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Local Heuristics and an Exact Formula for
Abelian Surfaces Over Finite Fields

Jeòrey Achter and CassandraWilliams

Abstract. Consider a quartic q-Weil polynomial f . Motivated by equidistribution considerations,
we deûne, for each prime ℓ, a local factor that measures the relative frequency with which f mod
ℓ occurs as the characteristic polynomial of a symplectic similitude over Fℓ . For a certain class
of polynomials, we show that the resulting inûnite product calculates the number of principally
polarized abelian surfaces over Fq with Weil polynomial f .

1 Introduction

Consider abelian varieties over a ûnite ûeld. With each such X/Fq onemay associate
a characteristic polynomial of Frobenius, fX/Fq(T) ∈ Z[T], and two abelian varieties
X and Y are isogenous if and only if fX/Fq(T) = fY/Fq(T). In thisway, isogeny classes
of abelian varieties over Fq are parametrized by suitable q-Weil polynomials f (T).
Conversely, given such a polynomial f , it is of intrinsic interest to calculate how

many abelian varieties are in the corresponding isogeny class. In fact, a polarized
variant of this problem seems evenmore natural. LetAg be themoduli space of prin-
cipally polarized abelian varieties of dimension g, and let

Ag(Fq ; f ) = {(X , λ) ∈ Ag(Fq) ∶ fX/Fq(T) = f (T)} .

Armedwith an (overly optimistic) equidistribution philosophy, onemight attempt to
estimate #Ag(Fq ; f ) in the following fashion. To the extent possible, Frobenius ele-
ments of abelian varieties are equidistributed in GSp2g(Fℓ). By somehowmultiplying
together, over all ℓ, the frequency withwhich f (T) mod ℓ occurs as the characteristic
polynomial of a symplectic similitude, onemight try to apprehend #Ag(Fq ; f ).
As written, this strategy is nonsense; for given g and ℓ, mod ℓ Frobenius elements

are equidistributed only if q ≫g ℓ. Nonetheless, such congruence considerations
apparently control the sizes of isogeny classes.

Our main result is as follows. For f in a certain class of simple, ordinary q-Weil
polynomials of degree 4 (see Section 2), we deûne for each prime ℓ a quantity νℓ( f )
(see (4.1)) that measures its relative frequency as the characteristic polynomial of an
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674 J. Achter and C. Williams

element of GSp4(Fℓ). A�er deûning a Sato–Tate term ν∞( f ), we show that

(1.1) ν∞( f )∏
ℓ

νℓ( f ) = #A2(Fq ; f )

(where a principally polarized abelian surface is given mass inversely proportional to
the size of its automorphism group).

_iswork is inspired by work ofGekeler [5],who derived a version of (1.1) for ellip-
tic curves over a ûnite prime ûeld. Our perspective was in�uenced by Katz’s analysis
[8] of Gekeler’s product formula.

2 Abelian Varieties and Weil Polynomials

Let X/Fq be an abelian variety of dimension g over a ûnite ûeldwith q = pe elements,
and let fX/Fq(T) ∈ Z[T] be the characteristic polynomial of its Frobenius endomor-
phism (acting on, say, any of the Tate modules TℓX with ℓ /= p). _en fX/Fq(T) is a
q-Weil polynomial, i.e., the complex roots α1 , . . . , α2g of fX/Fq(T) may be ordered so
that α jαg+ j = q for 1 ≤ j ≤ g, and in fact ∣α j ∣ =

√q for each j.
Now assume that f (T) is a q-Weil polynomial of degree 4; such a polynomial cor-

responds to a (possibly empty) isogeny class I f of abelian surfaces over Fq . In the
sequel, we will assume that f has the following properties:
(W.1) (ordinary) Its middle coeõcient is relatively prime to p.
(W.2) (principally polarizable) _ere exists a principally polarized abelian surface

with characteristic polynomial f .
(W.3) (Galois) _e polynomial f (T) is irreducible over Q, and K f ∶= Q(T)/ f (T) is

Galois and unramiûed at p.
(W.4) (maximal) Let ϖ f be a (complex) root of f (T), with complex conjugate ϖ f .

_en O f ∶= Z[ϖ f ,ϖ f ], a priori an order in K f , is actually the maximal or-
der OK f .

Conditions (W.1) and (W.3) imply that any abelian surface in A2(Fq ; f ) is ordinary
and simple. Condition (W.2) is explicitly characterized, in terms of the coeõcients of
f , in [7,_m. 1.3]. Condition (W.4) is indeed an extra hypothesis, which we hope to
relax in a future work. _e isomorphism class of O f , as an abstract order, is indepen-
dent of the choice of ϖ f .

Note that Gal(K f /Q) is abelian, since [K f ∶Q] = 4, and there is an intrinsically de-
ûned complex conjugation ι ∈ Gal(K f /Q), since K f is a CM ûeld. As in the descrip-
tion of Condition (W.4), we will o�en denote the action of ι on an element α ∈ K f by
α = ι(α). If R is any ring, then ι acts on OK f ⊗ R via the ûrst component.

Example 2.1 _e polynomial f (T) = T4 +29T3 + 331T2 + 1769T + 3721 is a 61-Weil
polynomial that is ordinary, principally polarizable, Galois, andmaximal. In fact, O f
is the ring of integers inQ(ζ5), and f is the characteristic polynomial of Frobenius of
the Jacobian of the curve with aõne equation y2 = x5 − 2.

Deûne the conductor of f , cond( f ), as the index of Z[ϖ f ] ≅ Z[T]/ f (T) inO f . If
f (T) = T4 − aT3 + bT2 − aTq + q2, let f +(T) = T2 − aT + (b − 2q); then f +(T) is
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the minimal polynomial of ϖ f + ϖ f , and K+
f ∶= Q[T]/ f +(T) is the maximal totally

real subûeld of K f . Denote the discriminants of f (T) and f +(T) by ∆ f and ∆ f + ,
respectively. Similarly, let ∆O represent the discriminant of an order O; notice that
∆Z[ϖ f ] = ∆ f and ∆OK+

= ∆ f + .

Lemma 2.2 _e index of Z[ϖ f ] in O f is q.

Proof Using the above deûnition of f and [7, Propositions 9.4 and 9.5],

∆O f = ∆
2
f + ⋅ NK f /Q(ϖ f − ϖ f ) = (a2 − 4b + 8q)2(b2 + 4bq + 4q2 − 4a2q).

