded over all choices of primitive sets A. In 1986, he asked if this

bound is attained for the set of prime numbers. In this article, we answer in the affirmative.
As further applications of the method, we make progress towards a question of Erdős, Sárközy and Szemerédi

from 1968. We also refine the classical Davenport–Erdős theorem on infinite divisibility chains, and extend a result
of Erdős, Sárközy and Szemerédi from 1966.
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1. Introduction

A set of integers 𝐴 ⊂ Z>1 is primitive if no member in A divides another. For example, the integers in
a dyadic interval (𝑥, 2𝑥] form a primitive set. Similarly, the set of primes is primitive, along with the
set N𝑘 of numbers with exactly k prime factors (with multiplicity), for each 𝑘 ≥ 1. Another well-known
example is the set of perfect numbers.1

1Since Ancient Greece, a number n is classified as ‘perfect’, ‘abundant’ or ‘deficient’, depending on whether the sum of its
proper divisors equals n, is greater than n or is less than n, respectively.
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2 J. D. Lichtman

The study of primitive sets emerged in the 1930s as a generalization of one special problem. A classical
theorem of Davenport asserts that the set of abundant numbers has a positive asymptotic density. This
was originally proved by sophisticated analytic methods, but Erdős soon found an elementary proof by
using primitive abundant numbers.2 The proof ideas led people to introduce the abstract definition of
primitive sets and study them for their own sake. See Hall [21] or Halberstam–Roth [20, §5] for detailed
introductions to the subject.

There are a number of interesting and sometimes unexpected theorems about primitive sets. For
instance, in 1934 Besicovitch [5] showed that the upper asymptotic density of a primitive set can be
arbitrarily close to 1/2, whereas in 1935 Behrend [4] and Erdős [13] proved the lower asymptotic density
is always 0. In fact, Erdős proved the stronger result that

𝑓 (𝐴) :=
∑
𝑎∈𝐴

1
𝑎 log 𝑎

< ∞,

uniformly over all primitive sets A. Later in 1986, Erdős [15, Conjecture 2.1] famously asked if the
maximum is attained by the primes P .
Conjecture 1.1 (Erdős primitive set conjecture). For any primitive set A, 𝑓 (𝐴) ≤ 𝑓 (P).

The prime sum is 𝑓 (P) =
∑

𝑝 1/(𝑝 log 𝑝) = 1.6366 · · · after computations of Cohen [10]. In 1993,
Erdős and Zhang [19] proved the bound 𝑓 (𝐴) < 1.84 for all primitive A. Recently in 2019, Lichtman
and Pomerance [27] improved the bound to 𝑓 (𝐴) < 𝑒𝛾 = 1.781 · · · , where 𝛾 is the Euler–Mascheroni
constant. Note the tail of the series for 𝑓 (P) converges quite slowly 𝑂 (1/log 𝑥), and moreover there are
sets 𝐴 ⊂ [𝑥,∞) for which 𝑓 (𝐴) ∼ 1 as 𝑥 → ∞ (in this connection, see Conjecture 1.4 below). As such,
Conjecture 1.1 is not susceptible to direct attack by computing partial sums up to x.

One potential strategy to approach Conjecture 1.1 is via integration. Namely,

𝑓 (𝐴) =
∑
𝑎∈𝐴

1
𝑎 log 𝑎

=
∑
𝑎∈𝐴

∫ ∞

1
𝑎−𝑡d𝑡 =

∫ ∞

1
𝑓𝑡 (𝐴) d𝑡,

letting 𝑓𝑡 (𝐴) =
∑

𝑎∈𝐴 𝑎−𝑡 . So Conjecture 1 would follow if for any 𝑡 > 1, primitive set A,

𝑓𝑡 (𝐴) ≤ 𝑓𝑡 (P). (1)

However, it was shown in [2] that equation (1) holds if and only if

𝑡 ≥ 𝜏 := 1.1403 · · · ,

where 𝑡 = 𝜏 is the unique real solution to the equation
∑
𝑝

𝑝−𝑡 = 1 +
(
1 −

∑
𝑝

𝑝−2𝑡
)1/2

.

The fact that 𝜏 is markedly larger than 1 gives some indication as to why the Erdős primitive set
conjecture has remained open.

Similar analysis actually enables a disproof of a natural analogue of Conjecture 1.1 for the translated
sum 𝑓 (𝐴, ℎ) =

∑
𝑎∈𝐴 1/𝑎(log 𝑎 + ℎ), in that there are primitive A for which 𝑓 (𝐴, ℎ) > 𝑓 (P , ℎ) once

ℎ ≥ 81 [24], [23]. This was refined down to just ℎ ≥ 1.04 in [26] and suggests that the original conjecture
(when ℎ = 0), if true, is only ‘barely’ so.

Concerning equation (1), we also note Chan et al. [8] proved 𝑓𝑡 (𝐴) ≤ 𝑓𝑡 (P) for all 𝑡 ≥ .7983 for
all 2-primitive sets A, thereby resolving Conjecture 1 in this special case (also see [9]). Here, a set A is
2-primitive if no member of A divides the product of two others.

2More precisely, ‘primitive nondeficient numbers’
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A separate strategy for the problem is to split up A according to the smallest prime factor. That is,
for each prime p let

𝐴𝑝 = {𝑛 ∈ 𝐴 : 𝑛 has least prime factor 𝑝}.

As in [27], we say p is Erdős strong if the singleton set {𝑝} maximizes 𝑓 (𝐴) among all primitive sets
A all of whose elements have least prime factor p. That is, 𝑓 (𝐴𝑝) ≤ 𝑓 ({𝑝}) =: 𝑓 (𝑝) for all primitive
A. Conjecture 1.1 would follow if every prime is Erdős strong since then 𝑓 (𝐴) =

∑
𝑝 𝑓 (𝐴𝑝) ≤ 𝑓 (P).

By a short argument in [27] (also see Lemma 2.3), a sufficient condition for a prime p to be Erdős
strong is that

𝑒𝛾
∏
𝑞<𝑝

(
1 − 1

𝑞

)
≤ 1

log 𝑝
. (2)

Here, q runs over primes. Note the two sides of this inequality are asymptotically equal by Mertens’
prime product theorem. By direct computation, equation (2) is satisfied by the first 108 odd primes but
fails for 𝑝 = 2 since log 2 > 𝑒−𝛾 .

Moreover, 99.999973% of primes3 satisfy equation (2), assuming the Riemann hypothesis and
the linear independence hypothesis4 [28]. This result is intimately related to the celebrated work of
Rubinstein and Sarnak [30] on the prime number race between 𝜋(𝑥) and li(𝑥). On the Riemann hypothesis
alone, equation (2) fails for a positive proportion of primes p (in log density), and even unconditionally
equation (2) is known to fail for infinitely many primes p. This perhaps suggests Conjecture 1.1 might
be false, or at least beyond the reach of unconditional tools.

In this article, we establish Conjecture 1.1.

Theorem 1.2. For any primitive set A, we have 𝑓 (𝐴) ≤ 𝑓 (P).

Moreover, we show that every odd prime is Erdős strong.

Theorem 1.3. For any primitive set A and any prime 𝑝 > 2, we have 𝑓 (𝐴𝑝) ≤ 𝑓 (𝑝).

It remains an open question whether 𝑝 = 2 is Erdős strong.
Another question related to Conjecture 1.1, in 1968 Erdős, Sárközy and Szemerédi posed the following

[18, eq. (11)].

Conjecture 1.4 (Erdős–Sárközy–Szemerédi). We have

lim
𝑥→∞

sup
𝐴⊂[𝑥,∞)
𝐴 primitive

𝑓 (𝐴) ≤ 1.

This also appears in [31, p. 244] as Problem 2.2, and in [32, p. 224] as Problem 2.
Not much has been proven in this direction until very recently. Recall the set N𝑘 of numbers

with exactly k prime factors (with multiplicity) lies in [2𝑘 ,∞). Lichtman and Pomerance [27] proved
𝑓 (N𝑘 ) 	 1, and in [25] it was shown 𝑓 (N𝑘 ) ∼ 1 as 𝑘 → ∞. This means that if Conjecture 1.4 holds,
then the limit must attain an equality of 1. We note [25, Theorem 4.1] gives for all 𝜖 > 0,

𝑓 (N𝑘 ) = 1 + 𝑂 𝜖 (𝑘 𝜖−1/2). (3)

Moreover, computations up to 𝑘 = 20 suggest the true rate of decay may be exponential 𝑂 (2−𝑘 ); see [25].
The methods in this paper enable the following progress towards Conjecture 1.4.

3More precisely, the set of such primes has discrete, logarithmic density equal to 0.99999973 · · · within P .
4Namely, the sequence of numbers 𝛾𝑛 > 0 such that 𝜁 ( 1

2 + 𝑖𝛾𝑛) = 0 is linearly independent over Q.
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4 J. D. Lichtman

Theorem 1.5. We have

lim
𝑥→∞

sup
𝐴⊂[𝑥,∞)
𝐴 primitive

𝑓 (𝐴) ≤ 𝑒𝛾
𝜋

4
≈ 1.399.

Notation

Let 𝑝(𝑎), 𝑃(𝑎) denote the smallest and largest prime factors of 𝑎 ∈ Z>1, respectively, and denote
𝑎∗ = 𝑎/𝑃(𝑎). Let Ω(𝑛) denote the number of prime factors of n (with multiplicity), and let N𝑘 = {𝑛 :
Ω(𝑛) = 𝑘}. Define 𝑓 (𝑎) = 1/(𝑎 log 𝑎) and 𝑓 (𝐴) =

∑
𝑎∈𝐴 𝑓 (𝑎) for 𝐴 ⊂ Z>1. Let P be the set of prime

numbers, whose elements we denote by p and q, unless otherwise stated. Also, 𝑝𝑘 ‖𝑛 means 𝑝𝑘 | 𝑛 and
𝑝𝑘+1 � 𝑛.

1.1. Proof outline of Theorem 1.2

The proof is a refinement of the argument of [27]. The key new idea is to exploit the fact that A cannot
contain too many elements a with 𝑃(𝑎) just slightly less than a. This improves the critical case in the
argument of [27] and ultimately leads to an improvement by a factor of 𝜋/4 from a contribution from
each 𝑎 ∈ 𝐴 which is not prime. Since 𝑒𝛾𝜋/4 < 𝑓 (P), this ultimately means that 𝑓 (𝐴) is maximized
when all elements are prime. (Additional care is needed for small numbers, using explicit bounds.)

Let us recall the rough argument of [27] (suppressing details for primes and small numbers). By
Mertens’ product theorem,

𝑓 (𝐴) =
∑
𝑎∈𝐴

1
𝑎 log 𝑎

<
∑
𝑎∈𝐴

1
𝑎 log 𝑃(𝑎) ≈ 𝑒𝛾

∑
𝑎∈𝐴

1
𝑎

∏
𝑝<𝑃 (𝑎)

(
1 − 1

𝑝

)
. (4)

But 𝑎−1 ∏
𝑝<𝑃 (𝑎) (1 − 𝑝−1) is the natural density of L𝑎 = {𝑏𝑎 : 𝑝 | 𝑏 ⇒ 𝑝 ≥ 𝑃(𝑎)}, and these

sets turn out to be disjoint by primitivity of A (Lemma 2.1). So the sum of densities in equation (4) is
trivially at most 1, leading to the bound 𝑓 (𝐴) < 𝑒𝛾 for primitive A. This is inspired by the original 1935
argument of Erdős [13].

There is a loss in the above argument when bounding a by 𝑃(𝑎), and this loss is largest when a is
far from prime. We can save an additional factor of log 𝑃(𝑎)/log 𝑎 for any individual 𝑎 ∈ 𝐴, and this
would be a significant improvement in the case 𝑃(𝑎)2 < 𝑎, say. Therefore, the critical case to handle
is when 𝑎 ∈ 𝐴 is composite with 𝑃(𝑎) close to a in size. The key new ingredient (Proposition 3.3)
shows that if 𝑃(𝑎)1+𝑣 > 𝑎 uniformly for all 𝑎 ∈ 𝐴 (so the savings factor is log 𝑃(𝑎)/log 𝑎 > 1/(1 + 𝑣)),
then we can bound the sum of densities in equation (4) by

√
𝑣. This refines the trivial bound of 1 in the

range 0 < 𝑣 < 1, and quantifies the earlier statement that A contains few elements a with 𝑃(𝑎) slightly
less than a. As the savings 1/(1 + 𝑣) improves with v, the worst-case scenario is when the subset of
𝑎 ∈ 𝐴 with 𝑃(𝑎)1+𝑣 ≈ 𝑎 contributes about d

d𝑣 [
√

𝑣] = 1/2
√

𝑣 to the sum of densities in equation (4).
Combining these ingredients ultimately leads to a savings of

∫ 1
0 d𝑣/2

√
𝑣(1 + 𝑣) = 𝜋/4, as desired.