_e discriminant of Z[ϖ f ] is given by

∆Z[ϖ f ] = ∆ f = q2(a2 − 4b + 8q)2(b2 + 4bq + 4q2 − 4a2q) = q2∆O f

and ∆ f = [O f ∶ Z[ϖ f ]]
2∆O f . _en the desired index is q.

Corollary 2.3 If ℓ /= p, then OK f ⊗Z(ℓ) ≅ Z(ℓ)[T]/ f (T).

Similarly, Z[T]/ f +(T) is maximal.

Lemma 2.4 _e order Z[T]/ f +(T) is themaximal order OK+f
.

Proof Condition (W.4) implies that O f ∩ K+
f = OK f ∩ K+

f = OK+f
. Certainly

Z[T]/ f +(T) = Z[ϖ f + ϖ f ] ⊆ O f ∩ K+
f .

Consider a ∈ O f ; then a = a0 + a1ϖ f + a2ϖ f + a3ϖ fϖ f for some integers a i . We
have ϖ fϖ f = q as f is a q-Weil polynomial, and a ∈ K+

f if and only if a1 = a2. _en
a ∈ O f ∩ K+

f has the form a = (a0 + a3q) + a1(ϖ f + ϖ f ) and O f ∩ K+
f ⊆ Z[ϖ f + ϖ f ].

_us, Z[ϖ f + ϖ f ] = OK+f
.

3 Conjugacy Classes in Symplectic Groups

If X/Fq is a principally polarized abelian surface, then the four-dimensionalFℓ-vector
space Xℓ ∶= X[ℓ](Fq) is naturally equipped with a symplectic form. We collect some
notation concerning symplectic (similitude) groups.

3.1 Symplectic Groups

Let V be a vector space of dimension 2g over a ûeld k, equippedwith a perfect, skew-
symmetric form ⟨ ⋅ , ⋅ ⟩. _e symplectic similitude group of V is the group of auto-
morphisms that preserve this form up to amultiple. Concretely,

GSp(V , ⟨ ⋅ , ⋅ ⟩) = {γ ∈ GL(V) ∶ ∃m(γ) ∈ k× ,∀u, v ∈ V , ⟨γu, γv⟩ = m(γ)⟨u, v⟩} .
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_e group of automorphisms of the symplectic space is the symplectic group,
Sp(V , ⟨ ⋅ , ⋅ ⟩), and these groups sit in an exact sequence

1Ð→ Sp(V , ⟨ ⋅ , ⋅ ⟩)Ð→ GSp(V , ⟨ ⋅ , ⋅ ⟩) mult
ÐÐ→ k× Ð→ 1 .(3.1)

γ z→ m(γ)

For m ∈ k×, we let GSp(V , ⟨ ⋅ , ⋅ ⟩)(m) = mult−1(m).
Call a decomposition V = W1 ⊕W2 symplectic if, for each i, ⟨ ⋅ , ⋅ ⟩∣Wi is a perfect

pairing; and isotropic if, for some i, ⟨ ⋅ , ⋅ ⟩∣Wi = 0.
In fact, any symplectic space V of dimension 2g is isomorphic to k⊕2g , equipped

with the pairing described by the 2g × 2g matrix

J = (
0 1g
−1g 0) ;

the associated similitude and symplectic groups are GSp2g(k) and Sp2g(k), respec-
tively.

3.2 Shapes of Conjugacy Classes

In a general linear group GL(V), semisimple conjugacy classes are parametrized by
the theory of rational canonical form(RCF),which gives a decomposition of any auto-
morphism of a vector space into a direct sum of cyclic automorphisms over invariant
subspaces. (An automorphism is cyclic if and only if its minimal and characteristic
polynomials coincide.) Speciûcally, we factor the characteristic polynomial of γ into
a product of irreducible polynomials

fγ(T) =∏
i
(ϕ i(T))

λ i

and then associate with each factor ϕ i a partition of its multiplicity λ i . Denote the
partition by [λ i ,1 , λ i ,2 , . . . , λ i ,n], where λ i ,1 ≥ λ i ,2 ≥ ⋅ ⋅ ⋅ ≥ λ i ,n . _en V has a γ-
invariant subspace with characteristic polynomial ϕλ i , j

i for each 1 ≤ j ≤ n, and γ
restricted to each of these subspaces is cyclic. Note that the minimal polynomial of
γ is the product of ϕλ i ,1

i , so γ is cyclic if and only if the partition of λ i consists of a
single part for each ϕ i . _us, arbitrary conjugacy classes in GL2g(k) are determined
by their characteristic polynomial and additional partition data.

_e classiûcation of conjugacy classes in GSp2g(k) is more intricate for two rea-
sons. First, for elements with repeated eigenvalues, the presence of the symplectic
form places nontrivial restrictions on allowable partition data. Second, elements of
GSp2g(k) that are conjugate in GL2g(k) need not be conjugate in the symplectic
similitude group; certain GL2g-conjugacy classes decompose into classes indexed by
k×/(k×)2. (For details of this decomposition, see, for example, [4] or [10]. Alterna-
tively, compare our results to those of [1] or [9].)

In the sequel, we will only need the case where g = 2 and k = Fℓ is a ûnite ûeld.
Let C(γ) denote the conjugacy class of γ. We distinguish conjugacy classes by the
factorization pattern of their characteristic polynomials fγ(T) into irreducible poly-
nomials over Fℓ , and then reûne thiswith additional combinatorial data, if necessary.
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_e resulting collection of data associated with C(γ) will be called the shape of γ, or
of its conjugacy class.

Our enumeration of conjugacy classes in GSp4(Fℓ) is purposefully incomplete;we
only include those that arise in our subsequent study of abelian surfaces. First,we only
consider those classes forwhich all irreducible factors of the characteristic polynomial
have the same degree. (Brie�y call such a class “relevant”.) Second, we only list those
conjugacy classes corresponding to regular or cyclic elements. In general, an element
of an algebraic group γ ∈ G(k) is called regular if the dimension of its centralizer,
dimZG(γ), is minimal, i.e., equal to the rank of G. In the case of G = GSp4, it is
equivalent to insisting that γ be cyclic in the standard representation, i.e., that there
exists v ∈ V such that {γ iv ∶ i ≥ 0} spans V . As usual, a semisimple element is regular
if and only if its eigenvalues are distinct.

Let fγ(T) =∏ j g j(T)e j be the factorization of fγ(T) into powers of distinct, irre-
duciblemonic polynomials of equal degree. To this factorization of fγ(T) there is an
associated factorizationV ≅⊕Wj ,where γ∣Wj has characteristic polynomial g j(T)e j .
For each j, either ⟨ ⋅ , ⋅ ⟩∣Wj is zero or it is perfect; call these factorizations isotropic and
symplectic, respectively.

Case 1: Regular semisimple elements

A regular semisimple conjugacy class is one for which the elements have a squarefree
characteristic polynomial. We classify such conjugacy classes by the factorization of
fγ(T) (over Fℓ) and by m(γ); let a i ∈ Fℓ be distinct and g1 ≠ g2. _en Table 3.1 is
a complete classiûcation of relevant regular semisimple conjugacy class shapes. (In
each of these cases, all e j = 1 and so we omit the trivial partition data from RCF.)

Class shape fγ(T) m(γ)
Split ∏

4
j=1(T − a j) m = a1a3 = a2a4

DQ-S g1(T)g2(T) m = g j(0) (symplectic)
DQ-I g1(T)g2(T) m ≠ g j(0),m2 = g1(0)g2(0) (isotropic)
Quartic g(T) m2 = g(0)

Table 3.1: Regular semisimple conjugacy class shapes

Case 2: Non-semisimple elements

As stated above, if fγ(T) is not squarefree, then γ is cyclic if and only if all of the
associated partitions aremaximal (consist of a single part). In fact, such a conjugacy
class is determined by a signed partition (the sign corresponds to a choice of coset
in F×ℓ /(F×ℓ )2 as discussed above) and Table 3.2 completes our list of relevant cyclic
conjugacy class shapes. (As in Table 3.1, the a i ∈ Fℓ are distinct.)
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Class shape fγ(T) m(γ) Partition
QRL (T − a)4 m = a2 [4]
DRL-S (T − a)2(T + a)2 m = a2 (symplectic) {[2], [2]}±
DRL-I (T − a1)2(T − a2)

2 m = a1a2 (isotropic) [2]
RQ-1 [g(T)]2 m = g(0) [2]
RQ-2 (T2 −m)2 m ≠ ◻ [2]±

Table 3.2: Non-semisimple cyclic conjugacy class shapes

(For the conjugacy class shape DRL-I, the partition [2] corresponds to the factor
(T − a1)(T − a2) in fγ(T), and thus to a subspace with characteristic polynomial
(T − a1)(T − a2).)

Note that, for a ûxed characteristic polynomial f of shapeDRL-S or RQ-2, the set
of cyclic elements with characteristic polynomial f forms two conjugacy classes. For
example, for a nonsquare x ∈ F×ℓ ,

γ1 =

⎛
⎜
⎜
⎜
⎝

a 1
−a 1

a
−a

⎞
⎟
⎟
⎟
⎠

and γ2 =

⎛
⎜
⎜
⎜
⎝

a 1
−a x

a
−a

⎞
⎟
⎟
⎟
⎠

are both elements of shape DRL-S. (Veriûcation of this fact is discussed in the proof
of Lemma 3.2.) _ematrix

Z =

⎛
⎜
⎜
⎜
⎝

z1 z3
z2 z4

z1
z2x

⎞
⎟
⎟
⎟
⎠

conjugates γ1 to γ2 over GL4(Fℓ), but is an element of GSp4(Fℓ) if and only if z2
1 =

z2
2x. Since x is nonsquare, γ1 and γ2 are not conjugate in GSp4(Fℓ), although they are
conjugate in GSp4(Fℓ2). (A similar argument shows that we also have two classes of
shape RQ-2.)

3.3 Centralizer Orders

We determine the size of each of the conjugacy classes C(γ) listed in Tables 3.1 and
3.2 by computing the order of the centralizer of the representative γ. LetZGSp4(Fℓ)(γ)
denote the centralizer of γ in GSp4(Fℓ).
A representative of a regular semisimple conjugacy class is an element of a unique

maximal torus ofGSp4(Fℓ), and the centralizer of such a γ is that maximal torus [3].
We use the structure of thesemaximal tori to compute the sizes of the centralizers of
the regular semisimple class shapes.
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Lemma 3.1 Let C(γ) have one of the conjugacy class shapes listed in Table 3.1. _en

#ZGSp4(Fℓ)(γ) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(ℓ − 1)3 if C(γ) is Split,
(ℓ + 1)2(ℓ − 1) if C(γ) is DQ-S,
(ℓ + 1)(ℓ − 1)2 if C(γ) is DQ-I,
(ℓ2 + 1)(ℓ − 1) if C(γ) is Quartic.

Proof In each case, we determine the size of the appropriate torus. For example,
if C(γ) is Quartic, the polynomial fγ(T) has roots t, tℓ , tℓ

2
, and tℓ

3
in F×ℓ4 in one

orbit under the action of Galois. Two pairs of roots have product m(γ) ∈ F×ℓ since
γ ∈ GSp4(Fℓ). _e element ttℓ cannot lie in F×ℓ when t ∈ Fℓ4 ∖Fℓ2 , thus ttℓ

2
= m(γ).

_emap t ↦ ttℓ
2
is thenormmapofFℓ4 overFℓ2 . _ere are ℓ4−1

ℓ2−1 ⋅(ℓ−1) = (ℓ2+1)(ℓ−1)
elements of F×ℓ4 whose Fℓ2 -norm lies in F×ℓ , which is the size of the torus and thus the
centralizer. _e other centralizer orders are computed analogously.

Determining the centralizer orders of the non-semisimple class shapes requires
more eòort.

Lemma 3.2 Suppose C(γ) has one of the conjugacy class shapes listed in Table 3.2.
_en

#ZGSp4(Fℓ)(γ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ℓ2(ℓ − 1) if C(γ) is QRL,
2ℓ2(ℓ − 1) if C(γ) is DRL-S,
ℓ(ℓ − 1)2 if C(γ) is DRL-I,
ℓ(ℓ2 − 1) if C(γ) is RQ-1,
2ℓ2(ℓ − 1) if C(γ) is RQ-2.

Proof For each conjugacy class shape, ûnd an explicit cyclic representative γ ∈
GSp4(Fℓ) such that fγ and m(γ) are as given in Table 3.2. _en ûnd a genericmem-
ber C of the centralizer of γ and use it to ûnd the size ofZGSp4(Fℓ)(γ). (For theDRL-S
andRQ-2 shapes, two distinct non-conjugate representatives are needed for the+ and
− classes.)
As an example, reconsider our previous examplewhere C(γ) isDRL-S. It is easy to

verify that the representatives γ1 and γ2 given earlier are cyclic elements ofGSp4(Fℓ)
with characteristic polynomial (T − a)2(T + a)2 and m(γ) = a2. _ematrix

C =

⎛
⎜
⎜
⎜
⎝

c1 c3
c2 c4

c1
c2

⎞
⎟
⎟
⎟
⎠

centralizes both γ1 and γ2 with the conditions that c1 ∈ F×ℓ , c2 = ±c1, and c3 , c4 ∈ Fℓ .
_en each class has a centralizer of order 2ℓ2(ℓ − 1).