Lastly, the key Proposition 3.3 relies on the following observation (Lemma 3.1): Not only are the
sets L𝑎 disjoint but so too are L𝑎𝑐 for many choices of integers c (in fact, all choices of c with prime
factors between 𝑃2 (𝑎) and 𝑃2 (𝑎)1/

√
𝑣 ). Thus, the sum of densities of these L𝑎𝑐 must be at most 1. But

these sets L𝑎𝑐 are self-similar to the L𝑎, and so the sum of their densities is roughly 1/
√

𝑣 times that of
the L𝑎, giving the desired bound

√
𝑣.

1.2. L-primitive sets

As outlined above, the subset of multiples of each 𝑎 ∈ 𝐴,

L𝑎 :=
{
𝑏𝑎 ∈ N : 𝑝 | 𝑏 =⇒ 𝑝 ≥ 𝑃(𝑎)

}
, (5)
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arises naturally in our proof. As such, we shall introduce ‘L’ refinements of our common notions (here,
L alludes to ‘lexicographic’). Specifically, if 𝑛 ∈ L𝑎, we say n is an L-multiple of a, and a is an L-divisor
of n. Most importantly, we introduce the following key definition.

Definition 1.6. A set 𝐴 ⊂ Z>1 is L-primitive if 𝑎′ ∉ L𝑎 for all distinct 𝑎, 𝑎′ ∈ 𝐴.

That is, A is L-primitive if no member of A is an L-multiple of another. In particular, this definition
is weaker than primitive.

One may apply the basic argument as in equation (4) more generally for L-primitive sets A, leading
to the same bound 𝑓 (𝐴) < 𝑒𝛾 (again ignoring small numbers). Moreover, L-primitive sets play a central
role in the proof of Theorem 1.2. However, it turns out the bound 𝑒𝛾 is essentially best possible for
L-primitive sets (see Proposition 5.3), which is markedly larger than 𝑓 (P). This further highlights the
subtlety of Conjecture 1.1.

1.3. Density and divisibility chains

Recall the natural (asymptotic) density d(𝑆) = lim𝑥→∞ |𝑆 ∩ [1, 𝑥] |/𝑥 of a set 𝑆 ⊂ N. We also consider
log density 𝛿(𝑆) and log log density Δ (𝑆), given by

𝛿(𝑆) = lim
𝑥→∞

1
log 𝑥

∑
𝑛∈𝑆,𝑛≤𝑥

1
𝑛

, and Δ (𝑆) = lim
𝑥→∞

1
log log 𝑥

∑
𝑛∈𝑆,1<𝑛≤𝑥

1
𝑛 log 𝑛

, (6)

provided these limits exist. Recall the corresponding upper densities d(𝑆), 𝛿(𝑆), Δ (𝑆) always exist, by
replacing lim𝑥→∞ with lim sup𝑥→∞ (and similarly lim inf𝑥→∞ for lower densities).

Taking an abstract view, a primitive set is an antichain for the partial ordering of integers by divisibility.
As such, this naturally leads to the dual notion of a chain in this context. Namely, an infinite sequence
of integers 1 < 𝑑1 < 𝑑2 < · · · is a divisibility chain if 𝑑 𝑗 | 𝑑 𝑗+1 for all 𝑗 ≥ 1. A classical 1937 theorem
of Davenport and Erdos [11] asserts that if set 𝐴 ⊂ N has upper log density 𝛿(𝐴) > 0, then it contains
an infinite divisibility chain 𝐷 ⊂ 𝐴.

Analogously, we introduce the following refinement.

Definition 1.7. An infinite sequence of integers 1 < 𝑑1 < 𝑑2 < · · · is an L-divisibility chain if
𝑑 𝑗+1 ∈ L𝑑 𝑗 for all 𝑗 ≥ 1.

That is, 𝑑 𝑗+1 is an L-multiple of 𝑑 𝑗 for all 𝑗 ≥ 1. In particular, this definition is stronger than a (mere)
divisibility chain.

We refine the Davenport–Erdos theorem to L-divisibility chains.

Theorem 1.8. If a set 𝐴 ⊂ N has upper log density 𝛿(𝐴) > 0, then A contains an infinite L-divisibility
chain.

In 1966, Erdős, Sárközy and Szemerédi [16, Theorem 1] quantified the Davenport–Erdős theorem by
showing such a divisibility chain D satisfies lim sup𝑦→∞

∑
𝑑∈𝐷,𝑑≤𝑦 1/

√
log log 𝑦 > 0 and proved such

growth rate is best possible.
They also studied the analogous question for upper log log density, which they write ‘seems more

interesting to us’. Namely, in [16, Theorem 2] they established the following quantitative result.

Theorem 1.9 (Erdős–Sárközy–Szemerédi). If 𝐴 ⊂ N has upper log log density Δ (𝐴) > 0, then there is
an infinite divisibility chain 𝐷 ⊂ 𝐴 of growth

lim sup
𝑦→∞

∑
𝑑∈𝐷
𝑑≤𝑦

1
log log 𝑦

≥ Δ (𝐴)
𝑒𝛾

. (7)
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Analogously, we quantify Theorem 1.8 in the case of log log density, thereby refining Theorem 1.9
of Erdős–Sárközy–Szemerédi to L-divisibility chains.
Theorem 1.10. If 𝐴 ⊂ N has upper log log density Δ (𝐴) > 0, then there is an infinite L-divisibility
chain 𝐷 ⊂ 𝐴 of growth

lim sup
𝑦→∞

∑
𝑑∈𝐷
𝑑≤𝑦

1
log log 𝑦

≥ Δ (𝐴)
𝑒𝛾

.

In view of Proposition 5.3, we believe that the lower bound Δ (𝐴)/𝑒𝛾 above is best possible for L-
divisibility chains, though we are unable to settle this. Notably, this contrasts the situation in Theorem
1.9, as Erdős–Sárközy–Szemerédi conjectured Δ (𝐴)/𝑒𝛾 in equation (7) might be improved to Δ (𝐴),
which would be best possible for divisibility chains, if true [16, eq. (5)].

2. Preliminaries on L-primitive sets

Recall the set of L-multiples L𝑎 := {𝑏𝑎 ∈ N : 𝑝 | 𝑏 ⇒ 𝑝 ≥ 𝑃(𝑎)} from equation (5). In particular,
𝑎 ∈ L𝑎 for 𝑏 = 1, and 𝑝(𝑏) ≥ 𝑃(𝑎) for 𝑏 > 1. For 𝐴 ⊂ N, define L𝐴 :=

⋃
𝑎∈𝐴 L𝑎. Also, let 𝐴𝑎 = 𝐴∩L𝑎

so that N𝑎 = L𝑎 and 𝐴𝑞 = {𝑎 ∈ 𝐴 : 𝑝(𝑎) = 𝑞} for prime q.5
Observe that 𝑎 ∈ L𝑎′ if and only if L𝑎 ⊂ L𝑎′ , as well as the following trichotomy.

Lemma 2.1. For any integers 𝑎, 𝑎′ > 1, if L𝑎 ∩ L𝑎′ ≠ ∅ then 𝑎 ∈ L𝑎′ or 𝑎′ ∈ L𝑎. Thus L𝑎 ∩ L𝑎′ = ∅ or
L𝑎 ⊂ L𝑎′ or L𝑎 ⊃ L𝑎′ .
Proof. Suppose 𝑏𝑎 = 𝑏′𝑎′ ∈ L𝑎 ∩ L𝑎′ . If 𝑏 = 1 or 𝑏′ = 1, then 𝑎 ∈ L𝑎′ or 𝑎′ ∈ L𝑎. Otherwise,
𝑏, 𝑏′ > 1, so 𝑃(𝑎) ≤ 𝑝(𝑏) and 𝑃(𝑎′) ≤ 𝑝(𝑏′) imply 𝑏 | 𝑏′ or 𝑏′ | 𝑏. Thus, 𝑎′ = 𝑎(𝑏/𝑏′) ∈ L𝑎 or
𝑎 = 𝑎′(𝑏′/𝑏) ∈ L𝑎′ as well. �

As such, we see A is L-primitive if and only if the sets {L𝑎}𝑎∈𝐴 are pairwise disjoint.
Corollary 2.2. If A is an L-primitive set, then L𝑎 and L𝑎′ are disjoint for distinct 𝑎, 𝑎′ ∈ 𝐴.

Recall L𝑎 has natural density d(L𝑎) = 1
𝑎

∏
𝑝<𝑃 (𝑎) (1 − 1

𝑝 ). And by Mertens’ product theorem∏
𝑝<𝑥 (1 − 1

𝑝 ) ∼ 1/𝑒𝛾 log 𝑥, where 𝛾 = .57721 · · · is the Euler–Mascheroni constant. By a show
argument below, we relate 𝑓 (𝐴) to density of L-multiples. This is essentially based on Erdős [13] (also
see [17, Lemma 1], [27, Proposition 2.1]).
Lemma 2.3. For an L-primitive set A and an integer 1 < 𝑛 ∉ 𝐴, we have 𝑓 (𝐴𝑛) < 𝑒𝛾 d(L𝑛).
Proof. We may assume 𝐴 = 𝐴𝑛 is finite since 𝑓 (𝐴) = lim𝑥→∞ 𝑓 (𝐴 ∩ [1, 𝑥]). As 𝑛 ∉ 𝐴, all elements
of A are composite. Also, A is L-primitive so d(L𝐴) =

∑
𝑎∈𝐴 d(L𝑎) by Corollary 2.2. Next, Theorem 7

in [29] implies
∏

𝑝<𝑥
𝑝

𝑝−1 < 𝑒𝛾 log(2𝑥) for all 𝑥 > 1. Thus, for any composite integer 𝑎 > 1, we have
𝑎 > 2𝑃(𝑎) so that

𝑓 (𝑎) = 1
𝑎 log 𝑎

≤ 1
𝑎 log 2𝑃(𝑎) <

𝑒𝛾

𝑎

∏
𝑝<𝑃 (𝑎)

(
1 − 1

𝑝

)
= 𝑒𝛾 d(L𝑎).

Hence, 𝑓 (𝐴) =
∑

𝑎∈𝐴 𝑓 (𝑎) < 𝑒𝛾 d(L𝐴) ≤ 𝑒𝛾 d(L𝑛) since 𝐴 ⊂ L𝑛. �

We shall also need a technical refinement of Lemma 2.3. For this, we rewrite Mertens’ product
theorem as 𝜇𝑥 ∼ 1, where we denote

𝜇𝑥 := 𝑒𝛾 log 𝑥
∏
𝑝<𝑥

(
1 − 1

𝑝

)
. (8)

5Note the notation for 𝐴𝑞 differs slightly from what is used in [19], [27]
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In particular, for a prime q we have

𝑓 (𝑞) = 1
𝑞 log 𝑞

=
1
𝑞

𝑒𝛾

𝜇𝑞

∏
𝑝<𝑞

(
1 − 1

𝑝

)
=

𝑒𝛾

𝜇𝑞
d(L𝑞). (9)

We have the following explicit bounds for 𝜇𝑥 , which critically are monotonic. We give upper bounds
which hold on real 𝑥 ∈ R, but for lower bounds it turns out it suffices to restrict to the subsequence of
primes 𝑞 ∈ P .
Lemma 2.4 (Monotonic bounds). For 𝑞 ∈ P and 𝑥 ∈ R, define

𝑚𝑞 := inf
𝑝≥𝑞
𝑝∈P

𝜇𝑝 , and 𝑀𝑥 := sup
𝑦≥𝑥
𝑦∈R

𝜇𝑦 .