_e rest of the computations are similar and are omitted here.

https://doi.org/10.4153/CMB-2015-050-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2015-050-8


680 J. Achter and C. Williams

4 Local Factors for f
Given f , we will deûne terms νℓ( f ) for each ûnite prime of ℓ, as well as an archime-
dean term ν∞( f ). For ûnite primes ℓ /= p, we let νℓ( f ) be the probability that a
random element of GSp4(Fℓ)

(q) has characteristic polynomial f , and compare this
probability to the corresponding probability for a “typical” polynomial. (_is is a
higher-dimensional analogue ofGekeler’s philosophy and concomitant deûnition for
elliptic curves [5, Sec. 3]; see Section 6.4 for a brief discussion of why, in the presence
of Condition (W.4), it suõces to work with a simpler deûnition than that of [5].) _e
deûnitions of νp( f ) and ν∞( f ) aremore intricate, but guided by a similar philosophy.

4.1 νℓ( f )

First, suppose ℓ /= p is a ûnite rational prime. _e Frobenius endomorphism ϖX/Fq

of a principally polarized abelian variety X/Fq acts as an automorphism of Xℓ . _e
polarization induces a symplectic pairing on Xℓ ; ϖX/Fq scales this pairing by a factor
of q, and wemay think of ϖX/Fq as an element of GSp(Xℓ)

(q) ≅ GSp4(Fℓ)
(q) (recall

the notation surrounding (3.1)).
(Brie�y) setting aside abelian varieties, there are ℓ2 polynomials that occur as char-

acteristic polynomials of elements of GSp4(Fℓ)
(q). _e average frequency (over all

such polynomials) with which a given polynomial occurs as the characteristic poly-
nomial of an element of GSp4(Fℓ)

(q) is #GSp4(Fℓ)
(q)/ℓ2.

Consequently, at least for ℓ unramiûed in K f , we measure the departure of the
frequency of occurrence of f from the average such frequency by

(4.1) νℓ( f ) =
#{γ ∈ GSp4(Fℓ)

(q) ∶ fγ ≡ f mod ℓ}
#GSp4(Fℓ)(q)/ℓ2

.

(An extension of this deûnition to all ℓ /= p is given below in (5.1).)

4.2 νp( f )

By way of motivation, suppose that X/Fq is an ordinary abelian surface, with char-
acteristic polynomial of Frobenius fX/Fq(T) = T4 − aXT3 + bXT2 − qaXT + q2.
Since X is ordinary (and Fq is perfect), there is a canonical decomposition X[p] ≅
X[p]et⊕X[p]tor of the p-torsion group scheme into étale and toric components. Note
that Xp ∶= X[p](Fq) is actually X[p]et(Fq) ≅ (Z/p)2. _e Fq-rational structure of
X[p]et is captured by the action of the q-power Frobenius on Xp . In fact, ϖX/Fq acts
invertibly on Xp , with characteristic polynomial gX/Fq(T) ∶= T2 − aXT + bX mod p.

Now, X[p]tor is connected, and speciûcally X[p]tor(Fq) is a single point, but its
Cartier dual is étale. In particular (X[p]tor)∗(Fq) ≅ (Z/p)2, and the action of Frobe-
nius on this Galois module (again) has characteristic polynomial gX/Fq(T).
Finally, recall that the Frobenius operator must preserve the canonical decompo-

sition of X[p] into its étale and toric parts.
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Because of these considerations, we set

νp( f ) =
#{γ ∈ GSp4(Fp)

(b2) ∶ fγ ≡ (T2 − aT + b)2 mod p and γ semisimple}
#GSp4(Fp)(b

2)/p2 .

4.3 ν∞( f )

It remains to deûne an archimedean term; our choice comes from the Sato–Tatemea-
sure, which (conjecturally) explains the distribution of Frobenius elements of abelian
surfaces.

Recall that semisimple conjugacy classes in the compact groupUSp4 areparametri-
zed by (“Frobenius angles”) 0 ≤ θ1 ≤ θ2 ≤ π. _e Sato–Tate measure on the space of
Frobenius angles is simply the pushforward of Haar measure. Explicitly, the Weyl
integration formula [11, p. 218, 7.8B] shows that this measure is

µST(θ1 , θ2) =
16
π2 (cos(θ2) − cos(θ1))

2
sin2(θ1) sin2(θ2) dθ1 dθ2 .

Once q is ûxed, a pair of angles {θ1 , θ2} gives rise to a q-Weil polynomial

∏
j=1,2

(T −
√

q exp(iθ j))(T −
√

q exp(−iθ j)) ;

the inducedmeasure on the space of q-Weil polynomials is

µST(a, b) =
1

4q3π2

√
(a2 − 4b + 8q)(b2 + 4bq + 4q2 − 4a2q) da db.

Note that, since there are approximately qdimA2 = q3 principally polarized abelian
surfaces over Fq , abelian varieties, q3µST(a, b) is a sort of archimedean prediction
for #A2(Fq ; f ). Guided by this and the calculations of Lemma 2.2, we set

(4.2) ν∞( f ) =
1

cond( f )4π2

¿
Á
ÁÀ∣

∆ f
∆ f +

∣ .

5 The Shape of Frobenius

Fix a q-Weil polynomial satisfying Conditions (W.1)–(W.4). To ease notation slightly,
wewillwrite K for K f and, given Condition (W.4), writeOK forO f . Suppose X/Fq is
a principally polarized abelian variety such that OK ⊆ End(X); we choose the polar-
ization so that the Rosati involution on End(X) induces complex conjugation onOK .
On ℓ-torsion, the principal polarization induces a symplectic pairing on Xℓ ; com-
plex conjugation on OK ⊗ Fℓ is adjoint with respect to this pairing, and we obtain
ρℓ(ϖ f ) ∈ GSp(Xℓ). Our goal in this section is to relate the shape of ρℓ(ϖ f ) (in the
sense of Section 3.2) to the structure of f (T) mod ℓ.