Then we have

𝑚𝑞 ≥

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

𝜇7 = 0.9242 · · · 𝑞 ≤ 7
𝜇19 = 0.9467 · · · 7 < 𝑞 ≤ 300
1 − 1

2(log 𝑞)2 𝑞 > 300.

and 𝑀𝑥 ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

𝜇2 = 1.235 · · · 𝑥 ≤ 2
1 + 1

2 log(2·109)2 2 < 𝑥 ≤ 2 · 109

1 + 1
2(log 𝑥)2 𝑥 > 2 · 109.

Proof. First, Rosser–Schoenfeld [29, Theorem 7] implies the product over primes 𝑝 < 𝑥 is bounded in
between

1 − 1
2(log 𝑥)2

(𝑥>285)
≤ 𝑒𝛾 log 𝑥

∏
𝑝<𝑥

(
1 − 1

𝑝

) (𝑥>1)
≤ 1 + 1

2(log 𝑥)2 .

Note 𝜇𝑥 is increasing on 𝑥 ∈ (𝑝, 𝑝′] for consecutive primes 𝑝, 𝑝′. So the upper bound follows
by computing 𝜇𝑝 < 1 for the first 108 odd primes p (note 𝑝108 ≥ 2 · 109). Hence, 𝜇𝑥 < 1 for real
2 < 𝑥 ≤ 2 · 109. Below we display 𝜇𝑞 for the first few primes q, rounded to four significant digits.

q 𝜇𝑞 q 𝜇𝑞 q 𝜇𝑞 q 𝜇𝑞 q 𝜇𝑞

2 1.235 31 0.9660 73 0.9766 127 0.9902 179 0.9909
3 0.9784 37 0.9831 79 0.9809 131 0.9887 181 0.9874
5 0.9555 41 0.9836 83 0.9795 137 0.9902 191 0.9921
7 0.9242 43 0.9720 89 0.9829 139 0.9858 193 0.9889
11 0.9762 47 0.9718 97 0.9906 149 0.9925 197 0.9876
13 0.9492 53 0.9808 101 0.9890 151 0.9885 199 0.9844
17 0.9679 59 0.9883 103 0.9834 157 0.9896
19 0.9467 61 0.9795 107 0.9818 163 0.9906
23 0.9551 67 0.9854 109 0.9765 167 0.9892
29 0.9811 71 0.9841 113 0.9749 173 0.9900

The lower bound follows by identifying the primes q for which 𝜇𝑞 = inf 𝑝≥𝑞 𝜇𝑝 (in bold above), and
then computing 𝜇199 < 𝜇𝑝 for 199 < 𝑝 ≤ 300, as well as checking 𝜇199 < 0.9846 < 1 − 1

2(log 𝑥)2 for
𝑥 > 300. (In practice, we shall only need 𝜇𝑞 for 𝑞 = 7, 19.) �

We may now prove a technical refinement of Lemma 2.3 using 𝜇𝑞 .
Lemma 2.5. Let A be an L-primitive set. Take 𝑣 ≥ 0, an integer 𝑛 ∉ 𝐴 and denote 𝑞 = 𝑃(𝑛). If
𝑃(𝑎)1+𝑣 ≤ 𝑎 for all 𝑎 ∈ 𝐴𝑛, then

𝑓 (𝐴𝑛) =
∑
𝑎∈𝐴𝑛

1
𝑎 log 𝑎

≤ 𝑒𝛾

𝑚𝑞

d(L𝐴𝑛 )
1 + 𝑣

.
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Proof. We may assume 𝐴 = 𝐴𝑛 is finite, since 𝑓 (𝐴) = lim𝑥→∞ 𝑓 (𝐴 ∩ [1, 𝑥]). As 𝑛 ∉ 𝐴, all elements
of A are composite. Also, A is L-primitive so d(L𝐴) =

∑
𝑎∈𝐴 d(L𝑎) by Corollary 2.2. Moreover,

(1 + 𝑣) log 𝑃(𝑎) ≤ log 𝑎 for all 𝑎 ∈ 𝐴. Thus, by definition of 𝜇𝑃 (𝑎) in (8),

1
𝑎 log 𝑎

≤ 1
1 + 𝑣

1
𝑎 log 𝑃(𝑎) =

𝑒𝛾

𝜇𝑃 (𝑎)

1
(1 + 𝑣)𝑎

∏
𝑝<𝑃 (𝑎)

(
1 − 1

𝑝

)
=

𝑒𝛾

𝜇𝑃 (𝑎)

d(L𝑎)
1 + 𝑣

.

By monotonicity 𝜇𝑃 (𝑎) ≥ 𝑚𝑃 (𝑎) ≥ 𝑚𝑞 for 𝑎 ∈ 𝐴 ⊂ L𝑛. Hence, we conclude

𝑓 (𝐴) =
∑
𝑎∈𝐴

1
𝑎 log 𝑎

≤ 𝑒𝛾

𝑚𝑞

1
1 + 𝑣

∑
𝑎∈𝐴

d(L𝑎) =
𝑒𝛾

𝑚𝑞

d(L𝐴)
1 + 𝑣

.
�

3. Primitive sets

Given 𝑣 ∈ (0, 1), we shall be interested in elements 𝑎 ∈ 𝐴 for which 𝑃(𝑎)1+𝑣 > 𝑎, and their multiples
𝑎𝑐, where 𝑐 ∈ 𝐶𝑣

𝑎 for

𝐶𝑣
𝑎 :=

{
𝑐 ∈ N : 𝑝 | 𝑐 =⇒ 𝑝 ∈ [𝑃(𝑎∗), 𝑃(𝑎∗)1/

√
𝑣 )
}
. (10)

Note 𝑐 = 1 ∈ 𝐶𝑣
𝑎 . Recall 𝑎∗ = 𝑎/𝑃(𝑎), so 𝑃(𝑎∗) is the second largest prime of a. Also if 1 < 𝑐 ∈ 𝐶𝑣

𝑎

then 𝑃(𝑐) ≤ 𝑃(𝑎∗)1/
√
𝑣 is markedly smaller than 𝑃(𝑎) ≥ 𝑃(𝑎∗)1/𝑣 .

The following key lemma provides an upgrade to Corollary 2.2 in the case when A is primitive, not
just L-primitive. Namely, the L𝑎𝑐 are disjoint, and so the larger set {𝑎𝑐 : 𝑎 ∈ 𝐴, 𝑐 ∈ 𝐶𝑣

𝑎 } is L-primitive.

Lemma 3.1. Let A be a primitive set of composite numbers, and take 𝑣 ∈ (0, 1). If 𝑃(𝑎)1+𝑣 > 𝑎 for all
𝑎 ∈ 𝐴, then the collection of sets L𝑎𝑐 , ranging over 𝑎 ∈ 𝐴, 𝑐 ∈ 𝐶𝑣

𝑎 , are pairwise disjoint.

Proof. Suppose L𝑎𝑐 ∩ L𝑎′𝑐′ ≠ ∅ for some 𝑎, 𝑎′ ∈ 𝐴 and 𝑐 ∈ 𝐶𝑣
𝑎 , 𝑐′ ∈ 𝐶𝑣

𝑎′ . Without loss, by Lemma 2.1
we may assume 𝑎𝑐 ∈ L𝑎′𝑐′ . Note if 𝑐 = 1, then 𝑎 ∈ L𝑎′𝑐′ implies 𝑎′ | 𝑎′𝑐′ | 𝑎, which forces 𝑎 = 𝑎′ and
𝑐′ = 1 by primitivity of A. So assuming (𝑎, 𝑐) ≠ (𝑎′, 𝑐′), we deduce 𝑐 > 1.

We factor 𝑎𝑐 = 𝑝1 · · · 𝑝𝑘 into primes 𝑝1 ≥ · · · ≥ 𝑝𝑘 , so 𝑎𝑐 ∈ L𝑎′𝑐′ implies 𝑎′𝑐′ = 𝑝 𝑗 · · · 𝑝𝑘 for some
index 1 < 𝑗 < 𝑘 . Since 𝑃(𝑎) > 𝑃(𝑐), 𝑝(𝑐) ≥ 𝑃(𝑎∗), we also have 𝑎∗ = 𝑝𝑖 · · · 𝑝𝑘 for some 2 < 𝑖 ≤ 𝑘 . If
𝑖 ≤ 𝑗 , then 𝑎′𝑐′ | 𝑎∗ so 𝑎′ | 𝑎, contradicting A as primitive. Hence, 𝑖 > 𝑗 so 𝑎∗ | 𝑎′𝑐′. Write 𝑑𝑎∗ = 𝑎′𝑐′,
where 𝑑 = 𝑝 𝑗 · · · 𝑝𝑖−1, and note 𝑃(𝑑) = 𝑝 𝑗 = 𝑃(𝑎′). By definition of 1 < 𝑐 ∈ 𝐶𝑣

𝑎 , we have

𝑝 𝑗 = 𝑃(𝑑) ≤ 𝑃(𝑐) < 𝑃(𝑎∗)1/
√
𝑣 . (11)

Recall 𝑃(𝑎′)𝑣 > (𝑎′)∗ ≥ 𝑃((𝑎′)∗) for 𝑎′ ∈ 𝐴. Now consider cases 𝑐′ > 1 and 𝑐′ = 1. When
1 < 𝑐′ ∈ 𝐶𝑣

𝑎′ , we have 𝑃(𝑐′) = 𝑝 𝑗+1 ≥ 𝑝𝑖 = 𝑃(𝑎∗). Thus,

𝑝 𝑗 = 𝑃(𝑎′) > 𝑃((𝑎′)∗)1/𝑣 > 𝑃(𝑐′)1/
√
𝑣 ≥ 𝑃(𝑎∗)1/

√
𝑣 . (12)

But equation (12) contradicts equation (11), so L𝑎𝑐 and L𝑎′𝑐′ are disjoint.
Similarly, when 𝑐′ = 1, we have 𝑃((𝑎′)∗) = 𝑝 𝑗+1 ≥ 𝑝𝑖 = 𝑃(𝑎∗) and so

𝑝 𝑗 = 𝑃(𝑎′) > 𝑃((𝑎′)∗)1/𝑣 ≥ 𝑃(𝑎∗)1/𝑣 .

This also contradicts equation (11) (indeed 𝑣 <
√

𝑣). Hence, L𝑎𝑐 and L𝑎′ are disjoint in both cases. �

Remark 3.2. The exponent 1/
√

𝑣 in the definition of 𝐶𝑣
𝑎 in equation (10) is chosen as large as possible,

constrained by the final steps (11), (12) above. If one established a larger exponent in Lemma 3.1, this
would improve the final savings factor

∫ 1
0

d
d𝑣 [𝑣

1/2] d𝑣
1+𝑣 = 𝜋/4.

https://doi.org/10.1017/fmp.2023.16 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.16


Forum of Mathematics, Pi 9

In the following proposition, we use Lemma 3.1 in order to bound the density of L𝐴𝑛 by essentially
a savings factor

√
𝑣 from the trivial bound d(L𝑛), when 𝑃(𝑎)1+𝑣 > 𝑎 for all 𝑎 ∈ 𝐴𝑛.

Proposition 3.3. Let A be a finite primitive set. Take 𝑣 ∈ (0, 1), an integer 𝑛 > 1 with 𝑛 ∉ 𝐴, and denote
𝑞 = 𝑃(𝑛). If 𝑃(𝑎)1+𝑣 > 𝑎 for all 𝑎 ∈ 𝐴𝑛, then

d(L𝐴𝑛 ) ≤
√

𝑣 𝑟𝑞 d(L𝑛) (13)

for the ratio 𝑟𝑞 := 𝑀𝑞/𝑚𝑞 when 𝑞 ≥ 3, and 𝑟2 := 𝑟3.