Of course, all of this can be formulated without recourse to abelian varieties. Let
κ(ℓ) = OK ⊗ Fℓ ; it is a four-dimensional vector space over Fℓ . Choose a symplectic
pairing ⟨ ⋅ , ⋅ ⟩ on κ(ℓ) for which complex conjugation on OK ⊗ Fℓ is the adjoint with
respect to ⟨ ⋅ , ⋅ ⟩. (If ℓ ∤ ∆K , one can explicitly construct such a pairing as follows.
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Choose α ∈ OK relatively prime to ℓ such that α = −α. _en the reduction modulo ℓ
of the pairing

OK ×OK - Z
(x , y) - trK/Q(αxy)

is a suitable form.) Such a form is canonically deûned up to scaling, and in particular
its group of symplectic similitudes is independent of the choice of form.

_en ϖ f acts on κ(ℓ). Let γℓ be the image of ϖ f in GSp(κ(ℓ)); our goal is to use
the splitting behavior of f (T) mod ℓ to compute the cyclic shape of γℓ , i.e., the shape
of any cyclic element whose semisimpliûcation is conjugate to γℓ .

In fact, we deûne

(5.1) νℓ( f ) =
#{γ ∈ GSp4(Fℓ) ∶ γ is cyclic, with semisimpliûcation γℓ}

#GSp4(Fℓ)(q)/ℓ2
.

Lemma 5.1 If ℓ ∤ p∆K , then deûnitions (4.1) and (5.1) coincide.

Proof If ℓ ∤ p∆K , then ℓ ∤ ∆ f . _erefore, f (T) mod ℓ has distinct roots, and γℓ is
regular semisimple. _e classiûcation in Table 3.1 shows that if f (T) mod ℓ is either
irreducible or a product of linear factors, then any element with characteristic poly-
nomial f (T) mod ℓ is actually conjugate to γℓ . If f (T) mod ℓ is a product of distinct
irreducible quadratic polynomials, then the possible shapes of γℓ are distinguished by
their multiplier, but one knows that the multiplier of γℓ is q. _e claim now follows
once one recalls that a regular semisimple element is cyclic.

Note that, tautologically, the characteristic polynomial of γℓ is exactly the reduc-
tion of f (T). If, for instance, f (T) mod ℓ is irreducible, then a moment’s re�ection
(or a glance at Tables 3.1 and 3.2) reveals that γℓ is Quartic.

However, it sometimes happens (e.g., withDQ-S andDQ-I) that the factorization
pattern of f alone does not determine the shape of γ.

Since κ(ℓ) = OK/ℓ ≅ Fℓ[T]/ f (T) (Corollary 2.3), the factorization of f (T) mod ℓ
is precisely determined by the splitting of ℓ in OK . We have

κ(ℓ) ≅⊕
λ∣ℓ

κ(ℓ)λ ,

where λ ranges over all primes of K which lie over ℓ. (In fact, the dimension of κ(ℓ)λ
over the residue ûeld OK/λ is e(λ/ℓ), the ramiûcation index of λ.)
For the sequel, it is worth singling out the following immediate observation.

Lemma 5.2 _e symplectic pairing induces a perfect duality between κ(ℓ)λ and
κ(ℓ)λ .

Proof We have chosen ⟨ ⋅ , ⋅ ⟩ such that the involution induced by complex conjuga-
tion is the adjoint with respect to ⟨ ⋅ , ⋅ ⟩.

Consider a ûniteGalois extension L/Qwith Gal(L/Q) = G. If ℓ is a rational prime
and λ is a prime of OL lying over ℓ, the decomposition group and inertia group of λ
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are, respectively,

D(λ/ℓ) = {σ ∈ G ∶ σ(λ) = λ}
I(λ/ℓ) = {σ ∈ G ∶ ∀β ∈ OL , σ(β) ≡ β mod λ}.

_en I(λ/ℓ) isnormal inD(λ/ℓ). In fact,wewill onlyuse thesenotions for the abelian
extensionK/Q, and thus the inertia and decomposition groups depend only on ℓ, and
not on the choice of λ. Hence we write I(ℓ) and D(ℓ) for I(λ/ℓ) and D(λ/ℓ).

Let f (T) ≡ ∏1≤ j≤r g j(T)e j mod ℓ be the factorization of f (T) mod ℓ into irre-
duciblemonic polynomials. SinceOK/ℓ ≅ Fℓ[T]/ f (T), there are r primes, λ1 , . . . , λr
of K lying over ℓ;OK/λ i has degree deg g i over Fℓ ; and the ramiûcation index of λ i is
e i . Note that the quantities deg g i and e i are independent of i as K/Q is Galois. (_is
is why we restricted to relevant conjugacy classes in Section 3.2.)
Finally, if ℓ ∤ ∆ f then there exists an element of Gal(K/Q) which induces the

canonical generator of Gal(κ(λ)/Fℓ). Let FrobK(ℓ) ∈ Gal(K/Q) be this element,
called the Frobenius endomorphism of λ over ℓ.

5.1 K Cyclic

Suppose that Gal(K/Q) is cyclic, with generator σ . Note that complex conjugation
is given by ι = σ 2. We classify the splitting behavior of rational primes ℓ in K by
enumerating the possibilities for D(ℓ) and I(ℓ).

Lemma 5.3 Suppose f satisûes Conditions (W.1)–(W.4)with cyclicGalois group gen-
erated by σ . Let ℓ /= p be a rational prime. _e cyclic shape of γℓ is determined by the
decomposition and inertia groups D(ℓ) and I(ℓ) as in Table 5.1.

_us, for instance, Lemma 5.3 asserts that if D(ℓ) = ⟨σ 2⟩ and I(ℓ) = ⟨1⟩, then
γℓ has cyclic shape DQ-S. Note that if γℓ has cyclic shape RQ-2, then there are two
conjugacy classes with cyclic shape γℓ . Otherwise, the cyclic shape of γℓ determines
a unique conjugacy class.

Proof In Table 5.1, we have enumerated all of the possibilities for pairs of subgroups
I(ℓ) ⊆ D(ℓ) ⊆ Gal(K/Q). For each such pair, in the prime factorization of f (T) mod
ℓ, there are r = #Gal(K/Q)/#D(ℓ) distinct irreducible factors. Each has degree f =
#D(ℓ)/#I(ℓ) and multiplicity e = #I(ℓ) . When I(ℓ) ⊆ D(ℓ) is either {1} ⊆ {1},
{1} ⊂ ⟨σ⟩, or ⟨σ⟩ ⊆ ⟨σ⟩, this factorization pattern already determines the cyclic shape
of γℓ .