Proof. Without loss assume 𝐴 = 𝐴𝑛. Then 𝑎𝑐 ∈ L𝑛 for all 𝑎 ∈ 𝐴, 𝑐 ∈ 𝐶𝑣
𝑎 (recall 𝑝(𝑎𝑐) = 𝑝(𝑎)), and so

L𝑎𝑐 ⊂ L𝑛. Note the condition 𝑃(𝑎)1+𝑣 > 𝑎 is equivalent to 𝑃(𝑎)𝑣 > 𝑎∗, and 𝑣 < 1 implies 𝑃(𝑎) � 𝑎∗.
By Lemma 3.1, we have the following (finite) disjoint union,

L𝑛 ⊃
⋃
𝑎∈𝐴

⋃
𝑐∈𝐶𝑣

𝑎

L𝑎𝑐 . (14)

Thus, taking the density of equation (14), we obtain

d(L𝑛) ≥ d
( ⋃
𝑎∈𝐴

⋃
𝑐∈𝐶𝑣

𝑎

L𝑎𝑐

)
=
∑
𝑎∈𝐴

∑
𝑐∈𝐶𝑣

𝑎

d(L𝑎𝑐) =
∑
𝑎∈𝐴

d(L𝑎)
∑
𝑐∈𝐶𝑎

1
𝑐

, (15)

noting 𝑃(𝑎) > 𝑃(𝑐) for 1 < 𝑐 ∈ 𝐶𝑣
𝑎 , so L𝑎𝑐 = {𝑏𝑎𝑐 : 𝑝(𝑏) ≥ 𝑃(𝑎)} = 𝑐 · L𝑎. Then by definitions of

𝐶𝑣
𝑎 and 𝜇𝑞 in equations (10) and (8),

∑
𝑐∈𝐶𝑣

𝑎

1
𝑐

=
∏

𝑝∈[𝑃 (𝑎∗) ,𝑃 (𝑎∗)1/
√
𝑣 )

(
1 − 1

𝑝

)−1
=

∏
𝑝<𝑃 (𝑎∗)1/

√
𝑣

(
1 − 1

𝑝

)−1 ∏
𝑝<𝑃 (𝑎∗)

(
1 − 1

𝑝

)

=
log 𝑃(𝑎∗)1/

√
𝑣

𝜇𝑃 (𝑎∗)1/
√
𝑣

𝜇𝑃 (𝑎∗)

log 𝑃(𝑎∗) =
𝜇𝑃 (𝑎∗)

𝜇𝑃 (𝑎∗)1/
√
𝑣

1
√

𝑣
. (16)

When 𝑞 ≥ 3, we use 𝜇𝑃 (𝑎∗) /𝜇𝑃 (𝑎∗)1/
√
𝑣 ≥ 𝑚𝑞/𝑀𝑞 = 1/𝑟𝑞 , which follows by monotonicity of 𝑚𝑞 , 𝑀𝑞

in Lemma 2.4, and that 𝑃(𝑎∗), 𝑞 ∈ P . Hence, plugging equation (16) back into equation (15),

d(L𝑛) ≥
1

√
𝑣 𝑟𝑞

∑
𝑎∈𝐴

d(L𝑎) =
1

√
𝑣 𝑟𝑞

d(L𝐴)

as desired.
The result similarly holds when 𝑞 = 2: If 𝑃(𝑎∗) ≥ 3, then 𝜇𝑃 (𝑎∗) /𝜇𝑃 (𝑎∗)1/

√
𝑣 ≥ 𝑚3/𝑀3 = 1/𝑟3 as

before. And if 𝑃(𝑎∗) = 2, then 𝜇2/𝜇21/
√
𝑣 ≥ 1 also suffices. �

4. Deduction of Theorems 1.2, 1.3, 1.5

We now apply our analysis of the density of L-multiples to our original sum of interest 𝑓 (𝐴) =∑
𝑎∈𝐴

1
𝑎 log 𝑎 . First, we need a simple lemma on bounding certain monotonic sequences.

Lemma 4.1. For 𝑘 ≥ 1, let 𝑐0 ≥ 𝑐1 ≥ · · · ≥ 𝑐𝑘 ≥ 0 and 0 = 𝐷0 ≤ 𝐷1 ≤ · · · ≤ 𝐷𝑘 . If 𝑑1, . . . , 𝑑𝑘 ≥ 0
satisfy

∑
𝑗≤𝑖 𝑑 𝑗 ≤ 𝐷𝑖 for all 𝑖 ≤ 𝑘 , then we have

∑
𝑖≤𝑘

𝑐𝑖𝑑𝑖 ≤
∑
𝑖≤𝑘

𝑐𝑖 (𝐷𝑖 − 𝐷𝑖−1).
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Proof. By rearranging sums,
∑
𝑖≤𝑘

𝑐𝑖𝑑𝑖 =
∑
𝑖≤𝑘

𝑐𝑖

(∑
𝑗≤𝑖

𝑑 𝑗 −
∑
𝑗≤𝑖−1

𝑑 𝑗

)
=

∑
𝑖≤𝑘−1

(𝑐𝑖 − 𝑐𝑖+1)
∑
𝑗≤𝑖

𝑑 𝑗 + 𝑐𝑘
∑
𝑖≤𝑘

𝑑𝑖 .

Since 𝑐𝑖 ≥ 𝑐𝑖+1 and
∑

𝑗≤𝑖 𝑑 𝑗 ≤ 𝐷𝑖 , we conclude
∑
𝑖≤𝑘

𝑐𝑖𝑑𝑖 ≤
∑
𝑖≤𝑘−1

(𝑐𝑖 − 𝑐𝑖+1)𝐷𝑖 + 𝑐𝑘𝐷𝑘 =
∑
𝑖≤𝑘

𝑐𝑖 (𝐷𝑖 − 𝐷𝑖−1).
�

To motivate the remainder of the proof, we offer a probabilistic interpretation of Proposition 3.3:
For 𝑣 ≥ 0, consider 𝐷 (𝑣) := sup𝐴 d(L𝐴𝑛 )/d(L𝑛), ranging over primitive sets A such that 𝑃(𝑎)1+𝑣 > 𝑎
for all 𝑎 ∈ 𝐴. Note 𝐷 (𝑣) may be viewed as a ‘cumulative distribution function’, since 𝐷 (0) = 0 and
𝐷 (𝑣) → 1 as 𝑣 → ∞. Now, Proposition 3.3 essentially bounds 𝐷 (𝑣) by

√
𝑣. Using the corresponding

bound 1/2
√

𝑣 for the ‘probability density function’, we establish quantitative bounds below.

Proposition 4.2. For any primitive set A, and any integer 𝑛 ∉ 𝐴 with 𝑞 = 𝑃(𝑛) ≥ 3,

𝑓 (𝐴𝑛) ≤ 𝜋

4
𝑀𝑞

𝑚2
𝑞

𝑒𝛾d(L𝑛).

Proof. Without loss, we may assume 𝐴 = 𝐴𝑛 is finite since 𝑓 (𝐴) = lim𝑥→∞ 𝑓 (𝐴 ∩ [1, 𝑥]). Also, 𝑛 ∉ 𝐴
implies all elements of A are composite.

Take 𝑘 ≥ 1 and any sequence 0 = 𝑣0 < 𝑣1 < · · · < 𝑣𝑘 = 1, and partition the set 𝐴 =
⋃

0≤𝑖≤𝑘 𝐴(𝑖) ,
where 𝐴(𝑘) = {𝑎 ∈ 𝐴 : 𝑃(𝑎)2 ≤ 𝑎} and for 0 ≤ 𝑖 ≤ 𝑘 ,

𝐴(𝑖) = {𝑎 ∈ 𝐴 : 𝑃(𝑎)1+𝑣𝑖 ≤ 𝑎 < 𝑃(𝑎)1+𝑣𝑖+1 }.

Then applying Lemma 2.5 to each 𝐴(𝑖) ,

𝑓 (𝐴) =
∑

0≤𝑖≤𝑘
𝑓 (𝐴(𝑖) ) ≤ 𝑒𝛾

𝑚𝑞

∑
0≤𝑖≤𝑘

d(L𝐴(𝑖) )
1 + 𝑣𝑖

. (17)

Note since A is primitive, {L𝐴(𝑖) }𝑖≤𝑘 are pairwise disjoint. Also, for each 𝑗 < 𝑘 , the first j components
are

⋃
0≤𝑖≤ 𝑗 𝐴(𝑖) = {𝑎 ∈ 𝐴 : 𝑎 < 𝑃(𝑎)1+𝑣𝑗+1 } =: 𝐴( 𝑗) , so by Proposition 3.3 they have density

∑
0≤𝑖≤ 𝑗

d(L𝐴(𝑖) ) = d(L𝐴( 𝑗) ) ≤ √
𝑣 𝑗+1 𝑟𝑞 d(L𝑛).

Also, for 𝑗 = 𝑘 we have
∑

0≤𝑖≤𝑘 d(L𝐴(𝑖) ) = d(L𝐴) ≤ d(L𝑛), which is trivially less than 𝑟𝑞d(L𝑛). Let
𝑐𝑖 = 1

1+𝑣𝑖 , 𝑑𝑖 = d(L𝐴(𝑖) ), 𝐷𝑖 =
√

𝑣𝑖+1 𝑟𝑞 d(L𝑛) (here, we let 𝑣𝑘+1 = 𝑣𝑘 so that 𝐷𝑘 − 𝐷𝑘−1 = 0). Thus, by
Lemma 4.1 we have

∑
0≤𝑖≤𝑘

d(L𝐴(𝑖) )
1 + 𝑣𝑖

=
∑

0≤𝑖≤𝑘
𝑐𝑖𝑑𝑖 ≤

∑
0≤𝑖≤𝑘

𝑐𝑖 (𝐷𝑖 − 𝐷𝑖−1) = 𝑟𝑞 d(L𝑛)
∑

0≤𝑖≤𝑘

√
𝑣𝑖+1 −

√
𝑣𝑖

1 + 𝑣𝑖
.

Hence, the weighted sum in equation (17) is bounded by

𝑓 (𝐴) ≤
𝑟𝑞

𝑚𝑞
𝑒𝛾 d(L𝑛)

∑
1≤𝑖≤𝑘

√
𝑣𝑖 −

√
𝑣𝑖−1

1 + 𝑣𝑖−1
. (18)
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As equation (18) holds for any partition 0 = 𝑣0 < 𝑣1 < · · · < 𝑣𝑘 = 1, we may set 𝑣𝑖 = 𝑖
𝑘 and obtain the

corresponding integral,

lim
𝑘→∞

∑
1≤𝑖≤𝑘

√
𝑣𝑖 −

√
𝑣𝑖−1

1 + 𝑣𝑖−1
= lim

𝑘→∞

∑
1≤𝑖≤𝑘

∫ 𝑣𝑖

𝑣𝑖−1

d
d𝑣

[√
𝑣
] d𝑣

1 + 𝑣𝑖−1
=
∫ 1

0

d𝑣

2
√

𝑣(1 + 𝑣)
=

𝜋

4
.

Hence, we conclude 𝑓 (𝐴) ≤ 𝜋
4

𝑟𝑞
𝑚𝑞

𝑒𝛾 d(L𝑛) as desired. �

We illustrate the value of these bounds by deducing Theorem 1.3 in quantitative form.

Corollary 4.3. Let A be a primitive set, and take an odd prime p. If 𝑝 ∉ 𝐴, then we have 𝑓 (𝐴𝑝) <
.901 𝑓 (𝑝), and moreover 𝑓 (𝐴𝑝) ≤ ( 𝜋4 + 𝑜(1)) 𝑓 (𝑝) as 𝑝 → ∞. In addition, if 𝑝 > 23 and 2𝑝 ∉ 𝐴, then
𝑓 (𝐴2𝑝) < 𝑓 (2𝑝).

Proof. For an odd prime q, define 𝑏𝑞 := 𝜋
4
𝑀𝑞

𝑚2
𝑞

𝜇𝑞 . Then Proposition 4.2 shows that if 𝑛 ∉ 𝐴 we have

𝑓 (𝐴𝑛) ≤
𝜋

4
𝑀𝑞

𝑚2
𝑞

𝑒𝛾d(L𝑛) =
𝑞

𝑛
𝑏𝑞 𝑓 (𝑞)

with 𝑞 = 𝑃(𝑛) ≥ 3, recalling d(L𝑛) = 𝑞
𝑛d(L𝑞) and equation (9). In particular for 𝑛 = 𝑞, 2𝑞, we have

𝑓 (𝐴𝑞) ≤ 𝑏𝑞 𝑓 (𝑞) and 𝑓 (𝐴2𝑞) ≤ 1
2 𝑏𝑞 𝑓 (𝑞). Note 𝜇𝑞 , 𝑚𝑞 , 𝑀𝑞 ∼ 1 implies 𝑏𝑞 ∼ 𝜋

4 as claimed. Also, the
first few values of 𝑏𝑞 are displayed below.

q 𝑏𝑞 q 𝑏𝑞

3 0.9006 23 0.8232
5 0.8795 29 0.8266
7 0.8507 31 0.8139
11 0.8564 37 0.8184
13 0.8327 41 0.8189
17 0.8491 43 0.8092
19 0.8305 47 0.8090

Observe for 𝑞 > 7, we have

𝑓 (𝐴𝑞) ≤
𝜋

4

( 𝑀𝑞

𝑚11

)2
𝑓 (𝑞) ≤ 𝜋

4

(1 + 1/2 log(2 · 109)2

𝜇19

)2
𝑓 (𝑞) < .879 𝑓 (𝑞).

In particular, with the table, we see 𝑓 (𝐴𝑞) < .901 𝑓 (𝑞) for all 𝑞 > 2 as claimed.
Finally, we note 𝑓 (𝐴2𝑞) < 𝑓 (2𝑞) whenever 𝑏𝑞 <

log 𝑞
log(2𝑞) . The result then follows since

𝑏𝑞 =
𝜋

4
𝑀𝑞

𝑚2
𝑞

𝜇𝑞
log 𝑞

log(2𝑞) iff 𝑞 ≤ 23. (19)

Indeed, this may be checked directly for 𝑞 < 47. And for 𝑞 ≥ 47 we observe that log 𝑞/log(2𝑞) ≥
log 47/log 94 ≥ .847 exceeds 𝑏𝑞 ≤ 𝜋

4 (𝑀2·109/𝑚47)2 ≤ .834. �

Importantly, 𝑏𝑞 < 1 for all odd q, which means every odd prime is Erdős strong. However, it
remains an open question whether 𝑞 = 2 is Erdős strong. Now, if 2 ∈ 𝐴 we immediately deduce
𝑓 (𝐴) ≤ 𝑓 (P) = 1.6366 · · · . Thus, to complete the proof of Theorem 1.2, it suffices to assume 2 ∉ 𝐴.

We achieve this in the result below. The argument is somewhat similar in spirit to that of Theorem
1.1 and Lemma 2.4 in [27].

Theorem 4.4. For any primitive set A with 2 ∉ 𝐴, we have 𝑓 (𝐴) < 1.60.
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Proof. As 2 ∉ 𝐴, denote by 𝐾 ≥ 2 the exponent for which 2𝐾 ∈ 𝐴. Note K is unique by primitivity (Also,
if 2𝑘 ∉ 𝐴 for all k let 𝐾 = ∞, in which case let 𝑓 (2𝐾 ) = 0). Partition A into sets 𝐴0 = {𝑎 ∈ 𝐴 : 2 � 𝑎}
and 𝐴𝑘 = {𝑎 ∈ 𝐴 : 2𝑘 ‖𝑎} for 𝑘 ≥ 1, and let 𝐵𝑘 = {𝑎/2𝑘 : 𝑎 ∈ 𝐴𝑘 }. We have

𝑓 (𝐴) = 𝑓 (2𝐾 ) +
∑
𝑝∈𝐴

𝑓 (𝑝) +
∑
𝑝∉𝐴

𝑓 (𝐴𝑝)

≤ 𝑓 (2𝐾 ) +
∑
𝑝>2
𝑝∈𝐴

𝑓 (𝑝) +
∑
𝑝>2
𝑝∉𝐴

𝑏𝑝 𝑓 (𝑝) +
∑
𝑝>2
𝑝∉𝐴

𝐾−1∑
𝑘=1

𝑓 ((𝐴𝑘 )2𝑘 𝑝), (20)

since 𝑓 ((𝐴0)𝑝) ≤ 𝑏𝑝 𝑓 (𝑝) if 𝑝 ∉ 𝐴 by Proposition 4.2. More generally, if 2𝑘 𝑝 ∉ 𝐴, then

𝑓 ((𝐴𝑘 )2𝑘 𝑝) ≤ 2−𝑘 𝑓 ((𝐵𝑘 )𝑝) ≤ 2−𝑘𝑏𝑝 𝑓 (𝑝).

By comparison, if 2𝑘 𝑝 ∈ 𝐴, then 𝑓 ((𝐴𝑘 )2𝑘 𝑝) = 𝑓 (2𝑘 𝑝) ≤ 2−𝑘 𝑓 (𝑝) log 𝑝
log(2𝑝) .

Observe that either 2𝑘 𝑝 ∉ 𝐴 for all 𝑘 ≥ 1, or 2𝐽 𝑝 ∈ 𝐴 for a (unique) 𝐽 = 𝐽𝑝 ∈ [1, 𝐾), in which case
(𝐴𝑘 )2𝑘 𝑝 = ∅ for all 𝑘 > 𝐽 by primitivity. Thus, by equation (19), it suffices to assume 2𝑘 𝑝 ∉ 𝐴 for all
𝑘 ≥ 1 when 𝑝 ≤ 23, and 2𝐽 𝑝 ∈ 𝐴 for some 𝐽 ∈ [1, 𝐾) when 𝑝 > 23, so

∑
𝑝>2
𝑝∉𝐴

𝐾−1∑
𝑘=1

𝑓 ((𝐴𝑘 )2𝑘 𝑝) ≤ (1 − 21−𝐾 )
∑

2<𝑝≤23
𝑝∉𝐴

𝑏𝑝 𝑓 (𝑝) +
∑
𝑝>23
𝑝∉𝐴

𝑓 (𝑝)
(
(1 − 21−𝐽 )𝑏𝑝 + 2−𝐽

log 𝑝

log(2𝑝)

)

≤ (1 − 21−𝐾 )
∑

2<𝑝≤23
𝑝∉𝐴

𝑏𝑝 𝑓 (𝑝) +
∑
𝑝>23
𝑝∉𝐴

𝑏𝑝 𝑓 (𝑝),

since 2𝑏𝑝 > 1 >
log 𝑝

log(2𝑝) for all 𝑝 > 2. Moreover, (2 − 21−𝐾 )𝑏𝑝 ≥ (2 − 1/2) 𝜋4 > 1.1, so equation (20)
becomes

𝑓 (𝐴) ≤ 𝑓 (2𝐾 ) +
∑
𝑝>2
𝑝∈𝐴

𝑓 (𝑝) + (2 − 21−𝐾 )
∑

2<𝑝≤23
𝑝∉𝐴

𝑏𝑝 𝑓 (𝑝) + 2
∑
𝑝>23
𝑝∉𝐴

𝑏𝑝 𝑓 (𝑝)

≤ 𝑓 (2𝐾 ) + (2 − 21−𝐾 )
∑

2<𝑝≤23
𝑏𝑝 𝑓 (𝑝) + 2

∑
𝑝>23

𝑏𝑝 𝑓 (𝑝)

=: 𝑓 (2𝐾 ) + (2 − 21−𝐾 )𝐶1 + 2𝐶2. (21)

Now, we compute the constants 𝐶1, 𝐶2. First, let 𝑀 = 𝑀2·109 = 1.001 · · · . Recalling 𝜇𝑝 𝑓 (𝑝) =
𝑒𝛾d(L𝑝),

𝐶2 :=
∑
𝑝>23

𝑏𝑝 𝑓 (𝑝) = 𝜋

4
𝑒𝛾

∑
𝑝>23

𝑀𝑝

𝑚2
𝑝

d(L𝑝) ≤
𝜋

4
𝑀𝑒𝛾

𝜇2
23

∏
𝑝≤23

(
1 − 1

𝑝

)
= 0.251135 · · · , (22)

since
∑

𝑝>𝑞 d(L𝑝) =
∏

𝑝≤𝑞 (1 − 1
𝑝 ). Similarly, we have

𝐶1 :=
∑

2<𝑝≤23
𝑏𝑝 𝑓 (𝑝) =

∑
2<𝑝≤23

𝜋

4
𝑀

𝑚2
𝑝

𝑒𝛾d(L𝑝) =
𝜋

4
𝑀𝑒𝛾 · 0.39012 · · · = 0.5463 · · · (23)
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Here, we computed

∑
2<𝑝≤23

1
𝑚2

𝑝

d(L𝑝) =
1
𝜇2

7

∑
2<𝑝≤7

d(L𝑝) +
1

𝜇2
19

∑
7<𝑝≤19

d(L𝑝) +
1

𝜇2
23

d(L23) = 0.390126 · · · ,

using
∑
𝑞<𝑝≤𝑞′ d(L𝑝) =

∏
𝑝≤𝑞 (1 − 1

𝑝 ) −
∏

𝑝≤𝑞′ (1 − 1
𝑝 ).

Hence, plugging equations (22) and (23) back into equation (21),

𝑓 (𝐴) ≤ 𝑓 (2𝐾 ) + (2 − 21−𝐾 )𝐶1 + 2𝐶2

≤ 2−𝐾
( 1
log 4

− 2𝐶1

)
+ 2(𝐶1 + 𝐶2) ≤ 2(𝐶1 + 𝐶2) ≤ 1.595. (24)

Here, we used 2𝐶1 > .722 > 1/log 4. This completes the proof. �

Remark 4.5. A similar argument as in Theorem 4.4 shows 𝑓 (𝐴2) < 𝐶1 + 𝐶2 < 0.80 when 2 ∉ 𝐴.
We leave this to the interested reader. Note this bound improves on 𝑓 (𝐴2) < 𝑒𝛾/2 ≈ 0.89 from [27,
Proposition 2.1] but unfortunately still exceeds 𝑓 (2) ≈ 0.72.

4.1. Proof of Theorem 1.5

Take 𝜖 > 0. We shall introduce large parameters 𝑦 = 𝑦 𝜖 , 𝑘 = 𝑘 𝜖 ,𝑦 and 𝑥 = 𝑥𝜖 ,𝑘 .
By Lemma 2.3, we have 𝑓 (𝐴𝑛) ≤ 𝑒𝛾d(L𝑛) for any integer 𝑛 ∉ 𝐴, 𝑛 > 1 and when 𝑦 = 𝑦 𝜖 ∈ R is

sufficiently large by Proposition 4.2 we have the sharper bound

𝑓 (𝐴𝑛) ≤ ( 𝜋

4
𝑒𝛾 + 𝜖)d(L𝑛) provided 𝑃(𝑛) > 𝑦. (25)

Next, by [?, Lemma 2], for 𝑘 = 𝑘 𝜖 = 𝑘 𝜖 ,𝑦 ∈ N sufficiently large,

∑
𝑛∈N𝑘
𝑃 (𝑛) ≤𝑦

d(L𝑛) �
1
𝑘

∑
Ω(𝑛)=𝑘
𝑃 (𝑛) ≤𝑦

1
𝑛
� (log 𝑦)2 2−𝑘 < 𝜖. (26)

Finally, since 𝑓 (N 𝑗 ) < 2 crudely for all j there exists 𝑥 = 𝑥𝜖 ,𝑘 ∈ R sufficiently large so that
𝑓
( ⋃

𝑗≤𝑘 N 𝑗 ∩ [𝑥,∞)
)

< 𝜖 .
Now, take a primitive set 𝐴 ⊂ [𝑥,∞), and consider the partition 𝐴 = 𝐴′ ∪

⋃
𝑛∈N𝑘\𝐴 𝐴𝑛, where 𝐴′

consists of elements 𝑎 ∈ 𝐴 with at most k prime factors, and each other element 𝑎 ∈ 𝐴 (with at least
𝑘 + 1 prime factors) then lies in 𝐴𝑛 = 𝐴 ∩ L𝑛, where 𝑛 ∉ 𝐴 is the product of the smallest k primes of a.
Hence, we conclude

𝑓 (𝐴) = 𝑓 (𝐴′) +
∑

𝑛∈N𝑘\𝐴
𝑓 (𝐴𝑛)

≤ 𝑓
( ⋃
𝑗≤𝑘
N 𝑗 ∩ [𝑥,∞)

)
+

∑
𝑛∈N𝑘\𝐴
𝑃 (𝑛) ≤𝑦

𝑓 (𝐴𝑛) +
∑

𝑛∈N𝑘\𝐴
𝑃 (𝑛)>𝑦

𝑓 (𝐴𝑛)

≤ 𝜖 + 𝑒𝛾
∑
𝑛∈N𝑘
𝑃 (𝑛) ≤𝑦

d(L𝑛) + ( 𝜋

4
𝑒𝛾 + 𝜖)

∑
𝑛∈N𝑘
𝑃 (𝑛)>𝑦

d(L𝑛) ≤ 𝜖 + 𝑒𝛾 𝜖 + ( 𝜋

4
𝑒𝛾 + 𝜖),

by equations (25) and (26) and noting
∑
𝑛∈N𝑘 ,𝑃 (𝑛)>𝑦 d(L𝑛) ≤ 1. Hence, letting 𝜖 → 0 completes the

proof of Theorem 1.5.
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5. L-primitive sets revisited

5.1. Upper density

As mentioned in the introduction, one of the striking early results in the study of primitive sets was due
to Besicovitch [5], who showed

sup
𝐴 primitive

d(𝐴) =
1
2

.