Of the remaining cases, we ûrst consider those in which D(ℓ) = ⟨σ 2⟩. Let λ be
one of the two primes of K lying over ℓ. Lemma 5.2 shows that κ(ℓ)λ is symplectic
if and only if complex conjugation stabilizes λ, i.e., if and only if ι = σ 2 ∈ D(ℓ).
Since this happens in the two cases under consideration, the induced decomposition
is symplectic and the cyclic shape of γℓ is the S variant.
Finally, we analyze the situation in which I(ℓ) = ⟨σ 2⟩ ⊂ D(ℓ) = ⟨σ⟩; we must

decidewhether the cyclic shape is RQ-1 or RQ-2. Let λ be the prime of K lying over ℓ.
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Consider the Frobenius element ϖ f as an element of OK . _en

f (T) = ∏
0≤ j≤3

(T − σ j(ϖ f )).

_e ramiûcation hypothesis implies that σ 2(ϖ f ) ≡ ϖ f mod λ, and we have the fac-
torization f (T) ≡ g(T)2 mod λ where

g(T) ≡ (T − ϖ f )(T − σ(ϖ f )) mod λ.

By comparing constant terms,we ûnd that (ϖ f σ(ϖ f ))
2 ≡ q2 mod λ, and in particular

ϖ f σ(ϖ f ) ≡ ±q mod λ. However, ifwehadϖ f σ(ϖ f ) ≡ q mod λ, thenwewould know
that σ(ϖ f ) ≡ σ 2(ϖ f ) mod λ, which contradicts the hypothesis that σ /∈ I(ℓ).

_erefore, the constant term of the irreducible factor g(T) is −q mod λ, and the
cyclic shape of γℓ is RQ-2.

D(ℓ) I(ℓ) FrobK(ℓ) (e , f , r) Class shape
{1} {1} 1 (1,1,4) Split
⟨σ 2⟩ {1} σ 2 (1,2,2) DQ-S
⟨σ 2⟩ ⟨σ 2⟩ - (2,1,2) DRL-S
⟨σ⟩ {1} σ or σ 3 (1,4,1) Quartic
⟨σ⟩ ⟨σ 2⟩ - (2,2,1) RQ-2
⟨σ⟩ ⟨σ⟩ - (4,1,1) QRL

Table 5.1: Prime factorizations and conjugacy class shapes for K/Q cyclic

5.2 K Biquadratic

Suppose instead that K = Split( f ) is biquadratic. _en K is the compositum of qua-
dratic imaginary ûelds K1 and K2, and we have

Gal(K/Q) ≅ Gal(K1/Q)⊕Gal(K2/Q) ≅ Z/2⊕Z/2.

Let τ i generate Gal(K/K i). _en complex conjugation is given by ι = τ1τ2; its ûxed
ûeld is the real quadratic subûeld K+. We again classify the splitting behavior of
primes ℓ by considering pairs D(ℓ) and I(ℓ).

Lemma 5.4 Suppose f satisûes Conditions (W.1)–(W.4) with K = K f biquadratic.
Let ℓ /= p be a rational prime. _e cyclic shape of γℓ is determined by the decomposition
and inertia groups D(ℓ) and I(ℓ) as in Table 5.2.

As before, the cyclic shape of γℓ determines a unique conjugacy class except when
that shape is either DRL-S or RQ-2. In these cases, there are two conjugacy classes
with the cyclic shape given by γℓ .
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Proof Proceed as in the proof of Lemma 5.3. Note that, by Lemma 5.2, κ(ℓ)λ is
isotropic if and only if complex conjugation acts nontrivially on λ, i.e., if and only if
ι = τ1τ2 ∉ D(ℓ). In these cases the induced decomposition is isotropic and the cyclic
shape of γℓ is the I variant. All ambiguous cases where r > 1 can be identiûed by the
action of the pairing on the induced decomposition.

Now (without loss of generality) suppose that I(ℓ) = ⟨τ1⟩ ⊂ D(ℓ) = ⟨τ1 , τ2⟩, and
let λ be the prime lying over ℓ. As in Lemma 5.3, we recall that

f (T) ≡ (T − ϖ f )(T − τ1(ϖ f ))(T − τ2(ϖ f ))(T − τ1τ2(ϖ f )) mod λ.
_e assumption on ramiûcation implies that ϖ f ≡ τ1(ϖ f ) mod λ, and thus that

τ2(ϖ f ) ≡ τ1τ2(ϖ f ) mod λ. _erefore, f (T) factors as

f (T) ≡ ((T − ϖ f )(T − τ2(ϖ f )))
2
mod λ.

Moreover, ϖ f τ2(ϖ f ) ≡ ϖ f τ1τ2(ϖ f ) ≡ q mod λ. _erefore, f (T) ≡ g(T)2 mod λ
where g(0) = q, and the cyclic shape of γℓ is RQ-1.

_e remaining cases follow in an analogous fashion.

D(ℓ) I(ℓ) FrobK(ℓ) (e , f , r) Class shape
{1} {1} 1 (1,1,4) Split
⟨τ i⟩ {1} τ i (1,2,2) DQ-I
⟨τ i⟩ ⟨τ i⟩ - (2,1,2) DRL-I

⟨τ1τ2⟩ {1} τ1τ2 (1,2,2) DQ-S
⟨τ1τ2⟩ ⟨τ1τ2⟩ - (2,1,2) DRL-S
⟨τ1 , τ2⟩ ⟨τ i⟩ - (2,2,1) RQ-1
⟨τ1 , τ2⟩ ⟨τ1τ2⟩ - (2,2,1) RQ-2

Table 5.2: Prime factorizations and conjugacy class shapes for K/Q biquadratic

6 Local Terms for K
Let Gal(K/Q)∗ be the character group of theGalois group of K. For χ ∈ Gal(K/Q)∗,
let K χ be the subûeld of K ûxed by ker χ. For a rational prime ℓ, let

χ(ℓ) = χ(FrobK χ(ℓ))

if ℓ is unramiûed in K χ , and let χ(ℓ) = 0 otherwise.
Since K+ is a subextension of K, Gal(K+/Q)∗ is naturally a subgroup of

Gal(K/Q)∗, and we deûne

νℓ(K) = ∏
χ∈S(K)

1
1 − χ(ℓ)/ℓ

,(6.1)

where
S(K) = Gal(K/Q)∗ ∖Gal(K+/Q)∗ .
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6.1 K Cyclic

As in Section 5.1, let Gal(K/Q) = ⟨σ⟩. Let χ be a faithful character of Gal(K/Q), so
that χ ∶= χ ○ ι is the other faithful character of Gal(K/Q) and S(K) = {χ, χ}.

Lemma 6.1 Let ℓ be a rational prime. _e multiset of values {χ(ℓ), χ(ℓ)} is deter-
mined by the decomposition and inertia groups D(ℓ) and I(ℓ) as in Table 6.1.