This came as quite a surprise at the time, in particular disproving a conjecture of Davenport. We shall
extend this phenomenon further to L-primitive sets, in Proposition 5.2.

To proceed, we recall a result of Erdős [14], which bounds the density of the set of multiples of an
interval. Also, see Hall–Tenenbaum [22, Theorem 21] for quantitatively stronger results. Denote the set
of (all) multiples of 𝐴 ⊂ N as M𝐴 = {𝑛𝑎 : 𝑛 ∈ N, 𝑎 ∈ 𝐴}.
Proposition 5.1 (Erdős, 1936). Let 𝜀(𝑥) be any function with 𝜀(𝑥) → 0 as 𝑥 → ∞. Then the upper
density of M(𝑥1−𝜀 (𝑥) ,𝑥 ] tends to zero as 𝑥 → ∞.

We prove a Besicovitch-type result for L-primitive sets, notably with full upper density.
Proposition 5.2. We have sup𝐴 d(𝐴) = 1 over L-primitive sets A.
Proof. Take ℎ ∈ Z>1, 𝜖 > 0, and let 𝑆 = {𝑛 ∈ N : 𝑃(𝑛) ≤ ℎ} be the set of h-smooth numbers. For a
sequence of indices 𝑘1, 𝑘2, . . . to be determined, define intervals 𝐼𝑖 = (ℎ𝑘𝑖−1, ℎ𝑘𝑖 ]. Let 𝑆𝑖 := 𝐼𝑖 \ 𝑆, and
note for 𝑎 ∈ 𝑆𝑖 and 𝑛 ∈ L𝑎 we have 𝑛 ≥ 𝑃(𝑎)𝑎 > ℎ𝑘𝑖 , so 𝑛 ∉ 𝐼𝑖 ⊃ 𝑆𝑖 . In particular, 𝑎′ ∉ L𝑎 for distinct
𝑎, 𝑎′ ∈ 𝑆𝑖 , so each set 𝑆𝑖 is L-primitive. Now, define the L-primitive set

𝐴 =
⋃
𝑗≥1

(
𝑆 𝑗 \

⋃
1≤𝑖< 𝑗

M𝐼𝑖

)
. (27)

Note for each fixed ℎ > 1 the set S has zero density, so |𝑆 ∩ [1, 𝑥] | < 𝜖𝑥 for 𝑥 ≥ 𝑥ℎ,𝜖 sufficiently large.
Also, by Proposition 5.1 we see d(M(𝑥/ℎ,𝑥 ] ) → 0 as 𝑥 → ∞. So for 𝑘𝑖 large enough, we may assume
d(M𝐼𝑖 ) < 𝜖/2𝑖 .

For each i, the set of multiples M𝐼𝑖 is a periodic set with period (dividing) (ℎ𝑘𝑖 )!. So assuming
𝑘𝑖+1 ≥ (ℎ𝑘𝑖 )! the relative density of M𝐼𝑖 inside 𝐼𝑖+1 is at most 2d(M𝐼𝑖 ). Hence,

|𝐴 ∩ [1, ℎ𝑘 𝑗 ] | ≥ |𝐼 𝑗 | −
��𝑆 ∩ [1, ℎ𝑘 𝑗 ]

�� − 2ℎ𝑘 𝑗
∑

1≤𝑖< 𝑗

d(M𝐼𝑖 )

≥ (ℎ𝑘 𝑗 − ℎ𝑘 𝑗−1) − 𝜖ℎ𝑘 𝑗 − 2𝜖ℎ𝑘 𝑗
∑
𝑖≥1

2−𝑖 .

Thus, dividing by 𝑥 = ℎ𝑘 𝑗 we see d(𝐴) = lim sup𝑥→∞ |𝐴 ∩ [1, 𝑥] |/𝑥 ≥ 1 − 1/ℎ − 3𝜖 . Taking ℎ → ∞
and 𝜖 → 0 completes the proof. �

5.2. The Erdős L-primitive set conjecture

Sets of L-multiples play a central role in our proof of Theorem 1.2, as the mathematical structures
arising from a probabilistic interpretation of equation (4),6 and implicit in the original 1935 argument
of Erdős [13].7 As such, it is natural to pose the L-primitive analogue of Conjecture 1.1, namely that
𝑓 (𝐴) ≤ 𝑓 (P) for all L-primitive sets A.

6A variant in [17], a set A ‘possesses property I’ if there is no solution to 𝑎′ = 𝑏𝑎 for 𝑎, 𝑎′ ∈ 𝐴 with 𝑝 (𝑏) > 𝑃 (𝑎) .
This is similar to A as L-primitive, but the latter imposes the inclusive inequality 𝑝 (𝑏) ≥ 𝑃 (𝑎) , which arises naturally from a
probabilistic viewpoint. This inclusivity leads to key structural properties, notably the trichotomy in Lemma 2.1.

7The author was also recently shown ‘prefix-free sets’ in [1], which coincides with L-primitive for sets of square-free numbers.
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However, this conjecture turns out to be false.

Proposition 5.3. We have

sup
𝐴L−primitive

𝑓 (𝐴) =
∑
𝑝

max{ 𝑓 (𝑝), 𝑒𝛾d(L𝑝)}, and lim
𝑥→∞

sup
𝐴⊂[𝑥,∞)

𝐴L−primitive

𝑓 (𝐴) = 𝑒𝛾 . (28)

Note the prime sum in equation (28) above is at least (and well approximated by) 𝑓 (P)− 𝑓 (2)+𝑒𝛾/2 ≈
1.805. In particular, it exceeds 𝑓 (P) ≈ 1.636. As such, Proposition 5.3, along with Conjecture 7.1 and
related work in the literature, highlights how the Erdős primitive set conjecture is quite fragile under
certain seemingly natural directions of generalization.

We now proceed to set up the proof of Proposition 5.3. First, the trichotomy in Lemma 2.1 leads to
the following.

Lemma 5.4. Every set 𝑆 ⊂ N has a unique L-primitive subset 〈𝑆〉 with L〈𝑆〉 = L𝑆 . In particular, 〈𝑆〉 = 𝑆
if S is L-primitive.

Proof. For any 𝑠1, 𝑠2 ∈ 𝑆, by Lemma 2.1 either L𝑠1 ∩ L𝑠2 = ∅ or L𝑠1 ⊂ L𝑠2 (or vice versa). Thus, each
𝑠 ∈ 𝑆 has a (unique) smallest L-divisor 𝑠′ ∈ 𝑆, inducing a map 𝑆 → 𝑆 : 𝑠 ↦→ 𝑠′. We define 〈𝑆〉 as the
image of this map. Explicitly, this is

〈𝑆〉 := {𝑠 ∈ 𝑆 : 𝑠 ∉ L𝑡 ∀ 𝑡 < 𝑠, 𝑡 ∈ 𝑆}. (29)

By minimality, L𝑠1 ∩ L𝑠2 = ∅ for all 𝑠1, 𝑠2 ∈ 〈𝑆〉, so 〈𝑆〉 is L-primitive. Moreover, L𝑆 =
⋃

𝑠∈𝑆 L𝑠 =⋃
𝑠′ ∈ 〈𝑆〉 L𝑠′ = L〈𝑆〉 , where the latter union over 〈𝑆〉 is disjoint by L-primitivity. This completes the

proof. �

Next, take 𝑣 > 0, 𝑛 ∈ Z>1, and consider the set 𝐷𝑣 (𝑛) of prime divisors of n whose induced L-divisor
is not smooth, that is,

𝐷𝑣 (𝑛) =
{
𝑝 | 𝑛 :

∏
𝑞𝑒 ‖𝑛,𝑞<𝑝

𝑞𝑒 ≤ 𝑝𝑣
}
. (30)

We cite the following result of Bovey, based on earlier work of Erdős [22, §1.2].

Proposition 5.5 (Bovey, 1977). For each 𝑣 > 0, there is a set 𝑁𝑣 ⊂ N of full density with

|𝐷𝑣 (𝑛) |
log log 𝑛

→ 𝑒−𝛾
∫ 𝑣

0
𝜌(𝑥)d𝑥 (31)

as 𝑛 → ∞ on 𝑁𝑣 . Here, 𝜌 is the Dickman–de Bruijn function.

Remark 5.6. In probability, the right-hand side of equation (31) is called the Dickman distribution.

In particular, |𝐷𝑣 (𝑛) | 	𝑣 log log 𝑛 for all 𝑛 ∈ 𝑁𝑣 . Now, we may define a map 𝛽 : 𝑁𝑢 → N sending
n to its L-divisor 𝛽(𝑛) = 𝑝

∏
𝑞𝑒 ‖𝑛,𝑞<𝑝 𝑞𝑒, for the largest prime 𝑝 ∈ 𝐷𝑣 (𝑛).

Define the L-primitive generating set 𝐵(𝑣) := 〈𝛽(𝑁𝑣 )〉 as in Lemma 5.4. By construction, L𝐵 (𝑣) =
L𝛽 (𝑁𝑣 ) ⊃ 𝑁𝑢 has full density. Also, by definition of 𝛽, 𝐷𝑣 ,

𝐵(𝑣) ⊂ 𝛽(𝑁𝑣 ) ⊂ {𝑛 ∈ N : 𝑛 ≤ 𝑃(𝑛)1+𝑣 }. (32)

We are now prepared to establish a local version of Proposition 5.3.

Proposition 5.7. For each prime q, we have

lim
𝑦→∞

sup
𝐴⊂[𝑦,∞)

L−primitive𝐴∌𝑞

𝑓 (𝐴𝑞) = sup
L−primitive𝐴∌𝑞

𝑓 (𝐴𝑞) = 𝑒𝛾d(L𝑞).
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Proof. By Lemma 2.3, we have 𝑓 (𝐴𝑝) < 𝑒𝛾d(L𝑝) for all L-primitive A not containing p. It now suffices
to provide L-primitive sets 𝐵 ⊂ [𝑦,∞) with 𝑓 (𝐵𝑞) → 𝑒𝛾d(L𝑞) as 𝑦 → ∞.

Fix 𝑣 > 0. The L-primitive set 𝐵(𝑣) in equation (32) satisfies

𝑓 (𝐵(𝑣)𝑞) =
∑

𝑏∈𝐵 (𝑣)𝑞

1
𝑏 log 𝑏

≥ 1
1 + 𝑣

∑
𝑏∈𝐵 (𝑣)𝑞

1
𝑏 log 𝑃(𝑏) . (33)

Next, for 𝑥 > 𝑒𝑒
𝑒𝑦 we may assume 𝑁𝑣 ⊂ [𝑥,∞) and retain full density. Observe then 𝐵(𝑣) ⊂ [𝑦,∞) is

our candidate L-primitive set. Indeed, for each 𝑛 ∈ 𝑁𝑣 by construction 𝛽(𝑛) is divisible by all primes
𝑞 ∈ 𝐷𝑣 (𝑛), so 𝛽(𝑛) is composite with 𝛽(𝑛) ≥ |𝐷𝑣 (𝑛) | 	𝑣 log log 𝑛 ≥ log log log 𝑥 > 𝑦 for each
𝑏 ∈ 𝐵(𝑣), for y sufficiently large. And note Mertens’ product theorem gives

d(L𝑏) =
1
𝑏

∏
𝑝<𝑃 (𝑏)

(
1 − 1

𝑝

)
=

𝑒−𝛾 + 𝑜𝑦 (1)
𝑏 log 𝑃(𝑏) .

Plugging back into equation (33), we obtain

𝑓 (𝐵(𝑣)𝑞) ≥
𝑒𝛾 + 𝑜𝑦 (1)

1 + 𝑣

∑
𝑏∈𝐵 (𝑣)𝑞

d(L𝑏).

Recall L𝐵 (𝑣) = L𝛽 (𝑁𝑣 ) ⊃ 𝑁𝑣 has full density, which implies (L𝐵 (𝑣) )𝑞 = L𝐵 (𝑣)𝑞 has full relative density
d(L𝐵 (𝑣)𝑞 ) = d(L𝑞). Hence, by Corollary 2.2 this latter sum is∑

𝑏∈𝐵 (𝑣)𝑞

d(L𝑏) = d(L𝐵 (𝑣)𝑞 ) = d(L𝑞).

Thus, taking 𝑦 → ∞ and 𝑣 → 0 gives 𝑓 (𝐵(𝑣)𝑞) → 𝑒𝛾d(L𝑞) as desired. �

Proof of Proposition 5.3. Take L-primitive 𝐴 ⊂ [𝑥,∞), so 𝑝 ≥ 𝑥 for all 𝑝 ∈ 𝐴. Then by Lemma 2.3,

𝑓 (𝐴) =
∑
𝑝

𝑓 (𝐴𝑝) =
∑
𝑝<𝑥

or 𝑝∉𝐴

𝑓 (𝐴𝑝) +
∑

𝑝∈𝐴,𝑝≥𝑥
𝑓 (𝑝)

≤ 𝑒𝛾
∑
𝑝<𝑥

or 𝑝∉𝐴

d(L𝑝) +
∑

𝑝∈𝐴,𝑝≥𝑥
𝑓 (𝑝)

≤ 𝑒𝛾
∑
𝑝

d(L𝑝) +
(
𝑒𝛾 + 𝑜𝑥 (1)

) ∑
𝑝≥𝑥

d(L𝑝) ≤ 𝑒𝛾 + 𝑜𝑥 (1)

by Mertens’ theorem, and noting
∑

𝑝 d(L𝑝) = 1. Thus, lim𝑥 sup𝐴⊂[𝑥,∞) 𝑓 (𝐴) ≤ 𝑒𝛾 . Equality in the
limsup holds for the choice of 𝐵 =

⋃
𝑞 𝐵(𝑣)𝑞 and taking 𝑣 → 0 as in Proposition 5.7. Observe such B

inherits L-primitivity from the 𝐵(𝑣)𝑞 . Note in general, a union 𝐵 =
⋃

𝑞 𝐵𝑞 is L-primitive if each 𝐵𝑞

is L-primitive. (By contrast, 𝐵 =
⋃

𝑞 𝐵𝑞 is not necessarily primitive even if each 𝐵𝑞 is primitive, e.g.,
𝐵 = {3, 6}.)

Next, consider the primes Q = {𝑞 : 𝑓 (𝑞) > 𝑒𝛾d(L𝑞)} = {𝑞 : 1/log 𝑞 > 𝑒𝛾
∏

𝑝<𝑞 (1 − 1
𝑝 )}. By

Lemma 2.3 𝑓 (𝐴𝑞) < 𝑒𝛾d(L𝑞) when 𝑞 ∉ 𝐴, so in general 𝑓 (𝐴𝑞) < max{ 𝑓 (𝑞), 𝑒𝛾d(L𝑞)} for all L-
primitive A and all primes q. Hence,

𝑓 (𝐴) =
∑
𝑞

𝑓 (𝐴𝑞) <
∑
𝑞

max{ 𝑓 (𝑞), 𝑒𝛾d(L𝑞)} = 𝑓 (Q) + 𝑒𝛾
(
1 − d(LQ)).

This bound is attained for the choice of 𝐵′ = Q ∪
⋃

𝑞∉Q 𝐵(𝑣)𝑞 , and taking 𝑣 → 0 as in Proposition 5.7.
Again, 𝐵′ inherits L-primitivity from the 𝐵(𝑣)𝑞 , as desired. �
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6. Deduction of Theorems 1.8, 1.10

Our study of sets of L-multiples leads to Theorem 1.8, refining Davenport–Erdős. This in turn enables
the proof of Theorem 1.10, by a modification of the argument in [16, Theorem 2], with greater care
given to the constants involved.

To proceed, we first establish some lemmas.

Lemma 6.1. For any L-primitive 𝐴 ⊂ N, we have d(L𝐴) ≥
∑

𝑎∈𝐴 d(L𝑎). Moreover, if
∑

𝑎∈𝐴 1/𝑎 < ∞,
then the natural density d(L𝐴) exists and equals

∑
𝑎∈𝐴 d(L𝑎).

Proof. For each 𝑎 ∈ 𝐴, we have d(L𝑎) = d(L𝑎). So taking the lower density of the finite (disjoint) union⋃
𝑎∈𝐴,𝑎≤𝑥 L𝑎 ⊂ L𝐴, we have

∑
𝑎∈𝐴,𝑎≤𝑥 d(L𝑎) ≤ d(L𝐴) for all 𝑥 > 1. Thus,

∑
𝑎∈𝐴 d(L𝑎) ≤ d(L𝐴).

Moreover, if
∑

𝑎∈𝐴 1/𝑎 < ∞, then for all 𝑦 > 1

1
𝑥

∑
𝑛≤𝑥

𝑛∈L𝐴∩(𝑦,∞)

1 ≤ 1
𝑥

∑
𝑎∈𝐴,𝑎>𝑦

⌊ 𝑥

𝑎

⌋
≤

∑
𝑎∈𝐴,𝑎>𝑦

1
𝑎
= 𝑜𝑦 (1).

Thus, d(L𝐴∩(𝑦,∞)) → 0 as 𝑦 → ∞, and so combining with d(L𝐴∩[1,𝑦 ] ) =
∑

𝑎∈𝐴,𝑎≤𝑦 d(L𝑎) completes
the proof. �

The following lemma shows that sets of L-multiples have a log density, refining Davenport–Erdős’
elementary proof for sets of (all) multiples [12].

Lemma 6.2. For any L-primitive 𝐴 ⊂ N, the log density 𝛿(L𝐴) exists and equals
∑

𝑎∈𝐴 d(L𝑎).

Proof. In general, d(𝑆) ≤ 𝛿(𝑆) ≤ 𝛿(𝑆) ≤ d(𝑆) for any 𝑆 ⊂ N. So for 𝑆 = L𝐴, by Lemma 6.1 it
suffices to show ∑

𝑎∈𝐴
d(L𝑎) ≥ 𝛿(L𝐴). (34)

To this, for 𝑦 > 1 let 𝐴𝑦 = {𝑎 ∈ 𝐴 : 𝑃(𝑎) ≤ 𝑦} and 𝐿𝑦 = {𝑛 ∈ L𝐴 : 𝑃(𝑛) ≤ 𝑦}. Note 𝐿𝑦 ⊂ L𝐴𝑦 . Also∑
𝑎∈𝐴𝑦

1
𝑎 ≤

∏
𝑝≤𝑦 (1 − 1

𝑝 )
−1 = 𝑂𝑦 (1), so by Lemma 6.1 d(L𝐴𝑦 ) exists and equals

∑
𝑎∈𝐴𝑦 d(L𝑎) for all

𝑦 > 1. In particular, d(L𝐴𝑦 ) →
∑

𝑎∈𝐴 d(L𝑎) as 𝑦 → ∞.
Now, observe each 𝑛 ∈ L𝐴𝑦 is a L-multiple of a unique 𝑎 ∈ 𝐴𝑦 , so for 𝑥 ≥ 𝑦 > 1 we have

∑
𝑛∈𝐿𝑥∩L𝐴𝑦

1
𝑛
=

∑
𝑎∈𝐴𝑦

1
𝑎

∏
𝑃 (𝑎) ≤𝑝≤𝑥

(1 − 1
𝑝 )

−1 =
∑
𝑎∈𝐴𝑦

1
𝑎

∏
𝑝<𝑃 (𝑎)

(1 − 1
𝑝 )

∏
𝑝≤𝑥

(1 − 1
𝑝 )

−1

= d(L𝐴𝑦 )
∏
𝑝≤𝑥

(1 − 1
𝑝 )

−1. (35)

In particular, for 𝑥 = 𝑦 we have
∑
𝑛∈𝐿𝑥

1
𝑛 = d(L𝐴𝑥 )

∏
𝑝≤𝑥 (1 − 1

𝑝 )
−1.

Then for all 𝑥 ≥ 𝑦 > 1, by equation (35) and Mertens’ theorem

∑
𝑛∈𝐿𝑥\L𝐴𝑦

1
𝑛
=

∑
𝑛∈𝐿𝑥

1
𝑛

−
∑

𝑛∈𝐿𝑥∩L𝐴𝑦

1
𝑛

=
(
d(L𝐴𝑥 ) − d(L𝐴𝑦 )

) ∏
𝑝≤𝑥

(1 − 1
𝑝 )

−1 � (log 𝑥)
(
d(L𝐴𝑥 ) − d(L𝐴𝑦 )

)
. (36)

Recall the natural density d(L𝐴𝑦 ) exists, in which case equals the log density 𝛿(L𝐴𝑦 ). Hence, by equation
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(36), for each 𝑦 > 1 the upper log density is

𝛿(L𝐴) = lim sup
𝑥→∞

1
log 𝑥

∑
𝑛≤𝑥
𝑛∈L𝐴

1
𝑛
≤ lim

𝑥→∞

1
log 𝑥

∑
𝑛≤𝑥

𝑛∈L𝐴𝑦

1
𝑛

+ lim sup
𝑥→∞

1
log 𝑥

∑
𝑛∈𝐿𝑥\L𝐴𝑦

1
𝑛

= 𝛿(L𝐴𝑦 ) + lim
𝑥→∞

𝑂
(
d(L𝐴𝑥 ) − d(L𝐴𝑦 )

)
= d(L𝐴𝑦 ) + 𝑂

( ∑
𝑎∈𝐴

d(L𝑎) − d(L𝐴𝑦 )
)
. (37)

Hence, d(L𝐴𝑦 ) →
∑

𝑎∈𝐴 d(L𝑎) as 𝑦 → ∞ implies 𝛿(L𝐴) ≤
∑

𝑎∈𝐴 d(L𝑎), giving (34). �

Theorem 1.8. If 𝛿(𝐴) > 0, then A contains an infinite L-divisibility chain.

Proof. We claim all such 𝐴 ⊂ N contain an element 𝑎 ∈ 𝐴 such that 𝐴 ∩ L𝑎 has positive upper log
density. (In other words, if 𝛿(𝐴) > 0, then there exists an element 𝑎 ∈ 𝐴 such that 𝛿(𝐴 ∩ L𝑎) > 0.)

Assume this claim holds. Letting 𝐴1 = 𝐴, 𝑎1 = 𝑎, and for 𝑖 ≥ 1 suppose 𝛿(𝐴𝑖) > 0. By the claim,
there exists 𝑎𝑖 ∈ 𝐴𝑖 such that 𝐴𝑖+1 := 𝐴𝑖 ∩ L𝑎𝑖 has positive upper log density. Hence, by induction, we
obtain an L-divisibility chain 𝑎1, 𝑎2, · · · , as desired.

Thus, it remains to establish the above claim. For sake of contradiction, suppose 𝐴 ∩ L𝑎 has zero
log density for all 𝑎 ∈ 𝐴. Next, for the L-primitive generating set 𝐵 = 〈𝐴〉 by Lemma 6.1 𝛿(L𝐵) =∑
𝑏∈𝐵 d(L𝑏) exists. Then for 𝑧 > 1 large enough we have 𝛿(L𝐵∩(𝑧,∞)) =

∑
𝑏∈𝐵,𝑏>𝑧 d(L𝑏) < 𝛿(𝐴). Now,

by assumption 𝛿(𝐴 ∩ L𝑏) = 0 for all 𝑏 ≤ 𝑧, 𝑏 ∈ 𝐵, and so

𝛿(𝐴) = 𝛿(𝐴 ∩ L𝐵∩(𝑧,∞)) ≤ 𝛿(L𝐵∩(𝑧,∞)) < 𝛿(𝐴),

a contradiction. Hence, there exists 𝑎 ∈ 𝐴 such that 𝐴 ∩ L𝑎 has positive upper log density. �

Theorem 1.10. If Δ (𝐴) > 0, then there is an infinite L-divisibility chain 𝐷 ⊂ 𝐴 of growth

lim sup
𝑦→∞

∑
𝑑∈𝐷
𝑑≤𝑦

1
log log 𝑦

≥ Δ (𝐴)
𝑒𝛾

.