Proof _is follows from the deûnition of {χ, χ} and the calculation of Frobenius
elements in Lemma 5.3. In particular, {χ(ℓ), χ(ℓ)} depends only on the order of
D(ℓ) and I(ℓ), and not on their canonical generators. It is also independent of the
choice of generator of Gal(K/Q)∗.

D(ℓ) I(ℓ) {χ(ℓ), χ(ℓ)} Class shape
{1} {1} {1, 1} Split
⟨σ 2⟩ {1} {−1,−1} DQ-S
⟨σ 2⟩ ⟨σ 2⟩ {0, 0} DRL-S
⟨σ⟩ {1} {−i , i} Quartic
⟨σ⟩ ⟨σ 2⟩ {0, 0} RQ-2
⟨σ⟩ ⟨σ⟩ {0, 0} QRL

Table 6.1: Values of imaginary characters on Frobenius elements for K/Q cyclic.

6.2 K Biquadratic

As in Section 5.2, let Gal(K/Q) = ⟨τ1 , τ2⟩. Denote the quadratic imaginary subûelds
of K by K1 and K2 and let Gal(K/K i) = ⟨τ i⟩. For i ∈ {1, 2}, deûne the character

ϕ i(τ j) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

−1 i = j,
1 i /= j.

_en S(K) = {ϕ1 , ϕ2}.

Lemma 6.2 Let ℓ be a rational prime. _e multiset of values {ϕ1(ℓ), ϕ2(ℓ)} is de-
termined by the decomposition and inertia groups D(ℓ) and I(ℓ) as in Table 6.2.

6.3 Matching

In this section, we show that each of the local factors naïvely assigned to f matches a
factor intrinsic to the splitting ûeld K = K f .

Proposition 6.3 If ℓ /= p, then νℓ( f ) = νℓ(K).
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D(ℓ) I(ℓ) {ϕ1(ℓ), ϕ2(ℓ)} Class shape
{1} {1} {1, 1} Split
⟨τ i⟩ {1} {−1, 1} DQ-I
⟨τ i⟩ ⟨τ i⟩ {0, 1} DRL-I

⟨τ1τ2⟩ {1} {−1,−1} DQ-S
⟨τ1τ2⟩ ⟨τ1τ2⟩ {0, 0} DRL-S
⟨τ1 , τ2⟩ ⟨τ i⟩ {0,−1} RQ-1
⟨τ1 , τ2⟩ ⟨τ1τ2⟩ {0, 0} RQ-2

Table 6.2: Values of imaginary characters on Frobenius elements for K/Q biquadratic.

Proof Let γℓ be as in Section 5. We ûrst assume that the cyclic shape of γℓ determines
a unique conjugacy class in GSp4(Fℓ), and then indicate what must be changed to
accommodate the remaining cases.

_us, let γ be any cyclic element whose semisimpliûcation is γℓ , and assume the
shape of γ is neither DRL-S nor RQ-2. By Lemmas 6.1 and 6.2, the set of character
values {χ(ℓ) ∶ χ ∈ S(K)} depends only on the shape of γ; and tautologically, the size
of the conjugacy class C(γ) only depends on the shape of γ, as well.

On one hand, by (5.1) we have

νℓ( f ) =
#C(γ)

#GSp4(Fℓ)(q)/ℓ2
=

#GSp4(Fℓ)/#Z(γ)
#GSp4(Fℓ)(q)/ℓ2

=
ℓ2(ℓ − 1)
#Z(γ)

.

Lemmas 3.1 and 3.2 supply column 2 ofTable 6.3, and applying this simple calculation
provides column 3.

On the other hand, recall that (6.1) gives

νℓ(K) = ∏
χ∈S(K)

1
1 − χ(ℓ)/ℓ

.

Lemmas 6.1 and 6.2 provide column 4 of Table 6.3, and we compute column 5 using
(6.1).

If γℓ has cyclic shape of type DRL-S or RQ-2, then there are two cyclic conjugacy
classes with semisimpliûcation γℓ . For a representative γ of each class,

#C(γ)/(#GSp4(Fℓ)
(q)/ℓ2) =

1
2
,

and thus νℓ( f ) = 1
2 +

1
2 .

As columns 3 and 5 are equal, the theorem is proven.

Similarly, we have the following lemma.

Lemma 6.4 We have νp( f ) = νp(K).
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Class shape #Z(γ) νℓ( f ) {χ(ℓ) ∶ χ ∈ S(K)} νℓ(K)

Split (ℓ − 1)3 ℓ2
(ℓ−1)2 {1, 1} ℓ

ℓ−1 ⋅
ℓ

ℓ−1

DQ-S (ℓ + 1)2(ℓ − 1) ℓ2
(ℓ+1)2 {−1,−1} ℓ

ℓ+1 ⋅
ℓ

ℓ+1

DQ-I (ℓ + 1)(ℓ − 1)2 ℓ2
ℓ2−1 {−1, 1} ℓ

ℓ+1 ⋅
ℓ

ℓ−1
Quartic (ℓ2 + 1)(ℓ − 1) ℓ2

ℓ2+1 {−i , i} ℓ
ℓ−i ⋅

ℓ
ℓ+i

QRL ℓ2(ℓ − 1) 1 {0, 0} 1 ⋅ 1
DRL-S 2ℓ2(ℓ − 1) 1 {0, 0} 1 ⋅ 1
DRL-I ℓ(ℓ − 1)2 ℓ

ℓ−1 {0, 1} ℓ
ℓ−1 ⋅ 1

RQ-1 ℓ(ℓ2 − 1) ℓ
ℓ+1 {−1, 0} ℓ

ℓ+1 ⋅ 1
RQ-2 2ℓ2(ℓ − 1) 1 {0, 0} 1 ⋅ 1

Table 6.3: νℓ( f ) and νℓ(K)

Proof Since we have assumed p unramiûed in K (W.3), g(T) ∶= T2 − aT + b is not
a square. For convenience, we recall the deûnition

νp( f ) =
#{γ ∈ GSp4(Fp)

(b2) ∶ fγ(T) ≡ g(T)2 mod p and γ semisimple}
#GSp4(Fp)(b

2)/p2 .

First suppose that K/Q is cyclic. _en p splits completely in K (e.g., [6, Table 3]),
and g(T) factors (in Fp). _e set of semisimple elements with characteristic polyno-
mial g(T)2 has the same cardinality as a conjugacy class of type Split. From (the ûrst
line of) Table 6.3, we see that νp( f ) = νp(K).