Proof. Take 𝜖 > 0. Without loss, we may suppose 𝐴 ⊂ [𝑥𝜖 ,∞) for 𝑥𝜖 sufficiently large so that by
Proposition 5.3 𝑓 (𝐴′) ≤ 𝑒𝛾 + 𝜖 for all L-primitive subsets 𝐴′ ⊂ 𝐴.

By definition of upper log log density Δ := Δ (𝐴) > 0, there exists an unbounded sequence (𝑥 𝑗 )∞𝑗=0 ⊂
R such that for all 𝑗 ≥ 0,

𝑓 (𝐴 ∩ [1, 𝑥 𝑗 ]) =
∑
𝑎∈𝐴
𝑎≤𝑥 𝑗

1
𝑎 log 𝑎

> (Δ − 𝜖) log log 𝑥 𝑗 . (38)

Recall the L-primitive generating set 〈𝑆〉 = {𝑠 ∈ 𝑆 : 𝑠 ∉ L𝑡 ∀𝑡 < 𝑠, 𝑡 ∈ 𝑆} of a set 𝑆 ⊂ N from
Lemma 5.4. We partition 𝐴 =

⋃
𝑖≥0 𝐴𝑖 into a disjoint collection of L-primitive subsets, where 𝐴0 = 〈𝐴〉

and inductively 𝐴𝑙 = 〈𝐴 \
⋃

𝑖<𝑙 𝐴𝑖〉. By construction, each 𝑎 = 𝑎𝑙 ∈ 𝐴𝑙 has a (finite) chain of L-divisors
𝑎𝑖 ∈ 𝐴𝑖 with L𝑎0 ⊃ · · · ⊃ L𝑎𝑙 = L𝑎. Also, note 𝑓 (𝐴𝑖) ≤ 𝑒𝛾 + 𝜖 by assumption, so in particular 𝐴𝑖 has
zero log log density. Hence, equation (38) implies each 𝐴𝑖 in 𝐴 =

⋃
𝑖≥0 𝐴𝑖 is nonempty. Next, define

the subset 𝐵 =
⋃

𝑗≥0 𝐵 𝑗 for

𝐵 𝑗 := 𝐴 ∩ [1, 𝑥 𝑗 ] \
⋃

1≤𝑖<𝑟 𝑗

𝐴𝑖 , where 𝑟 𝑗 :=
Δ − 2𝜖

𝑒𝛾 + 𝜖
log log 𝑥 𝑗 .
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Note the sets 𝐵 𝑗 are pairwise disjoint: Indeed, since 𝐴 =
⋃

𝑖≥0 𝐴𝑖 , for each j we have 𝐴 ∩ [1, 𝑥 𝑗 ] ⊂⋃
𝑖<𝑠 𝑗 𝐴𝑖 for some finite 𝑠 𝑗 , as determined by 𝑥 𝑗 . Then since (𝑥 𝑗 ) 𝑗 is unbounded, (passing to a sub-

sequence) we have 𝑟 𝑗+1 > 𝑠 𝑗 and so 𝐴 ∩ [1, 𝑥 𝑗 ] ⊂
⋃

𝑖<𝑟 𝑗+1 𝐴𝑖 . Thus, 𝐵 𝑗 = 𝐴 ∩ [1, 𝑥 𝑗 ] \
⋃

𝑖<𝑟 𝑗 𝐴𝑖 ⊂⋃
𝑟 𝑗 ≤𝑖<𝑟 𝑗+1 𝐴𝑖 inherits disjointness from the 𝐴𝑖 , as claimed.
Since 𝐵 =

⋃
𝑗≥0 𝐵 𝑗 forms a disjoint union, for each 𝑏 ∈ 𝐵 there is a unique index 𝐽 (𝑏) such that

𝑏 ∈ 𝐵𝐽 (𝑏) , that is,

𝑏 ≤ 𝑥𝐽 (𝑏) and 𝑏 ∉
⋃

𝑖<𝑟𝐽 (𝑏)

𝐴𝑖 . (39)

In addition, B has positive upper log log density, since by definitions of B, 𝑟 𝑗 and equation (38),

𝑓 (𝐵 ∩ [1, 𝑥 𝑗 ]) ≥ 𝑓 (𝐵 𝑗 ) ≥ 𝑓 (𝐴 ∩ [1, 𝑥 𝑗 ]) −
∑
𝑖<𝑟 𝑗

𝑓 (𝐴𝑖)

> (Δ − 𝜖) log log 𝑥 𝑗 − 𝑟 𝑗 (𝑒𝛾 + 𝜖) = 𝜖 log log 𝑥 𝑗 .

In particular, B has positive upper log density, so by Theorem 1.8 there exists an infinite L–divisibility
chain 𝐷 ⊂ 𝐵. Since 𝐷 := (𝑑𝑘 )∞𝑘=0 is unbounded, (by passing to a subchain) we may assume 𝐽 (𝑑𝑘 ) <
𝐽 (𝑑𝑘+1) for all 𝑘 ≥ 0. Recall each 𝑎 ∈ 𝐴𝑖 is at the end of an L-divisibility chain of length i. As 𝑏 ∈ 𝐵𝐽 (𝑏)
and 𝐵 𝑗 is contained in

⋃
𝑟 𝑗 ≤𝑖<𝑟 𝑗+1 𝐴𝑖 , we infer each 𝑑 ∈ 𝐷 ⊂ 𝐵 is at the end of an L-divisibility chain

of length (at least) 𝑟𝐽 (𝑑) . Write it as 𝑐 (𝑘)
0 | 𝑐 (𝑘)

1 | · · · | 𝑐 (𝑘)
𝑟𝐽 (𝑑𝑘 )

= 𝑑𝑘 , with

L
𝑐 (𝑘)

0
⊃ · · · ⊃ L𝑑𝑘 .

Now, let 𝑖𝑘 be the least index such that 𝑐 (𝑘)
𝑖𝑘

> 𝑑𝑘−1 and define

𝐶 := {𝑑𝑘−1 < 𝑐 (𝑘)
𝑖 ≤ 𝑑𝑘 : 𝑘, 𝑖 ≥ 0} =

⋃
𝑘≥0

{𝑐 (𝑘)
𝑖 : 𝑖 ∈ [𝑖𝑘 , 𝑟𝐽 (𝑑𝑘 ) ]}.

We may assume (𝑟 𝑗 ) 𝑗 grows fast enough so that �𝜖 𝑟𝐽 (𝑑𝑘 ) � > 𝑑𝑘−1. Then the trivial bound 𝑐 (𝑘)
𝑖 > 𝑖

implies 𝑐 (𝑘)
�𝜖 𝑟𝐽 (𝑑𝑘 )�

> 𝑑𝑘−1, and so �𝜖 𝑟𝐽 (𝑑𝑘 ) � ≥ 𝑖𝑘 . Thus,

��𝐶 ∩ [1, 𝑥 𝑗 (𝑑𝑘 ) ]
�� ≥

��𝐶 ∩ [𝑑𝑘−1, 𝑑𝑘 ]
�� ≥ (1 − 𝜖)𝑟𝐽 (𝑑𝑘 ) = (1 − 𝜖)Δ − 2𝜖

𝑒𝛾 + 𝜖
log log 𝑥 𝑗 (𝑑𝑘 ) . (40)

Hence, taking 𝜖 → 0 in equation (40) above gives lim sup𝑥→∞
∑
𝑐∈𝐶,𝑐≤𝑥 1/log log 𝑥 ≥ Δ/𝑒𝛾 as desired.

Finally, note C forms an infinite L-divisibility chain: For each k we have 𝑐 (𝑘)
𝑗 ∈ L

𝑐
(𝑘)
𝑖

for all 𝑖𝑘 ≤ 𝑖 < 𝑗 ,
in particular 𝑑𝑘 ∈ L

𝑐
(𝑘)
𝑖

. Also, 𝑑𝑘 ∈ L𝑑𝑘−1 since D is an L-divisibility chain, so there exist factorizations

𝑑𝑘 = 𝑔𝑐 (𝑘)
𝑖 = ℎ𝑑𝑘−1,

with 𝑝(𝑔) ≥ 𝑃(𝑐 (𝑘)
𝑖 ) and 𝑝(ℎ) ≥ 𝑃(𝑑𝑘−1). As 𝑐 (𝑘)

𝑖 > 𝑑𝑘−1, we deduce 𝑐 (𝑘)
𝑖 ∈ L𝑑𝑘−1 . Thus, the kth and

(𝑘 − 1)th pieces of C are linked together. Hence, C is indeed an L-divisibility chain. �

7. Closing remarks

In this discussion, we attempt to sample just a few of the multitude of open questions that have quickly
arisen in connection with the Erdős primitive set conjecture. We have already described a few in the
introduction, including Conjecture 1.4, as well as whether 𝑝 = 2 is Erdős strong. We also note recent
work has studied variants of the problem in function fields F𝑞 [𝑥]; see [6], [7]. In addition, it would
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be interesting to further extend the classical study of sets of (all) multiples and of primitive sets,for
example, see Hall [21] or Halberstam–Roth [20, §5], to sets of L-multiples and L-primitive sets.

We conclude with a related question of Banks and Martin, which offers a potential unified framework
to view the results described in this article. For 𝑘 ≥ 1, recallN𝑘 = {𝑛 : Ω(𝑛) = 𝑘}, in particularN1 = P .
In 1993, Zhang [33] proved 𝑓 (N𝑘 ) < 𝑓 (P) for each 𝑘 > 1. Later Bayless, Kinlaw and Klyve [3] showed
that 𝑓 (N2) > 𝑓 (N3). Banks and Martin [2] predicted 𝑓 (N𝑘 ) < 𝑓 (N𝑘−1) for each 𝑘 > 1. In fact, they
posed a vast generalization to Conjecture 1.1.

Conjecture 7.1 (odd Banks–Martin). Let 𝑘 ≥ 1 and suppose A is a primitive set with Ω(𝑛) ≥ 𝑘 for all
𝑛 ∈ 𝐴. Then for any set of odd primes Q, we have

𝑓 (𝐴(Q)) ≤ 𝑓
(
N𝑘 (Q)

)
. (41)

Here, 𝐴(Q) denotes the set of members of A composed of primes in Q.

Banks and Martin managed to show equation (41) in the special case when the set of primes Q
is quite sparse, namely

∑
𝑝∈Q 1/𝑝 < 1.74 (even when 2 ∈ Q). We note the original formulation of

Conjecture 7.1 included the cases 2 ∈ Q, but this turns out to be false. Indeed, when Q = P it was
shown 𝑓 (N𝑘 ) > 𝑓 (N6) for each 𝑘 ≠ 6 [25]. In fact, numerical evidence suggests that in fact the
reverse holds 𝑓 (N𝑘 ) > 𝑓 (N𝑘−1) for 𝑘 > 6. Nevertheless, for Q = P \ {2}, the desired inequality
𝑓 (N𝑘 (Q)) < 𝑓 (N𝑘−1(Q)) holds up to at least 𝑘 = 20.

Observe that Theorem 1.3 implies Conjecture 7.1 in the special case 𝑘 = 1. Indeed, if 𝑝 ∉ Q,
then 𝐴(Q)𝑝 = ∅, so we deduce 𝑓 (𝐴(Q)) =

∑
𝑝∈Q 𝑓 (𝐴(Q)𝑝) ≤

∑
𝑝∈Q 𝑓 (𝑝) = 𝑓 (Q). Moreover, if

true, Conjecture 7.1 implies Conjecture 1.4 of Erdős–Sárközy–Szemerédi. This follows by an argument
similar to Theorem 1.5, and using 𝑓 (N𝑘 (Q)) → 1/2 as 𝑘 → ∞ when Q = P \ {2}; see [25, Corollary
4.2]. We leave this to the interested reader.
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