Now instead suppose that K/Q is biquadratic. _en either p splits completely in
K, or p splits in exactly one of the K i ([6, Table 4]). _e former case has already
been addressed. For the latter case, the set of semisimple elementswith characteristic
polynomial g(T)2 has the same cardinality as a conjugacy class of type DQ-I. Again
we conclude from Table 6.3 that νp( f ) = νp(K).

Finally, we compute the following lemma.

Lemma 6.5 We have

ν∞( f ) =
1

4π2

√

∣
∆K

∆K+
∣ .

Proof From Lemma 2.2 we have cond( f ) = q and ∆ f = q2∆K . Also, Lemma 2.4
implies that ∆ f + = ∆K+ . _en (4.2) gives the result.
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6.4 Comparison with [5]

Aswementioned in the introduction, thiswork is inspired byGekeler’swork [5]with
ordinary isogeny classes of elliptic curves over Fp . He starts with an ordinary qua-
dratic p-Weil polynomial g(T); deûnes

(6.2) νG
ℓ (g) = lim

r→∞

#{γ ∈ GL2(Z/ℓr)(q) ∶ fγ ≡ g mod ℓr}
#GL2(Z/ℓr)(q)/ℓr

;

and among other results shows ([5, Cor. 4.8]) that if ℓ2 ∤ ∆g , then

νG
ℓ (g) =

1
1 − χ(ℓ)/ℓ

,

where χ is the quadratic character of the splitting ûeld of g.
If ℓ ∤ ∆g , then the centralizer of an element with characteristic polynomial g is

smooth overZℓ , and thus setting r = 1 in the right-hand side of (6.2) already calculates
the limiting value. If ℓ, but not its square, divides ∆g , then (6.2) does not stabilize at
r = 1. However, if instead we ask for the proportion of cyclic elements of GL2(Fℓ)
with characteristic polynomial fγ ≡ g mod ℓ, then we again have a ûnite expression
that computes νG

ℓ (g).
Returning to the context of abelian surfaces, the same “smoothness of central-

izers” argument shows that if ℓ ∤ ∆ f , then the proportion in (4.1) calculates the
GSp4-analogue of the limit in (6.2). Condition (W.4), which corresponds to the lo-
cal condition ℓ2 ∤ ∆g , is why passing to the cyclic shape in (5.1) again allows us to
compute in Fℓ , as opposed to Zℓ .

7 Main Result

In the following, we will have several occasions to consider conditionally convergent
inûnite products. For a sequence of numbers {aℓ} indexed by ûnite primes, let

(7.1) ∏
ℓ
aℓ = lim

X→∞
∏
ℓ<X

aℓ .

With this convention, we have (∏ℓ aℓ) ⋅ (∏ℓ bℓ) =∏ℓ(aℓbℓ).
For a number ûeld L, let h(L), ωL and RL denote, respectively, the class number,

number of roots of unity, and regulator of L.

_eorem 7.1 Let f be a degree 4 q-Weil polynomial that is ordinary, principally polar-
izable,Galois, andmaximal. Let K f be the splitting ûeld of f , and let K+

f be itsmaximal
totally real subûeld. _en

(7.2) ν∞( f )∏
ℓ

νℓ( f ) =
1

ωK

h(K f )

h(K+
f )

.

Proof Wewrite K and K+ for K f and K+
f . By the analytic class number formula, the

ratio of class numbers on the right-hand side of (7.2) is

h(K)

h(K+)
= lim

s→1

(s − 1)ζK(s)
(s − 1)ζK+(s)

√
∣∆K ∣22ωKRK+

√
∣∆K+ ∣(2π)2ωK+RK

.
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For a ûnite abelian extension L/Q, we have

lim
s→1

(s − 1)ζL(s) = ∏
χ∈Gal(L/Q)∗∖id

L(1, χ),

where the product is over nontrivial characters of Gal(L/Q), and, as in (7.1), we in-
terpret L(1, χ) as the conditionally convergent product

L(1, χ) = lim
X→∞

∏
ℓ<X

1
1 − χ(ℓ)/ℓ

.

With our convention on conditionally convergent products,

∏
χ∈Gal(L/Q)∗∖id

L(1, χ) =∏
ℓ
( ∏
χ∈Gal(L/Q)∗∖id

1
1 − χ(ℓ)/ℓ

) .

By hypothesis K and K+ are abelian, as they are Galois over Q of degrees 4 and 2,
respectively. By deûnition (6.1), for each ℓ,

∏
χ∈Gal(K/Q)∗∖id

1
1−χ(ℓ)/ℓ

∏
χ∈Gal(K+/Q)∗∖id

1
1−χ(ℓ)/ℓ

= νℓ(K).

Finally, O×
K and O×

K+ agree up to torsion, so RK = 2RK+ , and K+ is a real ûeld, so
ωK+ = 2. Consequently,

h(K)

h(K+)
= ωK

1
4π2

¿
Á
ÁÀ ∣∆K ∣

∣∆K+ ∣
∏
ℓ

νℓ(K) = ωKν∞( f )∏
ℓ

νℓ( f )

by Proposition 6.3 and Lemmas 6.4 and 6.5.

In fact, (7.2) has a natural interpretation in terms of abelian varieties.

Corollary 7.2 For f as in_eorem 7.1, suppose further thatGal(K f /Q) is cyclic. _en

(7.3) ν∞( f )∏
ℓ

νℓ( f ) = #A2(Fq ; f ),

the number of isomorphism classes of principally polarized abelian surfaces overFq with
characteristic polynomial of Frobenius f , weighted by (inverse) size of automorphism
group.

Proof If (X , λ) ∈ A2(Fq ; f ), then #Aut(X , λ) = ωK . By [2], h(K)/h(K+) is the
(unweighted) size of A2(Fq ; f ). Indeed, under the hypothesis that Gal(K f /Q) is
cyclic of order 4 and themaximality Condition (W.4), [2,_m. 3.1 and Cor. 3.2] show
that the size of the isogeny class parametrized by f is (in their notation)

#C(K) =
h(K)

h+(K+)
[(O×

K+)
+ ∶ NK/K+(O

×
K)] ,

where h+(K+) denotes the narrow class group of K+, and (O×
K+)

+ denotes the totally
positive units of OK+ . Since

[(O×
K+)

+ ∶ NK/K+(O
×
K)] =

h+(K+)

h(K+)
,
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we ûnd that #C(K) = h(K)/h(K+).
Now invoke_eorem 7.1.

In fact, unpublished work of Howe shows that in much greater generality,
h(K)/h(K+) computes the size of a suitable isogeny class. _us, we expect (7.3) to
also hold when K f is biquadratic.
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